Topic 8:

Structured Query Language (SQL)

SO CSC 400 v L IMcCann) o 1/62

Background (1 /2)

e IBM’s System R was released in 1978

— Its query language name: SEQUEL
(Structured English QUEry Language)

— But trademarked by a British airplane company!
(1982, Hawber Siddeley Dynamics Engineering Ltd.)

— After dropping the vowels: SQL
e IBM'’s current DB/2 was released in 1982; also used SQL

e SQL:
— A marriage of TRC to RA
—SQL=DML + DDL + DCL +QL +...

SQL - CSc 460 v1.1 (McCann) —p. 2/62

Background (2 / 2)

e SQL is no longer a proprietary language:
— SQL is now an ANSI/ISO standard (ISO/IEC 9075)
— Versions: 1989, '92, ’99, 20083, '06, 08, ’11, '16,
19,23, ...
e But no DBMS strictly follows any of them!
— Example: Tuple IDs are non—standard

— There is a basic subset you can count on

SOl CSC 400 v L IMcCann) 0 _3/62

Relational Operators (1 / 5)

But first: SQLs SELECT statement

e NOT identical to the select operator of Rel. Alg.!
e Most basic Form:

SELECT <attribute list>
FROM <relation list>;

SQL - CSc 460 v1.1 (McCann) —p. 4/62

Relational Operators (2 / 5)

Now that we can perform 7, we can answer our first
standard query:

“What is the content of the Employee relation?”

S QL= CSC 400 v L IMcCann) 0 D/62

Relational Operators (3 / 5)

Performing o requires a new clause:

SELECT <attribute list>
FROM <relation list>

What are the names and salaries of employees in department 5?

SQL - CSc 460 v1.1 (McCann) —p. 6/62

Relational Operators (4 / 5)

These are also all of the clauses that we need for Dx<:

What are the names of the parts that can be supplied by individual
suppliers in quantity > 2007?

SO CSC 400 v L IMcCann) o 7/62

Relational Operators (5/ 5)

For completeness, our fourth standard query:

What are the names of the active suppliers of nuts?

SELECT sname
FROM s, spj, p
WHERE s.sno = spj.sno
AND spj.pno = p.pno
AND status > 0 AND pname = ’'nut’;

SQL - CSc 460 v1.1 (McCann) —p. 8/62

Column Aliases

You may give your result relations different attribute names:

select givenname as "First Name",
surname as "Last Name",
salary
from employee

where deptid = 5;

SO CSC 400 v L IMcCann) 0 0/62

A Note about Duplicate Tuples

By default, SQL does not remove duplicate tuples from

result relations. (Why not? It should, relations are sets!)

But SQL lets us override that behavior!

SQL - CSc 460 v1.1 (McCann) —p. 10/62

Ordering Result Tuples

We can sort tuples, too, with the ORDER BY clause.

Ascending Order: Descending Order:

We can even do “phone book” sorting:

BASSETT Thomas 205 Timbenine nuew=sseeiniiny - Hailey 8
BASSETT Tom & Sandy Gregorak 205
BATCHA FRANK MD 1450Avlaﬁm orivsSta 100

BATEMAN A 3023 Warm Rd S

BATES CORY MD 100 Ho

BATES Craig PO Box 4338

BATES Dale & Peggy

SOl GO 400 v L IMCCann) o 11/62

Computed Columns

We can perform basic arithmetic with field values:

Convert part weight from pounds to grams:

SQL - CSc 460 v1.1 (McCann) —p. 12/62

Tuple Aliases

We can assign relations temporary, alternate names.

Create all pairs of supplier names located within the same city:

SQL = CoC460 v L (IMcCann) o 13/62

Pattern Matching (1 / 2)

SQL allows us to search for values that match a particular pattern.

Form:

... WHERE attribute [not] LIKE ‘pattern’
[ESCAPE escape character]

Available wildcards:

(underscore) matches any single character

[¢)

% matches 0 or more characters

Important: LIKE does not support regular expressions.

SQL - CSc 460 v1.1 (McCann) —p. 14/62

Pattern Matching (2 / 2)

Find the part names that have an ‘0’ as the second letter:

select pname
from P

where pname like ’'_0%’;

To use wildcards as regular characters, ESCAPE them:

. where field like ’'%@%’ escape ’'@’;

Here, we match any string ending in a percent sign.

SOl COC460 v L (McCann) o 15/62

Regular Expressions (1/2)

Oracle offers REGEXP__LIKE for regular expressions.

