CSc 460 — Database Design
Spring 2026 (McCann)

https://cs.arizona.edu/classes/cs460/spring26/
Program #2: Linear Hashing Lite

Due Date: February 12'", 2026, at the beginning of class

In class we cover Dynamic Hashing and Extendible Hashing indices. Both require a directory.
In 1980, Witold Litwin introduced Linear Hashing, a directory—free hash—based indexing structure. In this
assignment, you’ll implement what we’ll call Linear Hashing Lite’ (LHL) and use it to assist the querying of
a binary file. See the last page of this handout for the description of LHL.

This assignment is in two parts, both of which have the same due date.

Part 1: Write a program named Prog21. java that creates, in a binary file named 1hl.idx, a Linear Hashing
Lite index for the Dataset2.bin database file created by your ProglA.java program. Write your program
to store 1hl.idx in the current directory (that is, do not add any path information to the index file name),
and to accept the complete path of the Dataset2.bin file as the command-line argument. The index is to be
constructed using the ‘Data.entry’ field (the second field) as the key.

For this implementation of LHL, the buckets will have a maximum capacity of 30 index records. Initially,
the index will consist of two empty buckets, H = 0, and the hash function will be hy (k) =| k.hashCode() |
% (2H+1), where | k.hashCode() | is the absolute value of the result of java.lang.String’s hashCode()
method executed on k, a Data.entry string.

After the index file has been created, display, labeled clearly and in this order, (a) the number of buckets
in the index, (b) the number of records in the lowest—occupancy bucket, (c) the number of records in the
highest—occupancy bucket, and (d) the mean and the median of the occupancies across all buckets, to two
decimal places.

Part 2: The second task is to write a program named (you guessed it) Prog22. java that processes a simple
variety of query with the help of your LHL index. The complete paths to both the 1hl.idx index file and the
Dataset2.bin database file are provided, in that order, as command-line arguments. Use a loop to prompt
the user to enter any number of target values, one at a time. If the target matches a Data.entry value in the
LHL index, display the same three values from the corresponding DB file record in the database file as you
displayed in ProglB, and in the same format. Otherwise, display the message “The target value ‘#####’ was
not found.” (Of course, display the actual target value, not a bunch of pound signs!) Control Prog22. java the
same way you controlled the execution of ProgiB. java, terminating when a target value of -1000 is entered.

In order to successfully write Prog22. java, you may decide that you need to communicate to it some metadata
about the index created by Prog21.java. Program #1 gave you some experience doing that sort of thing (with
the max string lengths). You may do the same sort of thing in this assignment. Keep in mind that your index’s
size will vary based on the number of records in the DB file (binary file) your ProglA. java creates, much as
your DB file’s size varies based on the CSV file’s content.

We will use your own Dataset2.bin file to test your programs, which means that you will need to
submit it using turnin. You may also submit your current ProglA. java program, if you wish to do so. Why
would you want to? If the TAs have a problem with your binary file and also have the current version of the
program that generates it, they can try to recreate it themselves.

As for dreaming up queries for testing, that’s up to you (but shouldn’t be too hard). We’ll test with a variety
of Data.entry field values (present in the data and not). Thus, so should you.

(Continued...)

10One-third fewer headaches than regular Linear Hashing, but the same great idea!

https://cs.arizona.edu/classes/cs460/spring26/

Output: | The basic output expectations of Prog21.java and Prog22. java are given with their descriptions,
above.

You are required to submit your completed program files (Prog21.java and Prog22.java), and
your Dataset2.bin file on which those programs operate, using the turnin facility on lectura. The submission

folder is ¢s460p2. Optionally, you may also provide your current ProglA. java program. Submit all files as—is;
that is, do not ‘package’ them into ZIP or TAR files, and do not just drop your project’s subdirectory
from your IDE — find the .java files and submit just those.

Because we will be grading your program on lectura, it needs to run on lectura, and so you need to test it on
lectura. Name your main program source files as directed above, so that we don’t have to guess which files to
compile, but feel free to split up your code over additional files if you feel that doing so is appropriate.

