IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003 33

Core-Stateless Fair Queueing: A Scalable
Architecture to Approximate Fair Bandwidth
Allocations in High-Speed Networks

lon Stoica, Scott Shenkefellow, IEEE and Hui ZhangMember, IEEE

Abstract—Router mechanisms designed to achieve fair band- fair bandwidth allocatiohplays a necessary, not just beneficial,
width allocations, such as Fair Queueing, have many desirable role in congestion control [9], [28].
properties for congestion control in the Internet. However, such Until now, fair allocations were typically achieved by using

mechanisms usually need to maintain state, manage buffers, fl . hani h Fai . 9
and/or perform packet scheduling on a per-flow basis, and per-flow queueing mechanisms—such as Fair Queueing [9],

this complexity may prevent them from being cost-effectively [26] and its many variants [2], [14], [29]—or per-flow dropping
implemented and widely deployed. In this paper, we propose mechanisms such as Flow Random Early Drop (FRED) [20].

an architecture that significantly reduces this implementation These mechanisms are more complex to implement than tradi-

complexity yet still achieves approximately fair bandwidth allo- s et_in_firat. ; ; _tai ;
cations. We apply this approach to an island of routers—that is, a .tlonal first-in-first-out (FIFO) queueing with drop-tail, which

contiguous region of the network—and we distinguish between edge is the most widely implemented and deployed mechanism

routers and core routers. Edge routers maintain per-flow state; N routers today. In particular, fair allocation mechanisms
they estimate the incoming rate of each flow and insert a label inherently require the routers to maintain state and perform

into each packet based on this estimate. Core routers maintain gperations on a per-flow basis. For each packet that arrives at
no per-flow state; they use first-in-first-out packet scheduling the router, the routers needsdiassifythe packet into a flow,

augmented by a probabilistic dropping algorithm that uses the dat fl tat iabl d f tai fi
packet labels and an estimate of the aggregate traffic at the router. update per-flow state variables, and periorm certain operatons

We call the schemeCoreStateless Fair Queueing. We present Pased on the per-flow state. The operations can be as simple
simulations and analysis on the performance of this approach. as deciding whether to drop or queue the packet (e.g., FRED),

Index Terms—Binary linear codes, covering radius, least cov- 9" @S 9°mp'ex as manipulation of prlorlw queues (e.g., Fair
ering radius. Queueing). While a number of techniques have been proposed
to reduce the complexity of the per packet operations [1],
[29], [33], and commercial implementations are available in
| INTRODUCTION some intermediate class routers, it is still unclear whether these
CENTRAL tenet of the Internet architecture is that conalgorithms can be cost-effectively implemented in high-speed
gestion control is achieved mainly through end-host abackbone routers because all these algorithms still require
gorithms. However, starting with Nagle [23], many researchepacket classification and per-flow state management.
observed that such end-to-end congestion-control solutions aren this paper, we start with the assumptions that: 1) fair allo-
greatly improved when routers have mechanisms that allocgi&ion mechanisms play an important, perhaps even necessary,
bandwidth in a fair manner. Fair bandwidth allocation protect§|e in Congegtion control; and 2) the Comp|exity of existing fair
well-behaved flows from ill-behaved ones, and allows a divergfiocation mechanisms is a substantial hindrance to their adop-
set of end-to-end congestion-control policies to co-exist in thign. Both of these points are debatable; developments in router
network [9]. As we discuss in Section 1V, some maintain thaéchnology may make such algorithms rather inexpensive to im-
plement, and there may be solutions to congestion control that
do not require fair allocation (see Section V for a discussion on

, , the related approaches). By using these two assumptions as our
Manuscript received July 27, 1999; approved by IEEE/ACRANSACTIONS . . laimi h b h
ON NETWORKING Editor E. Zegura. This work was supported by the Defense agtarting PO”“% we are ”F’t c ?'m'_ng t _at. thag true, but rather
vanced Research Projects Agency (DARPA) under Contract F30602-99-1-05a8e only looking at the implications if indeed thesere true.

and by the National Science Foundation (NSF) under Grants NCR-96249f0gne starts with these assumptions then Overcoming the com-
ANI-9730105, ITR Award ANI-0085920, and ANI-9814929, and in part by . bl . hievi fair all P b itall
Intel. Views and conclusions contained in this document are those of the meX'ty problem in achieving fair allocation becomes a vitally

thors and should not be interpreted as representing the official policies, eitimportant problem.

expressed or implied, of DARPA, NSF, Intel, or the U.S. government. To this end, we propose and examine an architecture and a set
|. Stoica is with the Computer Science Division, University of California, f al ith h I bandwidth i . v fai
Berkeley, CA 94720-1776 USA (e-mail: istoica@cs.berkeley.edu). ot algorithms that allocate bandwidth in an approximately fair

S. Shenker is with the ICSI Center for Internet Research, Internatior@anner while allowing the routers on high-speed links to use
Computer Science Institute (ICSI), Berkeley, CA 94704-1198 USA (e-maiz|FO queueing and maintain no per-ﬂow state. In this approach,

shenker@icsi.berkeley.edu).
H. Zhang is with Carnegie Mellon University, Pittsburgh, PA 15214ve identify a contiguous region of network, calledsland and

USA, and also with Turin Networks, Petaluma, CA 94954 USA (e-maidistinguish between the edge and the core of the island. Edge
hzhang@cs.cmu.edu).
Digital Object Identifier 10.1109/TNET.2002.808414 1in this paper, we use the max—min definition of fairness [17].

1063-6692/03$17.00 © 2003 IEEE

34 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Section VI. The CSFQ implementation for ns-2 [24] is available
at http://www.cs.berkeley.edu/istoica/csfq.