Form (note that <pattern> and <match> are single—quoted):

...WHERE REGEXP_LIKE (<source>,’<pattern>’,’<match>");
where:

< source> is an attribute name
< pattern> is a regular expression (see next slide)
<match> is a search modifier; e.qg.:

c — case sensitive (1 — case insensitive)
X — ignore whitespace

SQL - CSc 460 v1.1 (McCann) —p. 16/62

Regular Expressions (2 / 2)

REGEXP_LIKE options for <pattern> include:

— (a period) match a single character

X — match x 0 or more times

X+ — match x 1 or more times

X? — match x 0 or 1 times

x|y — match x once or match y once

x{n,m} — match x at least n times, at most m times

Find the part names that have an ‘0’ as the second letter:

select pname
from P
where regexp_like(pname , ".o.x" , "1’);

SQL = COC460 v L (IMcCann) o 17/62

Set Operators (1/5)

Cartesian Product (X):
e Cartesian Product produces all pairs of tuples.
e Join produces all pairs of tuples that meet a condition.

e So ...if we Join when the condition is always true ...

To form the Cartesian Product of S and P:

SQL - CSc 460 v1.1 (McCann) —p. 18/62

Set Operators (2 / 5)

Union (U):
e Form: select...
union [all] (all = keep duplicates)
select ...

e Union compatibility still applies!

SOl COC460 v L (McCann) o 19/62

Set Operators (3 /5)

Intersection (M) and Difference (—):

e The SQL keyword for set intersection is INTERSECT
e The SQL keyword for set difference is EXCEPT
...except, Oracle uses MINUS
e Form: select...
intersect/except
select ...

select city from s
EXCEPT <-— MINUS in Oracle

select city from p;

SQL - CSc 460 v1.1 (McCann) —p. 20/62

Set Operators (4 / 5)

The Return of ... Division!

Version 1: Relational Algebra expression

Recall: a + [=myg(a) — mag((map(e) X B) — a)

And our sample division query:
“Find the S#s of the suppliers who supply all parts

of weight equal to 17

SQL=COC460 v L (IMcCann) o 21/62

Set Operators (5/5)

Andso, «a =+ 3= myg(a) — mag((mag() X 8) —)
becomes in SQL:

select sno from spj
except
select sno from
(select sno, pno
from (select sno from spj) as tl,
(select pno from p where weight=17) as t2
except
select sno, pno from spj
) as t3;

SQL - CSc 460 v1.1 (McCann) —p. 22/62

Aggregate Functions (1 / 3): Background

ldea: Let SQL compute basic statistical results for us

SQL provides aggregate functions for this purpose:
— count([distinct] attr) — counting entries in a relation
— sum([distinct] attr) — totaling values of attr in a relation
— avg([distinct] attr) — averaging values of attr in a relation
— min(attr) — smallest value of attr in a relation

— max(attr) — largest value of attr in a relation

SQL=COC460 v L (McCann) 0 23/62

Aggregate Functions (2 / 3)

Variations on counting:

® seclect count (city) from p;

® select count(distinct city) from pj;

® select count (x) from p;

SQL - CSc 460 v1.1 (McCann) —p. 24/62

Aggregate Functions (3 / 3)

If we have one of each part in a box, how much does the

content weigh?

Which query will give the correct answer?

(@) select sum(weight) from p;
(b) select sum(distinct weight) from p;

SOl COC460 v L (McCann) 0 25/62

Group By

Purpose: Apply aggregates to sub—groups of tuples

What are the average quantities in which suppliers are sup-

plying parts?

SQL - CSc 460 v1.1 (McCann) —p. 26/62

Having

e Used in conjunction with ‘group by’

e Purpose: Controls which group’s aggregations are produced

Which suppliers are supplying parts in average quantity un-

der 400, and what are those averages?

SOl COC 460 v L (IMcCann) 0 27/62

More on Nested Queries (1/4)

We've seen this idea before (e.g., the division query).

Another way to do nested queries is with the IN operator:

— IN tests set membership (form: tuple IN relation)
— We can negate the test (tuple NOT IN relation)
— Used in conjunction with a sub—query in a WHERE clause

Remember this query?

SQL - CSc 460 v1.1 (McCann) —p. 28/62

More on Nested Queries (2 / 4)

|dea: Create a set of parts available in quantity > 200,

and test each part from the DB against that set.