Want to Learn More? ‘

Remember: What this assignment requires is not the full version of Linear Hashing described in these
papers; I'm referencing them to satisfy the curious among you.

e Lots of copies of Litwin’s original Linear Hashing paper are floating around the internet, because the
official source isn’t readily available. Google Scholar can point you to a copy:
https://scholar.google.com/scholar?q="Linear+Hashing+A+New+Tool+for+File+and+Table+Addressing."

e A somewhat more approachable description of Linear Hashing can be found as part of the paper “Dynamic
hash tables” by Per—Ake (Paul) Larson: https://dl.acm.org/doi/10.1145/42404.42410

Other Requirements and Hints:‘

e I will be providing a video in which I will explain how to get started with the construction of a linear
hashing lite index; look for it in the Video module of the Content area in Brightspace.

I noticed that I forgot to clarify the abbreviated notation that I used for writing the hash functions
on the board for the video. The “k” in “k%2”, for example, is the result of the absolute value of the
hashCode() of the Data.entry strings. It’s not meant to be a mod of the string itself. See also the second
paragraph of the Part 1 section on the first page of this handout.

e Comment your code according to the style guidelines as you write the code (not an hour before class!).

e Work on just a part of the assignment at a time; don’t try to code it all before you test any of it. Don’t
be afraid to do things a little bit backwards; for example, it’s nice to have a basic query program in place
to help you test the construction of your index.

e You can make debugging easier by using only a small amount of data with very small buckets as you
develop the code, and switch to the complete data file and full-size buckets when everything seems to
be working.

e As always: Start early! We don’t have an early, first—part due—date on this one; you’ll have to do your
own planning.

(Continued...)

Linear Hashing Lite: The Basics

Like Dynamic and Extendible Hashing, Linear Hashing was created for indexing. Unlike them, Linear Hashing
does not use a directory as its hash function. Instead, it relies on a characteristic of division—-based hash
functions, thus so does our simplified version, described on this page using generic data.

e Insertion

Consider two hash buckets, which, for this demonstration, are each capable of holding at most bf = 3 index
records, and the simple hash function h(k) = k£ % 2. Assuming that the key values being hashed are the integers
16, 19, 26, 31, and 12, the result is:

0 1
li6]26]12]19]31] |

To store the key value 10, we need to expand the hash table and change the hash function. Specifically, we
will change the hash function to be h(k) = k%4 (double the divisor), and double the number of buckets in
the table (to match the range of the new function). We also need to re-distribute (re-hash) the existing key
values. Because of our choice of hash functions, this isn’t a typical re-hash: The values currently in bucket
0 will either stay there, or will move to bucket 2. Similarly, those in bucket 1 will stay or move to bucket 3.
(Why this happens is left as an exercise for the reader.) After the re-hashing, and after the insertion of 10,
the table looks like this:

0 1 2 3
Loft2] | | [[eefiof Juofs1] |

Each time we need to insert into a full bucket, the same steps are performed: We double the divisor of the
hash function, double the number of buckets in the hash table, re-hash the existing values, and insert the new
key. Each time we re-hash the content of a bucket, the entries either stay in the same bucket, or move to just
one of the new buckets. This property helps minimize 1/O operations.

Performing insertions for this assignment is a bit more involved. We discover the keys to be inserted by
sequentially reading the records in the binary file created by ProglA.java (the ‘Database File’ in the figure
below). As we read the records, we also note their locations (here, their record numbers, if you imagine the
file to be an array of records). Together, the key and the record number form the index record that is inserted
into the hash bucket. It is helpful to parameterize the hash function. That is, instead of h(k), express the
hash function as h(k, H) = k% (2H+1), where H = 0 initially and increases by one whenever the hash table
grows. (Note that the number of buckets in the hash table is the same as the hash function’s divisor, 27 1))

e Searching

Searching a Linear Hashing Lite index is straight—forward: Using 16] 0 0 16| ---
the given target to be located and the last value of H, locate and ol 12 | 4 1 19] - --
read the bucket of the hash file that contains (or would contain) 9 S 126] - -
the target. Sequentially search the bucket content to see if the 3 31
target is there. If it is, use the paired DB file record number to
access the DB file fields you need to output. 1 4 12) -
5 10 [

For example, consider the figures to the right (an enhanced 26 | 2
version of the above insertion example) and the target value 31. 21075
Our last value of H was 1. h(k, H) = h(31,1) = 31 % (2'*1) = 3. H H
Reading and searching bucket 3 locates 31’s index record, which
contains the record number of 31’s complete record in the 19]1
database file (in this example, the record number is 3). Reading 3]31]3 Database File
that record provides 31’s associated data, allowing the query to
be completed. LHL Hash File

(H=1,bf =3)