Il. CSFQ

In this section, we propose an architecture that approximates
the service provided by an island of Fair Queueing routers, but
(@) () has a much lower complexity in the core routers. The architec-
Fig. 1. (a) Reference network (island) in which all nodes implement Fajure has two key aspects. First, to avoid maintaining per-flow
Queueing, whose functionality is approximated by (b) a CSFQ island. lyate gt each router, we use a distributed algorithm in which
CSFQ, only edge routers maintain per-flow state; core nodes do not maintain . . .
per-flow state. only edge routers maintain per-flow state, while core (nonedge)
routers do not maintain per-flow state but instead utilize the
_ per-flow information carried via a label in each packet’s header.
routers compute per-flow rate estimates datoel the packets Tpis |apel contains an estimate of the flow's rate; it is initial-
passing through them by inserting these estimates into gl by the edge router based on per-flow information, and then

packet header. Core routers use FIFO queueing and keep gfated at each router along the path based only on aggregate
per-flow state. They employ a probabilistic dropping algorithi¢qrmation at that router.

that uses the information in the packet labels along with theSecond, to avoid per-flow buffering and scheduling, as re-
router’'s own measurement of the aggregate traffic. The bar&ﬂjired by Fair Queueing, we use FIFO queueing with proba-
wi_dth aIIocgtions within this island of router; are apprgximatelymstic dropping on input. The probability of dropping a packet
fair. Thus, if this approach were adopted within the high-speed j; arrives to the queue is a function of the rate estimate car-
interiors of ISPs, and fair allocation mechanisms were adoptggy in the label and of the fair share rate at that router, which is
for the slower links outside of these high-speed interiors, theRimated based on measurements of the aggregate traffic.
approximately fair allocations could be achieved everywhere.-rhus, our approach avoids both the need to maintain per-flow
However, this approach, like Fair Queueing [9] or Random Earlyae and the need to use complicated packet scheduling and
Detection (RED) [12], still provides benefit if adopted in aryftering algorithms at core routers. To give a better intuition
incremental fashion, although the incremental adoption mugt ¢ how this works, we first present the idealized bit-by-bit or
be done on an island-by-island basis, not on a router-by-roufgfiqy version of the probabilistic dropping algorithm, and then

basis. , , _ extend the algorithm to a practical packet-by-packet version.
We call this approackore Stateless Fair Queueing (CSFQ)

since the core route_rs Ifeep no per-flow state_ but instead YSeE1Lid Model Algorithm
the state that is carried in the packet lalels. this paper, we) i .)
show that this approach capproximatethe functionality of a We first consider a bufferless fluid model of a router Wl_th
reference network (island) in whicil nodes implement Fair output link speed”', where the flows are modeled as a contin-
Queueing, i.e., the bandwidth allocations in both the refereng@Us stream of bits. We assume each flow's arrival rag is
and CSFQ islands are approximately the same (see Fig. 1). kpewn precisely. Max—min fair bandwidth allocations are char.-
describe the details of this approach—such as the rate estimafi§i¢rized by the fact that all flows that are bottlenecked by this
algorithm and the packet dropping algorithm—in Section I|. fouter have_ the same output rate. We call this ra_téetmeshare
While our scheme does not achieve the near-perfect leveld@fe of the link; leta(#) be the fair share rate at tinteln gen-
fairess obtained by Fair Queueing and other sophisticated &@l: if max-min bandwidth allocations are achieved, eachilow
stateful queueing algorithms, we derive a worst-case bound f8F€ives service atarate giveniayn(ri(t), (t)). Let A(t) de-
the performances of CSFQ in an idealized setting. This bouR@te the total arrival rated () = =7, ri(¢). If A(t) > C' then

CSFQ island
|!edge node [_]core node I

Reference island

is presented in Section I the fair sharex(¢) is the unique solution to

This worst-case analysis does not give an adequate guide N
to the typical fgnctioning of CSFQ. In Sef:tion lll, we present C = Zmin(m(t), a(t)). 1)
results from simulation experiments to illustrate the perfor- —

mance of our approach and to compare it to several other

schemes, namely, Deficit Round Robin (DRR) (a variant of Fair A(¢) < C, then no bits are dropped and we will, by conven-

Queueing), FRED, RED, and FIFO. We also discuss therein tien, setw(t) = max; 7;(t).

relative mechanistic complexities of these approaches. If r;(t) < a(t), i.e., flowi sends no more than the link’s fair
Sections Il and Il of the paper are narrowly focused on thehare rate, all of its traffic will be forwarded. #(¢) > «(t),

details of the mechanism and its performance (both absoltten a fraction(r;(t) — «(t))/r:(t) of its bits will be dropped,

and relative), with the need for such a mechanism taken few it will have an output rate of exactty(t). This suggests a

granted. In Section IV, we return to the basic question of whyery simple probabilistic forwarding algorithm that achieves fair

fair allocations are relevant to congestion control. We preseitocation of bandwidth: each incoming bit of flows dropped

the related work in Section V and conclude with a summary imith the probability

20bviously, these core routers keep some state, but none of it is per-flow state, max (0.1 = O‘(t) . 2)
so when we say “stateless” we are referring to the absence of per-flow state. ’ ri(t)

STOICAet al. CORE-STATELESS FAIR QUEUEING 35

ingress router on receiving packet p

—{ core/egress router}; if (edge router)

buffer occupancy

.............................

i =classify(p);

rate estimator + |
packet labeling

Flow 1

\ 4

v p.label = estimate_rate(r;, p); // use Eq. (2?)

| 5| Packet :
dropping = | |

4 arrival &
; departure

packet labeling m‘ Palos

prob =max(0,1 — a/p.label);
if (prob >unif_rand(0, 1))

Flow n | |rate estimator + a

« =estimate_a (p, 1);

] drop(p);
. else
Fig. 2. Architecture of the output port of an edge router and a core router, « =estimate_« (p, 0);
respectively. enquene(p);
if (prob > 0)

When these dropping_prqbabilitigs are used, the arrival rate p.label = o /f relabel p
of flow ¢ at the next hop is given biin[r;(t), a(t)].

) Fig. 3. Pseudocode of CSFQ.
B. Packet Algorithm
The above algorithm is defined for a bufferless fluid systef the fair share rate, which we denote®t). Letting F(a(t))
in which the arrival rates are known exactly. Our task now @enote this acceptance rate, we have
to extend this approach to the situation in real routers where

transmission is packetized, there is substantial buffering, and the F(a(t)) = Z min (r;(t), a(t)) . 4)
arrival rates are not known. Fig. 2 presents the architecture of a i=1
CSFQ node.