To create the P#s of the ‘quantity > 200’ parts:
select pno
from spJ

where gty > 200;

And to produce the names of the parts in that set:

SOl COC460 v L (IMcCann) 0 29/62

More on Nested Queries (3/4)

Notes:

e IN and NOT IN are only suitable for equality comparisons
e Other options include:

©)

SQL - CSc 460 v1.1 (McCann) —p. 30/62

More on Nested Queries (4 / 4)

One more nested—query operator: EXISTS

lts purpose: Test if a relation holds at least one tuple

Another (awkward!) version of the gty > 200 query:

SOl COC460 v L (McCann) o 31/62

Division, Revisited (1 /7)

Version 2: “Double — 3”

Recall:
Find the S#s of the suppliers who supply all parts of weight 17.

Restated in logical English:
Find S#s such that V parts of weight 17, 3 suppliers that supply them all

Apply Double Negation and Generalized De Morgan’s Laws:
Va3b f(a,b) = —3Ja—3b f(a,b)

Returning to logical English:
Find S#s such that — d parts of weight 17 for which — 3 suppliers
that supply them all

SQL - CSc 460 v1.1 (McCann) —p. 32/62

Division, Revisited (2 / 7)

Find S#s such that — 3 parts of weight 17 for which — 3

suppliers that supply them all expressed in SQL:

select distinct sno
from spj as global
not exists
(select pno
from P
where weight =
(select =

from

where

where

and local.sno

spj as local
local.pno = p.pno

17 and not exists

global.sno

SQL=COC460 v L (McCann) o _33/62

Division, Revisited (3 /7)

Aside: This query form is useful beyond division.

Which drinkers like a unique set of beers?

SELECT L1.drinker
FROM Likes L1
WHERE NOT EXISTS(
[SELECT *
1 FROM LikesL2
WHERE L1.drinker == L2.drinker
AND NOT EXISTS(
SELECT *
2 [FROM Likes L3
X WHERE L3.drinker = L2 drinker
Nesting AND NOT EXISTS(
Depth SELECT *
. FROM Likes L4
. WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))
AND NOT EXISTS(
[SELECT *
2 FROM Likes LS
L WHERE L5. drinker = L1. drinker
AND NOT EXISTS(
SELECT *
- FROM Likes LG
2 WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

|

Schema:

Likes(drinker , beer)

Source: Leventidis, A., et. al. “QueryVis: Logic—based Diagrams help Users Understand Complicated SQL

Queries Faster.” Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,

June 2020, pp. 2303-2318. https://doi.org/10.1145/3318464.3389767

SQL - CSc 460 v1.1 (McCann) —p. 34/62

Division, Revisited (4 / 7)

Version 3: Set Containment

Observation:

If B C A, then B — A will be empty (or, =3(B — A) is true)

Relevance:

If a supplier supplies a superset of the parts

of weight 17, the supplier clearly supplies them all

A = The parts a supplier supplies

B = The parts of weight 17

SOl CoC460 v L (IMcCann) o 35/62

Division, Revisited (5/ 7)

select distinct sno
from spj as global
where not exists (
(select pno
from P
where weight = 17
) except (
select p.pno
from P, sSpj
where p.pno = spj.pno

and spj.sno = global.

SNno

not bkwd-E

SQL - CSc 460 v1.1 (McCann) —p. 36/62

Division, Revisited (6 / 7)

Version 4: Set Cardinality

ldea:

e For each supplier that supplies parts of weight 17, count

those parts.

e If the total matches the number of weight 17 parts, that

supplier supplies them all.

SOl COC460 v L (IMcCann) o 37/62

Division, Revisited (7 / 7)

select distinct sno
from spj, p
where spj.pno = p.pno and weight = 17

group by sno
having count (distinct p.pno) =
(select count (distinct pno)
from P

where weight = 17

SQL - CSc 460 v1.1 (McCann) — p. 38/62

QOuter Joins (1 / 5)

Regular (“inner”) joins discard non-matching tuples.

Name the employees who are supervising buildings.

M | Id | Name N | Building | Supervisor
1 Roy A 2
2 Amy B 1
3 Joy C 2
D NULL
M D<lig_supervisor N | 1d | Name | Building | Supervisor

2 Amy A 2

1 Roy B 1

2 Amy C 2

SOl COC460 v L (McCann) o _39/62

Outer Joins (2 / 5)

Now consider this slightly different query.

Name all employees and the buildings they supervise.

