
Topic 8:

Structured Query Language (SQL)

SQL – CSc 460 v1.1 (McCann) – p. 1/62

Background (1 / 2)

• IBM’s System R was released in 1978

– Its query language name: SEQUEL

(Structured English QUEry Language)

– But trademarked by a British airplane company!

(1982, Hawber Siddeley Dynamics Engineering Ltd.)

– After dropping the vowels: SQL

• IBM’s current DB/2 was released in 1982; also used SQL

• SQL:

– A marriage of TRC to RA

– SQL = DML + DDL + DCL + QL + . . .

SQL – CSc 460 v1.1 (McCann) – p. 2/62

Background (2 / 2)

• SQL is no longer a proprietary language:

– SQL is now an ANSI/ISO standard (ISO/IEC 9075)

– Versions: 1989, ’92, ’99, 2003, ’06, ’08, ’11, ’16,

’19, ’23, . . .

• But no DBMS strictly follows any of them!

– Example: Tuple IDs are non–standard

– There is a basic subset you can count on

SQL – CSc 460 v1.1 (McCann) – p. 3/62

Relational Operators (1 / 5)

But first: SQL’s SELECT statement

• NOT identical to the select operator of Rel. Alg.!

• Most basic Form:

SELECT <attribute list>

FROM <relation list>;

Example(s):

SQL – CSc 460 v1.1 (McCann) – p. 4/62

Relational Operators (2 / 5)

Now that we can perform π, we can answer our first

standard query:

“What is the content of the Employee relation?”

SQL – CSc 460 v1.1 (McCann) – p. 5/62

Relational Operators (3 / 5)

Performing σ requires a new clause:

SELECT <attribute list>

FROM <relation list>

Example(s):

What are the names and salaries of employees in department 5?

SQL – CSc 460 v1.1 (McCann) – p. 6/62

Relational Operators (4 / 5)

These are also all of the clauses that we need for ⊲⊳:

Example(s):

What are the names of the parts that can be supplied by individual

suppliers in quantity > 200?

SQL – CSc 460 v1.1 (McCann) – p. 7/62

Relational Operators (5 / 5)

For completeness, our fourth standard query:

Example(s):

What are the names of the active suppliers of nuts?

SELECT sname
FROM s, spj, p
WHERE s.sno = spj.sno
AND spj.pno = p.pno
AND status > 0 AND pname = ’nut’;

SQL – CSc 460 v1.1 (McCann) – p. 8/62

Column Aliases

You may give your result relations different attribute names:

Example(s):

select givenname as "First Name",

surname as "Last Name",

salary

from employee

where deptid = 5;

SQL – CSc 460 v1.1 (McCann) – p. 9/62

A Note about Duplicate Tuples

By default, SQL does not remove duplicate tuples from

result relations. (Why not? It should, relations are sets!)

But SQL lets us override that behavior!

Example(s):

SQL – CSc 460 v1.1 (McCann) – p. 10/62

Ordering Result Tuples

We can sort tuples, too, with the ORDER BY clause.

Example(s):

Ascending Order: Descending Order:

We can even do “phone book” sorting:

SQL – CSc 460 v1.1 (McCann) – p. 11/62

Computed Columns

We can perform basic arithmetic with field values:

Example(s): Convert part weight from pounds to grams:

SQL – CSc 460 v1.1 (McCann) – p. 12/62

Tuple Aliases

We can assign relations temporary, alternate names.

Example(s):

Create all pairs of supplier names located within the same city:

SQL – CSc 460 v1.1 (McCann) – p. 13/62

Pattern Matching (1 / 2)

SQL allows us to search for values that match a particular pattern.

Form:

. . . WHERE attribute [not] LIKE ‘pattern’
[ESCAPE escape character]

Available wildcards:

_ (underscore) matches any single character

% matches 0 or more characters

Important: LIKE does not support regular expressions.

SQL – CSc 460 v1.1 (McCann) – p. 14/62

Pattern Matching (2 / 2)

Example(s):

Find the part names that have an ‘o’ as the second letter:

select pname

from p

where pname like ’_o%’;

To use wildcards as regular characters, ESCAPE them:

... where field like ’%@%’ escape ’@’;

Here, we match any string ending in a percent sign.

SQL – CSc 460 v1.1 (McCann) – p. 15/62

Regular Expressions (1 / 2)

Oracle offers REGEXP LIKE for regular expressions.