)) Note that F'(-) is a continuous nondecreasing concave and
We still employ a drop-on-input scheme, except that now W co\ise-linear function ofa. If the link is congested

drop packets rather than bits. Because the rate estimation (dg,) > C), we choosei() to be the unique solution to

scribed bglow) incorporates the packe_t size, the dropping prgh,) = C. If the link is not congestedA(t) < C), we take
ability is independent of the' packet size and depends only, F?t%) to be the largest rate among the flows that traverse the link,
above, on the rate;(¢) and fair share rate(t). i.e.a(t)
We are left with two remaining challenges: estimating thge arivqy rates-;(t), we could then compute(t) directly. To
ratesr;(¢) and the fair share.(t). We address these two issues,, i having to keep such per-flow state, we seek instead to

in turn in Sections 1I-B1 and B2, a_nd thgn discm_Jss the rewrit.ir"_:]1 licitly computed(#) by using only aggregate measurements
of the labels. Pseudocode reflecting this algorithm is describ. 7 and A.

in Figs. 3 and 4. We should note, however, that the main pointWe use the followin

= maxy<;<n(r;(t)). From (4), note that if we knew

g heuristic algorithm with three aggregate
estimate fgr the fair share raté; the

o r arrival rate; the estimated rate of the
While it serves adequately as a proof-of-concept of our arcljz ented traffic. The last two variables are updated upon the

tecture, we fully expect that the details of this design will CONsrival of each packet. Fof, we use exponential averaging with

tinue to evolve. , , a parametee—7/K= whereT is the interarrival time between
1) Computation of Flow Arrival RateRecall that in our ar- the current and the previous packet

chitecture, the rates (¢) are estimated at the edge routers and l
then these rates are inserted into the packet labels. At each edge Ao = (1 _ e—T/KQ> Sy T/ R (5)
router, we use exponential averaging to estimate the rate of a T

flow. Let ¢} andl; be the arrival time and length of theh \here 4., is the value ofA before the updating. We use an
packet of flowi. The estimated rate of flow, r;, is updated analogous formula to updafe.

every time a new packet is received The updating rule fofe depends on whether the link is con-
. 1k . gested or not. To filter out the estimation inaccuracies due to
T = (1 —e /K) ﬁ +e T Ky (3) exponential smoothing, we use a window of siZg A link is

g assumed to beongestedf A > (C atalltimes during an interval

whereT* = t¢ — t*=1 and K is a constant. We discuss thelf IengthK .. Conversely, a link is assumed to iiecongeste
. Lo A < C atall times during an interval of lengf,.. The valuen
in Section II-G. is updated only at the end of an interval in which the link is ei-
2) Link Fair Rate Estimation:Next, we present an estima-ther congested or uncongested according to these definitions. If
the link is congested, thehis updated based dri(a) = C. We

tion algorithm fora(¢). To give intuition, consider again the) :) . -
fluid model in Section II-A where the arrival rates are know@PProximatel’(-) by a linear function that intersects the origin

exactly, and assume the system performs the probabilistic dr§d has slopé’/a,1a. This yields
ping algorithm according to (2). Then, the rate with which the
algorithm accepts packets is a function of the current estimate

rationale for using the fora—Z: /K for the exponential weight

Q

65\rlew = 6zold =- (6)

=

36 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

estimate_a (p, dropped) avoid overcorrection, we make sure that during consecutive up-
// @ is initialized to C, and K-« to 0; datesi does not decrease by more than 25%. While the choice
Il K. is used to compute the largest label seen of these percentage values is somewhat arbitrary, as shown in

Section lll, they offer consistent performance over a wide range
of simulation scenarios.
In addition, since there is little reason to consider a link con-

/] during a window of size K.

A= estimate_rate(/’f, p); /Il est. arrival rate (use Eq. (??))

if (fmpped == FALfE) gested if the buffer is almost empty, we apply the following rule.
F = estimate_rate(F, p); // est. accepted traffic rate If the link becomes uncongested by the test in Fig. 4, then we
if (A>C) assume that it remains uncongested as long as the buffer occu-
if (congested == FALSE) pancy is less than some predefined threshold. In this paper, we

use a threshold that is half of the total buffer capacity.
3) Label Rewriting: Our rate estimation algorithm in Sec-
tion II-B1 allows us to label packets with their flow’s rate as

congested = TRUE;;

start_time = crt_time;

if(@==0 they enter the island. Our packet dropping algorithm described
/1 @ is 0 if no packet is received during a widow K, in Section 11-B2 allows us to limit flows to their fair share of

@ = min(p.label, C); linitialize & the bandwidth. After a flow experiences significant losses at a

else congested link inside the island, however, the packet labels are

no longer an accurate estimate of its rate. We cannot rerun our

if (ert_time > start_time + K.) .) . .
estimation algorithm, because it involves per-flow state. Fortu-

&=axC/F; nately, as noted in Section II-A, the outgoing rate is merely the
start.time = crt_time; minimumbetween the incoming rate and the fair rateThere-
else//A<C fore, we rewrite the the packet labBlas
if (congested == TRUF)
congested = FALSE, Lyew = min(Log,). (7)
start_time = crt.time; By doing so, the outgoing flow rates will be properly repre-
Kc.a=0; sented by the packet labels.
else
if (crt_time < start_time + K.) C. Weighted CSFQ
K. o = max(K. a,p.label); The CSFQ algorithm can be extended to support flows
else with different weights. Letw; denote the weight of flow.
s Koo Returning to our fluid model, the meaning of these weights is
o . that we say dair allocation is one in which all bottlenecked
start-time = crt.time; flows have the same value faf/w;. Then, if A(t) > C,
Kea=0; the normalizedfair rate «(t) is the unique value such that
return &; >, w; min (o, r; /w;) = C. The expression for the dropping
probabilities in the weighted case isax (0,1 — «(w;/r;)).
Fig. 4. Pseudocode of CSFQ (fair rate estimation). The only other major change is that the label is mwwi,