M[2]|N

Our desired answer:

Id | Name | Building | Supervisor
1 Roy B 1

2 Amy A 2

2 Amy C 2

3 Joy NULL NULL

But ... how do we get this result from a join?

SQL - CSc 460 v1.1 (McCann) —p. 40/62

Outer Joins (3 /5)

There are three varieties of outer join:
e Left Outer Join (_<]): Retains unmatched tuples from left relation
e Right Outer Join (D<U_) Retains unmatched tuples from right relation
e Full Outer Join (_I>X<I_): Retains all unmatched tuples

SOl COC460 v L (McCann) o 41/62

Outer Joins (4 / 5)

The SQL outer join syntax:

select < attribute list>
from (<relation> [left/right/full] outer join <relation>> on <join condition>)

where <condition> ;

Name all employees and the buildings they supervise.

SQL - CSc 460 v1.1 (McCann) —p. 42/62

Outer Joins (5/ 5)

Quter join is not an fundamental operator.
We can fabricate outer join with UNION ALL.

Name all employees and the buildings they supervise.

select id, name, building, supervisor
from m, n
where m.id = n.supervisor
SOl COC460 v L (IMcCann) 0, 43/62

First order of business: Creating a database!

The exact mechanism depends on the DBMS.

1. Postgres: $ createdb <name>

2. Oracle: CREATE DATABASE <name>;

SQL - CSc 460 v1.1 (McCann) —p. 44/62

Creating Relations (1 / 3)

Some sample attribute types:

e Integers: integer, number (p)
e Floats: float, real, number (p, s)
O pis precision (total # digits), s is scale (# digits after decimal)
e Sirings: char (n), varchar (n),varchar2 (n)
e Others: timestamp,blob,bfile,...

SOl COC460 v L (IMcCann) 0 45/62

Creating Relations (2 / 3)

To create a relation:

CREATE TABLE <table name> (
< attribute name> <data type > [NOT NULL],

[PRIMARY KEY (<attribute>)]

SQL - CSc 460 v1.1 (McCann) —p. 46/62

Creating Relations (3 / 3)

Creating the supplier (S) relation:

create table s (

SNno varchar2 (5), —— the supplier ID number
sname varchar2 (20), —-—- the supplier’s name
status integer, —-— supplier status

city varchar2 (15), —-- location of supplier

primary key (sno)

SOl COC460 v L (IMcCann) 0 47/62

Creating Indices (1 / 3)

Form:

CREATE [UNIQUE] INDEX <index name>
ON <table name>
[USING <access method™> |

(<attribute name> [, < attribute name> ...]);

SQL - CSc 460 v1.1 (McCann) —p. 48/62

Creating Indices (2 / 3)

Create an index on jno in SPJ:

create index spj_Jj_1index

on spj (Jno);

SQL = CoC460 v L (McCann) 0 49/62

Creating Indices (3 / 3)

Different DBMSes supply different kinds of indices; e.g.:

1. Oracle 11:

e B-tree
— Reverse Key (subtype of B—Tree, reverses bytes)
e Function—based (to support queries using computations)
e Bitmap (instead of storing lists of IDs)
e Application Domain Indexes (user—defined)

2. Postgres 14:

e B-iree

e Hash (apparently linear hashing)

e GiST (Generalized Search Tree) and SP-GiST
e GIN (Generalized Inverted Index)

e BRIN (Block Range Index)

SQL - CSc 460 v1.1 (McCann) —p. 50/62

Creating Views (1 / 2)

Remember the ANSI/SPARC External Layer?

Form:

CREATE VIEW <view name> [(<attribute list>)]

AS <select statement>:

SOl COC460 v L (McCann) o 01/62

Creating Views (2 / 2)

Create a view of supplier names and the IDs of the parts

that they supply.

create view supplierpart ("SupplierName", "PartNum")
as select distinct sname, pno
from S, spj

where s.sno = spj.sho;

Then, it is available for use immediately:

select » from supplierpart;

SQL - CSc 460 v1.1 (McCann) —p. 52/62

View Updates (1/2)

Can users update the content of views? That is, can we convert

a view update into updates of the view’s base relations?