Form (note that <pattern> and <match> are single–quoted):

. . . WHERE REGEXP LIKE (<source>, ’<pattern>’, ’<match>’);

where:

<source> is an attribute name

<pattern> is a regular expression (see next slide)

<match> is a search modifier; e.g.:

c — case sensitive (i — case insensitive)

x — ignore whitespace
...

SQL – CSc 460 v1.1 (McCann) – p. 16/62

Regular Expressions (2 / 2)

REGEXP LIKE options for <pattern> include:

. — (a period) match a single character

x∗ — match x 0 or more times

x+ — match x 1 or more times

x? — match x 0 or 1 times

x|y — match x once or match y once

x{n,m} — match x at least n times, at most m times

Example(s):

Find the part names that have an ‘o’ as the second letter:

select pname
from p
where regexp_like(pname , ’.o.*’ , ’i’);

SQL – CSc 460 v1.1 (McCann) – p. 17/62

Set Operators (1 / 5)

Cartesian Product (×):

• Cartesian Product produces all pairs of tuples.

• Join produces all pairs of tuples that meet a condition.

• So . . . if we Join when the condition is always true . . .

Example(s): To form the Cartesian Product of S and P:

SQL – CSc 460 v1.1 (McCann) – p. 18/62

Set Operators (2 / 5)

Union (∪):

• Form: select . . .

union [all] (all ≡ keep duplicates)

select . . .

• Union compatibility still applies!

Example(s):

SQL – CSc 460 v1.1 (McCann) – p. 19/62

Set Operators (3 / 5)

Intersection (∩) and Difference (−):

• The SQL keyword for set intersection is INTERSECT

• The SQL keyword for set difference is EXCEPT

. . . except, Oracle uses MINUS

• Form: select . . .

intersect/except

select . . .

Example(s):

select city from s

EXCEPT <-- MINUS in Oracle

select city from p;

SQL – CSc 460 v1.1 (McCann) – p. 20/62

Set Operators (4 / 5)

The Return of . . . Division!

Version 1: Relational Algebra expression

Recall: α÷ β = πA-B(α)− πA-B((πA-B(α)× β)− α)

And our sample division query:

“Find the S#s of the suppliers who supply all parts

of weight equal to 17.”

SQL – CSc 460 v1.1 (McCann) – p. 21/62

Set Operators (5 / 5)

And so, α÷ β = πA-B(α)− πA-B((πA-B(α)× β)− α)

becomes in SQL:

select sno from spj

except

select sno from

(select sno, pno

from (select sno from spj) as t1,

(select pno from p where weight=17) as t2

except

select sno, pno from spj

) as t3;

SQL – CSc 460 v1.1 (McCann) – p. 22/62

Aggregate Functions (1 / 3): Background

Idea: Let SQL compute basic statistical results for us

SQL provides aggregate functions for this purpose:

– count([distinct] attr) — counting entries in a relation

– sum([distinct] attr) — totaling values of attr in a relation

– avg([distinct] attr) — averaging values of attr in a relation

– min(attr) — smallest value of attr in a relation

– max(attr) — largest value of attr in a relation

SQL – CSc 460 v1.1 (McCann) – p. 23/62

Aggregate Functions (2 / 3)

Example(s): Variations on counting:

• select count(city) from p;

• select count(distinct city) from p;

• select count(*) from p;

SQL – CSc 460 v1.1 (McCann) – p. 24/62

Aggregate Functions (3 / 3)

Example(s):

If we have one of each part in a box, how much does the

content weigh?

Which query will give the correct answer?

(a) select sum(weight) from p;

(b) select sum(distinct weight) from p;

SQL – CSc 460 v1.1 (McCann) – p. 25/62

Group By

Purpose: Apply aggregates to sub–groups of tuples

Example(s):

What are the average quantities in which suppliers are sup-

plying parts?

SQL – CSc 460 v1.1 (McCann) – p. 26/62

Having

• Used in conjunction with ‘group by’

• Purpose: Controls which group’s aggregations are produced

Example(s):

Which suppliers are supplying parts in average quantity un-

der 400, and what are those averages?

SQL – CSc 460 v1.1 (McCann) – p. 27/62

More on Nested Queries (1 / 4)

We’ve seen this idea before (e.g., the division query).

Another way to do nested queries is with the IN operator:

– IN tests set membership (form: tuple IN relation)

– We can negate the test (tuple NOT IN relation)

– Used in conjunction with a sub–query in a WHERE clause

Example(s):

Remember this query?