instead simplyr;. Finally, without going into detail, we note

If the link is not congestedi,«. is set to the largest rate ofthat the weighted packet-by-packet version is virtually identical
any active flow (i.e., the largest label seen) during the st 0 the corresponding version of the plain CSFQ algorithm.
time units. The value i, is then used to compute dropping Itis important to note that with weighted CSFQ, we can only
probabilities, according to (2). For completeness, we give tReproximate islands in which each flow has the same weight at
pseudocode of the CSFQ algorithm in Fig. 4. all routers in an island. That is, our algorithm cannot accommo-
We now describe two minor amendments to this algorithm rgate situations where the relative weights of flows differ from
lated to how the buffers are managed. The goal of estimating {@é;ter tq router within an island. However, even with this_ Iimita—
fair share is to match the accepted rate to the link bandwidtion, weighted CSFQ may prove a valuable mechanism inimple-
Due to estimation inaccuracies, load fluctuations betwgen Menting differential services, such as the one proposed in [36].
updates, and the probabilistic nature of our algorithm, the ac-
cepted rate may occasionally exceed the link capacity. whigs Performance Bounds
ideally the router’s buffers can accommodate the extra packets\We now present the main theoretical result of the paper. For
occasionally the router may be forced to drop the incomirgenerality, this result is given for weighted CSFQ. The proof is
packet due to lack of buffer space. Since drop-tail behavior wgiven in the technical report [34].
defeat the purpose of our algorithm, and may exhibit undesirableOur algorithm is built around several estimation procedures
properties in the case of adaptive flows such as TCP [12], itasd, thus, is inherently inexact. One natural concern is whether
important to limit its effect. To do so, we use a simple heuristie flow can purposely “exploit” these inaccuracies to get more
every time the buffer overflows; is decreased by a small fixedthan its fair share of bandwidth. We cannot answer this ques-
percentage (taken to be 1% in our simulations). Moreover, tion in full generality, but we can analyze a simplified situation

STOICAet al. CORE-STATELESS FAIR QUEUEING 37

where the normalized fair share raiés held fixed and there is granularities such as source—destination—ports. Moreover, the
no buffering, so the drop probabilities are precisely given by (2)nit of “flow” can vary from island to island as long as the rates
In addition, we assume that when a packet arrives, a fractionaos€ re-estimated when entering a new island.
that packet equal to the flow’s forwarding probability is trans- Similarly, we have not been precise about the size of these
mitted. Note that during any time intervl, t;) a flow with CSFQ islands. In one extreme, we could take each router as an
weightw is entitled to receive at mosta(io —t1) service time; island and estimate rates at every router; this would allow us to
we call any amount above this thgcess servic&Ve can bound avoid the use of complicated per-flow scheduling and dropping
this excess service, and the bounds are independent of bothatgerithms, but would require per-flow classification. Another
arrival process and the length of the time interval during whigtossibility is that ISPs could extend their island of CSFQ routers
the flow is active. The bound does depend crucially on the mae-the very edge of their network, having their edge routers at
imal rateR at which a flows packets can arrive at a router (limthe points where customer’s packets enter the ISP’s network.
ited, for example, by the speed of the flow’s access link); tHguilding on the previous scenario, multiple ISPs could combine
smaller this rateR, the tighter the bound. their islands so that classification and estimation did not have to
Theorem 1: Consider a link with a constant normalized faibe performed at ISP—ISP boundaries. The key obstacle here is
ratea and a flow with weightw. Then, the excess service re-one of trust between ISPs.
ceived by a flow with weightv that sends at a rate no larger

than R is bounded above by G. Miscellaneous Details
R Having presented the basic CSFQ algorithm, we now return
Ta K (1 +In T—> + Imax (8) to discuss a few aspects in more detail.

] We have used exponential averaging to estimate the arrival
wherer, = aw andim.x represents the maximum length of ga¢e in (3). However, instead of using a constant exponential
packet. weight, we use@d~"/K whereT is the interpacket arrival time

By bounding the excess service, we have shown that in thisq x is a constant. Our motivation was thatZ/X more
idealized setting the asymptotic throughput cannot exceed Hgsely reflects a fluid averaging process which is independent
fair share rate. Thus, flows can only exploit the system ovgf ihe packetizing structure. More specifically, it can be
short time scales; they are limited to their fair share over long,own that if a constant weight is used, the estimated rate
time scales. will be sensitive to the packet length distribution and there are
pathological cases where the estimated rate differs from the
real arrival rate by a factor; this would allow flows to exploit

At core routers, both the time and space complexity of otie estimation process and obtain more than their fair share.
algorithm are constant with respect to the number of competingcontrast, by using a parameter«of’/* | the estimated rate
flows and, thus, we think CSFQ could be implemented in vewill asymptotically converge to the real rate, and this allows
high-speed core routers. At each edge router, CSFQ needgdoto bound the excess service that can be achieved (as in
maintain per-flow state. Upon each arrival of each packet, thieorem 1). We used a similar averaging process in (5) to
edge router needs to: 1) classify the packet to a flow; 2) updai€timate the total arrival raté.
the fair share rate estimation for the corresponding outgoingThe choice ofK in the above expressiosi 7/K presents
link; 3) update the flow rate estimation; and 4) label the packefs with several tradeoffs. First, while a small&T increases
All these operations with the exception of packet classificatiqRe system responsiveness to rapid rate fluctuations, a larger
can be efficiently implemented today. better filters the noise and avoids potential system instability.

Efficient and general-purpose packet classification algGecond K should be large enough such that the estimated rate,
rithms are still under active research [15], [19], [31], [32]ecalculated at the edge of the network, remains reasonably accu-
We expect to leverage these results. We also note that pagiggé after a packet traverses multiple links. This is because the
classification at ingress nodes is needed for a number @¥lay jitter changes the packets’ interarrival pattern, which may
other purposes, such as in the context of Multiprotocol Labgisult in an increased discrepancy between the estimated rate
Switching (MPLS) [4] or for accounting purposes; thereforgreceived in the packets’ labels) and the real rate. To counteract
the classification required for CSFQ may not be an extra cost.thls effect, as a rule of thumb should be one order of mag-
addition, if the edge routers are typically not on the high-speegtude larger that the delay jitter experienced by a flow over a
backbone links, then there is no problem as classification tghe interval of the same siz&. Third, K should be no larger
moderate speeds is quite practical. than the average duration of a flow. Based on these constraints,
an appropriate value fak would be between 100 and 500 ms.

A second issue relates to the requirement of CSFQ for a label

We have used the term “flow” without defining what weto be carried in each packet. One possibility is to use the Type Of
mean. This was intentional, as the CSFQ approach can Service byte in the IP header. For example, by using a floating-
applied to varying degrees of flow granularity; that is, whatoint representation with 4 bits for mantissa and 4 bits for ex-
constitutes a flow is arbitrary as long as all packets in the floponent, we can represent any rate between 1 kb/s and 65 Mb/s
follow the same path within the core. In this paper, for convevith an accuracy of 6.25%. Another possibility is to define an
nience, a flow is implicitly defined as an IP source—destinatid® option in the case of IPv4, or a hop-by-hop extension header
address pair, but one could easily assign fair rates to many otlmethe case of IPv6.