Consider a view that is a join of A and B:

Alal|b|c B|d|a AxxB|a|b|c|d
X|2]|Db 6|y y|l1|a|6
yl|1]|a 11y yl1]a]
z|1]|Db

SOl COC460 v L (McCann) o _03/62

View Updates (2 / 2)

(continued!) Our desired result:

AxB|la|bjc|d Ala|b|c B|d|a
y|l1|a|6 — Xx|2]|Db 6|y
y|1|a]1 y|1]a 11y
yl|1|la]|4 z|11|b 4 |y
x|2|c|3 X|2|cC 3| x

SQL - CSc 460 v1.1 (McCann) —p. 54/62

SQL as DML

The view update example raises a pertinent question:

How do we insert data into a relation?

With a DML operation, of course!

SOl COC460 v L (McCann) o D5/62

Inserting Tuples into a Relation

To insert a tuple into a relation:

INSERT INTO <relation name> [(<column list>)]
VALUES (<expression list>);

SQL - CSc 460 v1.1 (McCann) —p. 56/62

Bulk Loading a Database

Using INSERT INTO to populate tables is:

e Highly portable! (just create a script file), but
e Slow (especially if you don’t disable transactions)

An alternative is a bulk—loading utility.

SOl COC 460 v L (McCann) o D7/62

Updating Content of Tuples

To modify data in existing tuples:

UPDATE <relation name>
SET <attribute name> = <expression> [, ... |
[FROM <relation list>]
[WHERE <condition> 1|;

SQL - CSc 460 v1.1 (McCann) —p. 58/62

Storing Query Results

Can we add query results (which are relations) to the DB?

Yes! Two options:

1. (Pretty universal) If you have an existing table:

INSERT INTO <relation name>
< SELECT statement>:

2. (Oracle) If you need to create the table, too:

CREATE GLOBAL TEMPORARY TABLE < relation name>
AS <SELECT statement>;

(Table disappears at end of session.)

SOl COC460 v L (IMcCann) o D0/62

Deleting Tuples

Like updating, a condition is used to ID tuples for removal:

DELETE FROM < relation name>
WHERE <condition>;

SQL - CSc 460 v1.1 (McCann) — p. 60/62

Deleting Relations

To remove tables, indices, views, ...

DROP { TABLE | INDEX | VIEW | DATABASE } <name>;

SOl COC460 v L (IMcCann) o 61/62

Wait! What About “SQL as DCL?”

We’ll cover that in Topic 14: Security.

SQL - CSc 460 v1.1 (McCann) —p. 62/62

	Topic 8:
	Background (1 / 2)
	Background (2 / 2)
	Relational Operators (1 / 5)
	Relational Operators (2 / 5)
	Relational Operators (3 / 5)
	Relational Operators (4 / 5)
	Relational Operators (5 / 5)
	Column Aliases
	A Note about Duplicate Tuples
	Ordering Result Tuples
	Computed Columns
	Tuple Aliases
	Pattern Matching (1 / 2)
	Pattern Matching (2 / 2)
	Regular Expressions (1 / 2)
	Regular Expressions (2 / 2)
	Set Operators (1 / 5)
	Set Operators (2 / 5)
	Set Operators (3 / 5)
	Set Operators (4 / 5)
	Set Operators (5 / 5)
	Aggregate Functions (1 / 3):
Background
	Aggregate Functions (2 / 3)
	Aggregate Functions (3 / 3)
	Group By
	Having
	More on Nested Queries (1 / 4)
	More on Nested Queries (2 / 4)
	More on Nested Queries (3 / 4)
	More on Nested Queries (4 / 4)
	Division, Revisited (1 / 7)
	Division, Revisited (2 / 7)
	Division, Revisited (3 / 7)
	Division, Revisited (4 / 7)
	Division, Revisited (5 / 7)
	Division, Revisited (6 / 7)
	Division, Revisited (7 / 7)
	Outer Joins (1 / 5)
	Outer Joins (2 / 5)
	Outer Joins (3 / 5)
	Outer Joins (4 / 5)
	Outer Joins (5 / 5)
	SQL as DDL
	Creating Relations (1 / 3)
	Creating Relations (2 / 3)
	Creating Relations (3 / 3)
	Creating Indices (1 / 3)
	Creating Indices (2 / 3)
	Creating Indices (3 / 3)
	Creating Views (1 / 2)
	Creating Views (2 / 2)
	View Updates (1 / 2)
	View Updates (2 / 2)
	SQL as DML
	Inserting Tuples into a Relation
	Bulk Loading a Database
	Updating Content of Tuples
	Storing Query Results
	Deleting Tuples
	Deleting Relations
	Wait! What About ``SQL as DCL?''