SQL – CSc 460 v1.1 (McCann) – p. 28/62

More on Nested Queries (2 / 4)

Example(s):

Idea: Create a set of parts available in quantity > 200,

and test each part from the DB against that set.

To create the P#s of the ‘quantity > 200’ parts:

select pno

from spj

where qty > 200;

And to produce the names of the parts in that set:

SQL – CSc 460 v1.1 (McCann) – p. 29/62

More on Nested Queries (3 / 4)

Notes:

• IN and NOT IN are only suitable for equality comparisons

• Other options include:

◦

◦

◦

◦

SQL – CSc 460 v1.1 (McCann) – p. 30/62

More on Nested Queries (4 / 4)

One more nested–query operator: EXISTS

Its purpose: Test if a relation holds at least one tuple

Example(s):

Another (awkward!) version of the qty > 200 query:

SQL – CSc 460 v1.1 (McCann) – p. 31/62

Division, Revisited (1 / 7)

Version 2: “Double ¬∃”

Recall:

Find the S#s of the suppliers who supply all parts of weight 17.

Restated in logical English:

Find S#s such that ∀ parts of weight 17, ∃ suppliers that supply them all

Apply Double Negation and Generalized De Morgan’s Laws:

∀a∃b f(a, b) ≡ ¬∃a¬∃b f(a, b)

Returning to logical English:

Find S#s such that ¬∃ parts of weight 17 for which ¬∃ suppliers

that supply them all

SQL – CSc 460 v1.1 (McCann) – p. 32/62

Division, Revisited (2 / 7)

Find S#s such that ¬∃ parts of weight 17 for which ¬∃

suppliers that supply them all expressed in SQL:

select distinct sno

from spj as global

where not exists

(select pno

from p

where weight = 17 and not exists

(select *
from spj as local

where local.pno = p.pno

and local.sno = global.sno

)

)

SQL – CSc 460 v1.1 (McCann) – p. 33/62

Division, Revisited (3 / 7)

Aside: This query form is useful beyond division.

Example(s): Which drinkers like a unique set of beers?

Schema:

Likes(drinker , beer)

Source: Leventidis, A., et. al. “QueryVis: Logic–based Diagrams help Users Understand Complicated SQL

Queries Faster.” Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,

June 2020, pp. 2303–2318. https://doi.org/10.1145/3318464.3389767

SQL – CSc 460 v1.1 (McCann) – p. 34/62

Division, Revisited (4 / 7)

Version 3: Set Containment

Observation:

If B ⊆ A, then B− A will be empty (or, ¬∃(B − A) is true)

Relevance:

If a supplier supplies a superset of the parts

of weight 17, the supplier clearly supplies them all

A = The parts a supplier supplies

B = The parts of weight 17

SQL – CSc 460 v1.1 (McCann) – p. 35/62

Division, Revisited (5 / 7)

select distinct sno

from spj as global

where not exists (-- not bkwd-E

(select pno

from p -- B

where weight = 17

) except (-- minus

select p.pno

from p, spj -- A

where p.pno = spj.pno

and spj.sno = global.sno

)

)

SQL – CSc 460 v1.1 (McCann) – p. 36/62

Division, Revisited (6 / 7)

Version 4: Set Cardinality

Idea:

• For each supplier that supplies parts of weight 17, count

those parts.

• If the total matches the number of weight 17 parts, that

supplier supplies them all.

SQL – CSc 460 v1.1 (McCann) – p. 37/62

Division, Revisited (7 / 7)

select distinct sno

from spj, p

where spj.pno = p.pno and weight = 17

group by sno

having count(distinct p.pno) =

(select count (distinct pno)

from p

where weight = 17

)

SQL – CSc 460 v1.1 (McCann) – p. 38/62

Outer Joins (1 / 5)

Regular (“inner”) joins discard non-matching tuples.

Example(s): Name the employees who are supervising buildings.

M Id Name N Building Supervisor

1 Roy A 2

2 Amy B 1

3 Joy C 2

D NULL

M ⊲⊳ id=supervisor N Id Name Building Supervisor

2 Amy A 2

1 Roy B 1

2 Amy C 2

SQL – CSc 460 v1.1 (McCann) – p. 39/62

Outer Joins (2 / 5)

Now consider this slightly different query.

Example(s): Name all employees and the buildings they supervise.

Our desired answer:

M ? N Id Name Building Supervisor

1 Roy B 1

2 Amy A 2

2 Amy C 2

3 Joy NULL NULL

But . . . how do we get this result from a join?