E. Implementation Complexity

F. Architectural Considerations

38 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

[ll. SIMULATIONS which provide accurate packet-level implementation for var-
ous network protocols, such as TCP and Receiver-driven Lay-

In this section, we evaluate our algorithm by simulatior’ d Multicast (RLM) [22 dvari buff tand
To provide some context, we compare CSFQ’s performan&ree ulticast () [22], and various bufier management an

to three additional algorithms. Two of these, FIFO and REIf,ChG(IjUIIng ?]Igonlthms, sgfhdas RED ar;]d ?iR .
represent baseline cases where routers do not attempt to achje ess ot Erwise speciied, we use the fo owing parameters
fair bandwidth allocations. The other two algorithms, FRE r the simulations in this section. Each output link has a latency

and DRR, represent different approaches to achieving fairnegg.1 ms, a buffer of 64 kB, and a butfer thres.hold for CSFQ
I5 16 kB. In the RED and FRED cases, the first threshold is

’ ;IF(g:fliackets are serv((jad na flrs_t—ln—lflrzt—outtq:dttar, tan t to 16 kB, while the second one is set to 32 kB. The aver-
the bullers are managed using a simple drop-ta strate ging constant used in estimating the flow rat&is= 100 ms,
i.e., incoming packets are dropped when the buffer is fu

. L vhile the averaging constant used in estimation the fairccase
* RED: Packets are served in a first-in-first-out order, b ging

the buffer management is significantly more sophisticated” = 200ms. Finally, in all topologies we use, the first router
. N ateway) on the path of a flow is always assumed to be the
than drop-tail. RED [12] starts to probabilistically dro;‘)?e) b y

; - dge router; all other routers are assumed without exception to
packets long before the buffer is full, providing early cong g P

tion indication to i hich th fullv b e core routers.
gestion Indication to Tlows which can then gracetully Dack . i jated the other four algorithms to give us benchmarks
off before the buffer overflows. RED maintains two buffer,

thresholds. When th tiall d buff against which to assess these results. We use DRR as our model
resnolas. ?In tﬁ ex&onﬁn lathy a\;]erla;ge u ir fgf fairness and use the baseline cases, FIFO and RED, as repre-
cupancy s smater than the first threshold, no packe é%inting the (unfair) status quo. The goal of these experiments is

dropped, and when the exponentially averaged buffer g etermine where CSFQ sits between these two extremes. FRED

cupancy is larger than the second threshold, all packets A more ambiguous benchmark, being somewhat more com-
dropped. When the exponentially averaged buffer occwex than CSFQ but not as compléx as DRR

pancy 'ﬁ. bgtween theIFwo tTres.hr? Idsflrthe packet droppi 9n general, we find that CSFQ achieves a reasonable degree
probaF)l 'ty. Increases inearly with buffer occupancy. - fairness, significantly closer to DRR than to FIFO or RED.

* FRED: Th|s algon.thm extends REDto prov!de some d “SFQ’s performance is typically comparable to FRED's,
gree of fair bandwidth allocation [20]. To achieve falmes%lthough there are a few situations where CSFQ significantly

FRED maintains state for all flows that have at least o tperforms FRED. There are a large number of experiments

packet in the buffer. Unlike RED, where the dropping deaind each experiment involves rather complex dynamics. Due

cision 1S .based only on the buf_fer state, In FRED.qu 0 space limitations, in the following sections, we will merely
ping decisions are based on this flow state. Specificall

FRED preferentially drops a packet of a flow that has ePflghllght a few important points and omit detailed explanations

ther 1) had many packets dropped in the past, or 2) a quebL];ethe dynamics.
larger than the average queue size. FRED has two vari- . .
ants (which we will call FRED-1 and FRED-2). The mainA' Single Congested Link
difference between the two is that FRED-2 guarantees toWe first consider a single congested link shared\bflows
each flow a minimum number of buffers. As a generdbee Fig. 5(a)]. We performed three related experiments.
rule, FRED-2 performs better than FRED-1 only when the In the first experiment, we have 32 CBR flows, indexed from
number of flows is large. In the following data, when wé, where flowi sendsi + 1 times more than its fair share of
do not distinguish between the two, we are quoting the re-:3125 Mb/s. Thus flow 0 sends 0.3125 Mb/s, flow 1 sends
sults from the version of FRED which performed the bes.625 Mb/s, and so on. Fig. 5(a) shows the average throughput
» DRR: This algorithm represents an efficient implememf each flow over a 10-s interval; FIFO, RED, and FRED-1 fail
tation of the well-known weighted fair queueing (WFQYo ensure fairness, with each flow getting a share proportional to
discipline. The buffer management scheme assumes thiaincoming rate, while DRR is extremely effective in achieving
when the buffer is full, the packet from the longest queue &fair bandwidth distribution. CSFQ and FRED-2 achieve a less
dropped. DRR is the only one of the four to use a sophisfirecise degree of fairness; for CSFQ, the throughputs of all
cated per-flow queueing algorithm and, thus, achieves tflews are betweer-11% and+12% of the ideal value.
highest degree of fairness. In the second experiment, we consider the impact of an
These four algorithms represent four different levels dlli-behaved CBR flow on a set of TCP flows. More precisely,
complexity. DRR and FRED have to classify incoming flowsthe traffic of flow 0 comes from a CBR source that sends at
whereas FIFO and RED do not. DRR in addition has th0 Mb/s, while all the other flows (from 1 to 31) are TCP flows.
implement its packet scheduling algorithm (whereas the rdsgy. 6(a) shows the throughput of each flow averaged over a
all use first-in-first-out scheduling). CSFQ edge routers hav#-s interval. The only two algorithms that can most effectively
complexity comparable to FRED, and CSFQ core routers hasentain the CBR flow are DRR and CSFQ. Under FRED, the
complexity comparable to RED. CBR flow gets almost 1.8 Mb/s—close to six times more than
We have examined the behavior of CSFQ under a variety it§ fair share—while the CBR only gets 0.396 and 0.355 Mb/s
conditions. We use an assortment of traffic sources [mainly, camader DRR and CSFQ, respectively. As expected, FIFO and
stant bit rate (CBR) and TCP, but also soone-OFF sources] RED perform poorly, with the CBR flow getting over 8 Mb/s
and topologies. All simulations were performed in ns-2 [24]n both cases.

STOICAet al. CORE-STATELESS FAIR QUEUEING 39

Sources 18 T T T T T p—
-—
Flow© 1o} R
L
Flow 1 Sink 14 i
. Router —O
. 12k e
. g
Flow N-1 s 7 T
§ e
@ o Fi 1
1 b
DRR -o— 06 - 4
CSFQ -+~
FRED-1 &
FRED-2 -
RED -
08 | FIFO -»-- 4
= .
2 o6} Lra
g . .;CLJ
£ x. g %R
g A
§ :-;}—\x}{;:/,.ava- &-a@-a-6
& oaf A .
£
:
g
5 10 15 20 25 30 <
Flow Number £
(®) :
Fig. 5. (a) 10-Mb/s link shared h¥ flows. (b) Average throughput over 10 s E
whenN = 32 and all flows are CBR flows. The arrival rate for flavis (¢ +1) <
times larger than its fair share. The flows are indexed from 0.
In the final experiment, we measure how well the algorithm
can protect a single TCP flow against multiple ill-behave

flows. We perform 31 simulations, each for a different valu. TotaiNumber of iows

of N, N = 1,...,31. In each simulation, we take one TCP (b)

flow and N CBR flows; each CBR sends at twice its fair shargig. 6. (a) Throughputs of one CBR flow (0 indexed) sending at 10 Mb/s, and
rate of10/(N + 1) Mb/s. Fig. 6(b) plots the ratio between theof 31 TCP flows sharing a 10-Mb/s link. (b) Normalized bandwidth of a TCP
average throughput of the TCP flow over 10 s and the to@vl:/ﬂ?éﬁ%?ﬁetes withV' CBR flows sending at twice their allocated rates, as
bandwidth it should receive as a function of the total number of o

flows in the systemV + 1. There are three points of interest. CBR-1 — CBR-10 CBRK1 = CBRK10

First, DRR performs very well when there are less than 22 Sinks
flows, but its performance decreases afterwards, because the

the TCP flow’s buffer share is less than three packets, whichcerrcp-o
is known to significantly affect its throughput. Second, CSFQ
performs better than DRR when the number of flows is large. Source

This is because CSFQ is able to cope better with the TCFgg rees() -
burstiness by allowing the TCP flow to have more than two CBR-1 CBR-10 CBR-11 CBR-20 CBR-K1 CBR-K10
packets buffered for short time intervals. Upon receiving a burst _ . _

of packets, it takes a while for the estimated rate of the flow i, Toreloty or ancing theefects of e congeson I on e
catch up with the actual rate. During this time, the packets Rive 10-Mb/s capacities. The sending rates of all CBR flows, excepting CBR-0,
the flow might be admitted in the queue even if the actual raee 2 Mb/s, which leads to all links between routers being congested.

of the flow is higher than the fair rate. Furthermore, note that

unlike DRR, once a packet is enqueued, it cannot be droppad-ig. 7. All CBR flows, except CBR-0, send at 2 Mb/s. Since
later. Finally, across the entire range, CSFQ provides similar &ich link in the system has 10-Mb/s capacity, this will result in

CBR/TCP-0
Router K[Router K+1

Sink

better performance as compared with FRED. all links between routers being congested.
i) In the first experiment, we have a CBR flow (denoted CBR-0)
B. Multiple Congested Links sending at its fair share rate of 0.909 Mb/s. Fig. 8(a) shows the

We now analyze how the throughput of a well-behaved flow fsaction of CBR-0'’s traffic that is forwarded, versus the number
affected when the flow traverses more than one congested linokcongested links. CSFQ and FRED perform reasonably well,
We performed two experiments based on the topology shoatthough not quite as well as DRR.

40

12

08

06 [

Allocated Bwdth. / Ideal Bwdth.

L L
25 3 35 4
Number of Congested Links

@

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

information encoded into a number of layers (each to its own
multicast group) and the receiver joins or leaves the groups as-
sociated with the layers based on how many packet drops it is
experiencing. We consider a 4-Mb/s link traversed by one TCP
and three RLM flows. Each source uses a seven-layer encoding,
where layer send2+* kb/s; each layer is modeled by a CBR
traffic source. The fair share of each flow is 1 Mb/s. In the RLM
case, this will correspond to each receiver subscribing to the first
five layers3

The average receiving rates averaged over a 1-s interval for
each algorithm are plotted in Fig. 9. We have conducted two sep-
arate simulations of CSF®In the first one, we have used the
same averaging constant as in the rest of this pdpet: 100 ms
and K, = 200 ms. Here, one RLM flow does not get its fair
share (it is one layer below where it should be). We think this
is due to the bursty behavior of the TCP that is not detected by

T T T T T CSFQ soon enough, allowing the TCP to opportunistically grab
more bandwidth than its share at the expense of less aggressive
RLM flows. To test this hypothesis, we have changed the aver-
aging time intervals td&(= 20 ms andK, = 40 ms, respec-
tively, which result in the TCP flows bandwidth being restricted
much earlier. As shown in Fig. 9(d), with these parameters all
flows receive roughly 1 Mb/s.

An interesting point to notice is that FRED does not provide
fair bandwidth allocation in this scenario. Again, as discussed
in Section I1I-B, this is due to the fact that RLM and TCP use
different end-to-end congestion-control algorithms.

Finally, we note that we have performed two other similar
experiments (not included here due to space limitations): one in
which the TCP flow is replaced by a CBR that sends at 4 Mb/s,
and another in which we have both the TCP and the CBR flows
together along with the three RLM flows. The overall results
(\)?:ere similar, except that in both experimealisflows received
their shares under CSFQ when using the original settings for
the averaging intervals, i.el’ = 100 ms andK, = 200 ms.