SQL – CSc 460 v1.1 (McCann) – p. 40/62

Outer Joins (3 / 5)

There are three varieties of outer join:

• Left Outer Join (=⊲⊳): Retains unmatched tuples from left relation

• Right Outer Join (⊲⊳<) Retains unmatched tuples from right relation

• Full Outer Join (=⊲⊳<): Retains all unmatched tuples

SQL – CSc 460 v1.1 (McCann) – p. 41/62

Outer Joins (4 / 5)

The SQL outer join syntax:

select <attribute list>

from (<relation> [left/right/full] outer join <relation> on <join condition>)

where <condition> ;

Example(s): Name all employees and the buildings they supervise.

SQL – CSc 460 v1.1 (McCann) – p. 42/62

Outer Joins (5 / 5)

Outer join is not an fundamental operator.

We can fabricate outer join with UNION ALL.

Example(s): Name all employees and the buildings they supervise.

select id, name, building, supervisor

from m, n

where m.id = n.supervisor

SQL – CSc 460 v1.1 (McCann) – p. 43/62

SQL as DDL

First order of business: Creating a database!

The exact mechanism depends on the DBMS.

1. Postgres: $ createdb <name>

2. Oracle: CREATE DATABASE <name>;

SQL – CSc 460 v1.1 (McCann) – p. 44/62

Creating Relations (1 / 3)

Some sample attribute types:

• Integers: integer, number(p)

• Floats: float, real, number(p,s)

◦ p is precision (total # digits), s is scale (# digits after decimal)

• Strings: char(n), varchar(n), varchar2(n)

• Others: timestamp, blob, bfile, . . .

SQL – CSc 460 v1.1 (McCann) – p. 45/62

Creating Relations (2 / 3)

To create a relation:

CREATE TABLE <table name> (

<attribute name> <data type > [NOT NULL],

. . .

[PRIMARY KEY (<attribute>)]

);

SQL – CSc 460 v1.1 (McCann) – p. 46/62

Creating Relations (3 / 3)

Example(s):

Creating the supplier (S) relation:

create table s (

sno varchar2(5), -- the supplier ID number

sname varchar2(20), -- the supplier’s name

status integer, -- supplier status

city varchar2(15), -- location of supplier

primary key (sno)

);

SQL – CSc 460 v1.1 (McCann) – p. 47/62

Creating Indices (1 / 3)

Form:

CREATE [UNIQUE] INDEX <index name>

ON <table name>

[USING <access method>]

(<attribute name> [, <attribute name> . . .]);

SQL – CSc 460 v1.1 (McCann) – p. 48/62

Creating Indices (2 / 3)

Example(s):

Create an index on jno in SPJ:

create index spj_j_index

on spj (jno);

SQL – CSc 460 v1.1 (McCann) – p. 49/62

Creating Indices (3 / 3)

Different DBMSes supply different kinds of indices; e.g.:

1. Oracle 11:

• B–tree

− Reverse Key (subtype of B–Tree, reverses bytes)

• Function–based (to support queries using computations)

• Bitmap (instead of storing lists of IDs)

• Application Domain Indexes (user–defined)

2. Postgres 14:

• B–tree

• Hash (apparently linear hashing)

• GiST (Generalized Search Tree) and SP–GiST

• GIN (Generalized Inverted Index)

• BRIN (Block Range Index)

SQL – CSc 460 v1.1 (McCann) – p. 50/62

Creating Views (1 / 2)

Remember the ANSI/SPARC External Layer?

Form:

CREATE VIEW <view name> [(<attribute list>)]

AS <select statement>;

SQL – CSc 460 v1.1 (McCann) – p. 51/62

Creating Views (2 / 2)

Example(s):

Create a view of supplier names and the IDs of the parts

that they supply.

create view supplierpart ("SupplierName", "PartNum")

as select distinct sname, pno

from s, spj

where s.sno = spj.sno;

Then, it is available for use immediately:

select * from supplierpart;

SQL – CSc 460 v1.1 (McCann) – p. 52/62

View Updates (1 / 2)

Can users update the content of views? That is, can we convert

a view update into updates of the view’s base relations?