In addition, in some of these other experiments where the RLM
In the second experiment, we replace CBR-0 with a TGiyws are started before the TCP, the RLM flows get more than

flow. Similarly, Fig. 8(b) plots the normalized TCP throughpUfnheir share of bandwidth when RED and FIFO are used.
against the number of congested links. Again, DRR and CSFQ

prove to be effective. In comparison, FRED performs signify pifferent Traffic Models

cantly worse though still much better than RED and FIFO. The . i
reason is that while DRR and CSFQ try to allocate bandwidth So far, we have only considered CBR and TCP traffic sources.

fairly among competing flows during congestion, FRED tries t¥/& Now look at two additional source models with greater de-
allocate the buffer fairly. Flows with different end-to-end cond"€€s Of burstiness. We again consider a single 10-Mb/s con-
gestion-control algorithms will achieve different throughputgested link. In the first experiment, this link is shared by one
even if routers allocate the buffer fairly. In the case of Fig. 8(afN-OFF source and 19 CBR flows that send at exactly their
all sources are CBR, i.e., none are adopting any end-to-end cdf@'€: 0-5 Mb/s. TheN andoFF periods of theoN-OFF source
gestion-control algorithms, and FRED provides performanéé€ both drawn from exponential distributions with means of
similar to CSFQ and DRR. In the case of Fig. 8(b), a TCP flow 800 ms and 19 200 ms, respectively. During tley period, the
competing with multiple CBR flows. Since the TCP flow slow$N-OFFsource sends at 10 Mb/s. Note thatthetime is on the
down during congestion while CBQ does not, it achieves signfame order as the averaging interal= 200 ms for CSFQ’s
icantly less throughput than a competing CBR flow. rate estimation algorithm, so this experiment is designed to test
to what extent CSFQ can react over short time scales.

The ON-OFF source sent 4899 packets over the course of

) . . .) the experiment. Table | shows the number of packets from the
In this experiment, we investigate the extent to which CSFQ

can deal with flows that employ different adaptation schemesamore precisely, we havg?_, 2i+* kb/s= 0.992 Mb/s.
RLM [22] is an adaptive scheme in which the source sends thésee also [22] for additional simulations of RLM and TCP.

Allocated Bwdth. / Ideal Bwdth.

04

02

............................ 4

L
25 3 35 4 45 5
Number of Congested Links

(b)

Fig. 8. (a) Normalized throughput of CBR-0 as a function of the number
congested links. (b) Same plot when CBR-0 is replaced by a TCP flow.

C. Coexistence of Different Adaptation Schemes

STOICAet al. CORE-STATELESS FAIR QUEUEING 41

4 T 4 T T T T T T T T
TCP —
ALM2
35} 35 RLM3 T
3t 3t g
g 25 g 25 4
s :
% 2} % 2} i . .
i
F st Foast ‘ 1
1F 1 e i S S B LT 1 1
I 0 H
i ; B g i it
L P g i i
05| 05+ h .:me\#i«im-‘ui-}w&%%w%‘%% 1
0 - 1A~ 0 Ao~ 1 1 1 1 1 1 1
[} 50 0 50 100 150 2! 300 350 400 450
Time (sec)
(b)
4 r 35 T T T T - T T T
35 3}
3t
25|
g 25 F g
H] E r
g 2t g
§ é' 15}
F 15 F £
1}
1F
os b 05 f
0 A4 n~ "!l 1 1 1 1 1 1 0 T ..l
0 50 100 150 200 250 300 350 400 450 0 50
Time (sec)
(©
4 . T T T r y r r 4 y T T T T +— T
35| 35}
3t 3t E
I~ 25 2 25 F 4
8 8
- :
=]
g g
F st E s}) |
i
1+ 1k 4
05 05 Lo TR Ve P 1
s f’v‘mﬂ.vwm.»r»Juw.r—www‘-—-\
o L4 af slermnndii : A A 0 NG ot . : : . A ,
0 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Time (sec) Time (sec)
(e) ®

Fig. 9. Throughput of three RLM flows and one TCP flow along a 4-Mb/s link. (a) DRR. (b) FRED. (c) CAF& (100 ms K, = 200ms). (d) CSFQ
K =20ms K, = 40ms. (e) RED. (f) FIFO.

ON-OFF source that were dropped at the congested link. TheOur next experiment simulates Web traffic. There are 60 TCP
DRR results show what happens when the-OFF source is transfers whose interarrival times are exponentially distributed
restricted to its fair share at all times. FRED and CSFQ also amith the mean of 0.1 ms, and the length of each transfer is drawn
able to achieve a high degree of fairness. from a Pareto distribution with a mean of 40 packets (1 packet

42 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

TABLE | Source
STATISTICS FOR AN ON-OFF FLOw WITH 19 GCOMPETING i
CBR FLows (ALL NUMBERS ARE IN PACKETS) Link 1

(10 Mbps)

Link2 gjnk

10 Mbps
Router 2 %

Algorithm | delivered | dropped

DRR 1080 3819 (10 Mbps) 10 Mbps
CSFQ 1000 3889

FRED 1064 3825 Flow 3

RED 2819 2080 (10 Mbps)

FIFO 3771 1128

Fig. 10. Simulation scenario for the packet relabeling experiment. Each link
has 10-Mb/s capacity and a propagation delay of 1 ms.

TABLE 1l
MEAN TRANSFERTIMES (IN MILLISECONDS) AND THE CORRESPONDING TABLE IV
STANDARD DEVIATIONS FOR 60 SHORT TCP FLOWS IN THE PRESENCE OF A THROUGHPUTSRESULTING FROM CSFQ A/ERAGED OVER 10'S
CBR FLow THAT SENDS AT THELINK CAPACITY, I.E., 10 MB/s FOR THETHREE FLOWS IN FIG. 10 ALONG LINK 2

Algorithm | mean time | std. dev Traffic | Flow 1 | Flow 2 | Flow 3

DRR 46.38 197.35 CBR 3.267 3.262 3.458

CSFQ 8821 | 230.29 TCP 3232 | 3336 | 3.358

FRED 73.48 272.25

RED 790.28 | 1651.38 topology in Fig. 10, where each link is 10 Mb/s. Note that as

FIFO 1736.93 | 1826.74 long as all three flows attempt to use their full fair share, the fair

shares of flows 1 and 2 are less on link 2 (3.33 Mb/s) than on

TABLE il link 1 (5 Mb/s), so there will be dropping on both links. This

MEAN THROUGHPUTS(IN PACKETS) AND STANDARD DEeviaTions For19 TCP Will test the relabeling function to make sure that the incoming
FLows IN THE PRESENCE OF ACBR FLOW ALONG A LINK WITH PROPAGATION rates are accurately reflected on the second link. We perform
DELAY OF 100Ms. THE CBR SENDS AT THE LINK CAPACITY OF 10 MB/S two experiments (only looking at CSFQ’s performance). In the