Example(s):

Consider a view that is a join of A and B:

A a b c

x 2 b

y 1 a

z 1 b

B d a

6 y

1 y

A ⊲⊳ B a b c d

y 1 a 6

y 1 a 1

SQL – CSc 460 v1.1 (McCann) – p. 53/62

View Updates (2 / 2)

Example(s): (continued!) Our desired result:

A ⊲⊳ B a b c d

y 1 a 6
y 1 a 1
y 1 a 4
x 2 c 3

⇒

A a b c

x 2 b
y 1 a
z 1 b
x 2 c

B d a

6 y
1 y
4 y
3 x

SQL – CSc 460 v1.1 (McCann) – p. 54/62

SQL as DML

The view update example raises a pertinent question:

How do we insert data into a relation?

With a DML operation, of course!

SQL – CSc 460 v1.1 (McCann) – p. 55/62

Inserting Tuples into a Relation

To insert a tuple into a relation:

INSERT INTO <relation name> [(<column list>)]

VALUES (<expression list>);

Example(s):

SQL – CSc 460 v1.1 (McCann) – p. 56/62

Bulk Loading a Database

Using INSERT INTO to populate tables is:

• Highly portable! (just create a script file), but

• Slow (especially if you don’t disable transactions)

An alternative is a bulk–loading utility.

Example(s):

SQL – CSc 460 v1.1 (McCann) – p. 57/62

Updating Content of Tuples

To modify data in existing tuples:

UPDATE <relation name>

SET <attribute name> = <expression> [, . . .]

[FROM <relation list>]

[WHERE <condition>];

Example(s):

SQL – CSc 460 v1.1 (McCann) – p. 58/62

Storing Query Results

Can we add query results (which are relations) to the DB?

Yes! Two options:

1. (Pretty universal) If you have an existing table:

INSERT INTO <relation name>

<SELECT statement>;

2. (Oracle) If you need to create the table, too:

CREATE GLOBAL TEMPORARY TABLE <relation name>

AS <SELECT statement>;

(Table disappears at end of session.)

SQL – CSc 460 v1.1 (McCann) – p. 59/62

Deleting Tuples

Like updating, a condition is used to ID tuples for removal:

DELETE FROM <relation name>

WHERE <condition>;

SQL – CSc 460 v1.1 (McCann) – p. 60/62

Deleting Relations

To remove tables, indices, views, . . .

DROP { TABLE | INDEX | VIEW | DATABASE } <name>;

SQL – CSc 460 v1.1 (McCann) – p. 61/62

Wait! What About “SQL as DCL?”

We’ll cover that in Topic 14: Security.

SQL – CSc 460 v1.1 (McCann) – p. 62/62

	Topic 8:
	Background (1 / 2)
	Background (2 / 2)
	Relational Operators (1 / 5)
	Relational Operators (2 / 5)
	Relational Operators (3 / 5)
	Relational Operators (4 / 5)
	Relational Operators (5 / 5)
	Column Aliases
	A Note about Duplicate Tuples
	Ordering Result Tuples
	Computed Columns
	Tuple Aliases
	Pattern Matching (1 / 2)
	Pattern Matching (2 / 2)
	Regular Expressions (1 / 2)
	Regular Expressions (2 / 2)
	Set Operators (1 / 5)
	Set Operators (2 / 5)
	Set Operators (3 / 5)
	Set Operators (4 / 5)
	Set Operators (5 / 5)
	Aggregate Functions (1 / 3):
Background
	Aggregate Functions (2 / 3)
	Aggregate Functions (3 / 3)
	Group By
	Having
	More on Nested Queries (1 / 4)
	More on Nested Queries (2 / 4)
	More on Nested Queries (3 / 4)
	More on Nested Queries (4 / 4)
	Division, Revisited (1 / 7)
	Division, Revisited (2 / 7)
	Division, Revisited (3 / 7)
	Division, Revisited (4 / 7)
	Division, Revisited (5 / 7)
	Division, Revisited (6 / 7)
	Division, Revisited (7 / 7)
	Outer Joins (1 / 5)
	Outer Joins (2 / 5)
	Outer Joins (3 / 5)
	Outer Joins (4 / 5)
	Outer Joins (5 / 5)
	SQL as DDL
	Creating Relations (1 / 3)
	Creating Relations (2 / 3)
	Creating Relations (3 / 3)
	Creating Indices (1 / 3)
	Creating Indices (2 / 3)
	Creating Indices (3 / 3)
	Creating Views (1 / 2)
	Creating Views (2 / 2)
	View Updates (1 / 2)
	View Updates (2 / 2)
	SQL as DML
	Inserting Tuples into a Relation
	Bulk Loading a Database
	Updating Content of Tuples
	Storing Query Results
	Deleting Tuples
	Deleting Relations
	Wait! What About ``SQL as DCL?''