Algorithm | mean | std. dev first, there are three CBR flows sending data at 10 Mb/s each.
DRR 585789 | 192.86 Table 1V shows the average throughputs over 10 s of the three
CSFQ 5135.05 | 17576 CBR flows. As expected, these rates are closed to 3.33 Mb/s. In
TRED 2967.05 | 26123 the second expgrlment, we replace the three CBR ﬂows by three

TCP flows. Again, despite the TCP burstiness which may neg-
RED 628.10 | 80.46) o :

atively affect the rate estimation and relabeling accuracy, each
FIFO 379.42 | 68.72

TCP gets its fair share.

= 1 kB) and a shaping parameter of 1.06. These values are c&n-Discussion of Simulation Results

sistent with those presented in [8]. In addition, there is a singleWe have tested CSFQ under a wide range of conditions,

10-Mb/s CBR flow. conditions purposely designed to stress its ability to achieve
Table Il presents the mean transfer time and the corteir allocations. These tests, and the others we have run but

sponding standard deviations. Here, CSFQ and FRED do lessinot show here because of space limitations, suggest that

well than DRR, but one order of magnitude better than FIFOSFQ achieves a reasonable approximation of fair bandwidth

and RED. allocations in most conditions. Certainly, CSFQ is far superior
in this regard to the status quo (FIFO or RED). Moreover,
E. Large Latency in all situations, CSFQ is roughly comparable with FRED,

All of our experiments, so far, have had minimal latencies. [nd in some cases it achieves significantly fairer allocations.
this experiment, we again consider a single 10-Mb/s congest@@call that FRED requires per-packet flow classification while
link, but now the flows have propagation delays of 100 ms {f#SFQ does not, so we are achieving these levels of fairness
getting to the congested link. The load is comprised of of@ & more scalable manner. However, there is clearly room
CBR that sends at the link capacity and 19 TCP flows. Table f@r improvement in CSFQ. We think our buffer management
shows the mean number of packets forwarded for each TCP flglgorithm may not be well tuned to the vagaries of TCP buffer
during a 100-s time interval. CSFQ and FRED both perform redsage, and so are currently looking at adopting an approach
sonably well. closer in spirit to RED for buffer management, while retaining

the use of the labels to achieve fairness.
F. Packet Relabeling

Recall that when the dropping probabilify of a packet is IV. WHY ARE FAIR ALLOCATIONS IMPORTANT?

nonzero, we relabel it with a new label wherg., = (1-P) Lo1a In Section |, we stated that one of the underlying assumptions
so that the label of the packet will reflect the new rate of thef this work is that fairly allocating bandwidth was beneficial,
flow. To test how well this works in practice, we consider thand perhaps even crucial, for congestion control. In this section,

STOICAet al. CORE-STATELESS FAIR QUEUEING 43

we motivate the role of fair allocations in congestion control bB. Punishment

discussing the problem of unfriendly flows, and then end this |, section IV-A, we argued that the allocation approach gave

section with a discussion of the role of punishment. In what fo&rop-intolerant flows an incentive to adopt end-to-end conges-
lows, we borrow heavily from [3], [9], and [11], and have bengq control; now we ask: what about drop-tolerant flows?

efited greatly from conversations with S. Deering and S. Floyd. \ye consider, for illustratiorfire-hoseapplications that have
We should note that the matters addressed in this section @fnplete drop tolerance: they send at some highyrated get
rather controversial and this overview unavoidably reflects o4k \,ch value out of the fraction of arriving packets, cafl, it
prejudices. Thig section, howe_ver., is merely intended to provigg if they originally just sent a stream of rate. That is, these
some perspective on our motivation for this work, and any Be_hose applications care only about the ultimate throughput
ases in this overview should not undercut the technical aspegis, not the dropping rateln a completely static world where

of the CSFQ proposal that are the main focus of Sections Il agdn yidth shares were constant, such fire-hose protocols would

1. not provide any advantage over just sending at the fair share
rate. However, if the fair shares along the path were fluctuating
significantly, then fire-hose protocols might better utilize in-
Data networks such as the Internet, because of their reliarggntaneous fluctuations in the available bandwidth. Moreover,
on statistical multiplexing, must provide some mechanism pe-hose protocols relieve applications of the burden of trying to
control congestion. The current Internet, which has mosthfapt to their fair share. Thus, even when restrained to their fair
FIFO queueing and drop-tail mechanisms in its routers, réhare, there is some incentive for flows to send at significantly
lies on end-to-end congestion control in which hosts curtafiore than the current fair shaten addition, such fire-hoses
their transmission rates when they detect that the networkdécrease the bandwidth available to other flows because packets
congested. The most widely utilized form of end-to-end coRfestined to be dropped at a congested link represent an unneces-
gestion control is that embodied in TCP [16], which has beejary load on upstream links. With universal deployment of the
tremendously successful in preventing congestion collapse. allocation approach, every other flow would still obtain their fair
The efficacy of this approach depends on two foundationghare at each link, but that share may be smaller (by no more
assumptions: 1) all (or almost all) flows areoperativein that than a factor ofn — f)/n, wheren is the total number of flows
they implement congestion-control algorithms; and 2) theg@d f is the number of fire-hoses) than it would have been if
algorithms arehomogeneous-or roughly equivalent—in that the fire-hose had been using responsive end-to-end congestion
they produce similar bandwidth allocations if used in similagontrol. It is impossible to know now whether this will become
circumstances. In particular, assumption 2 requires, in theserious problem. Certainly, though, the problem of fire-hoses
language of [11], that all flows are TCP-friendly. in a world with fair bandwidth allocation is far less dire than the
The assumption of universal cooperation can be violated piioblem of unfriendly flows in our current FIFO Internet, since
three general ways. First, some applications@responsivén the incentive to be unfriendly and the harmful impact on others
that they do notimplement any congestion-control algorithms gte considerably greater in the latter case. As a consequence, our
all. Most of the early multimedia and multicast applications, likeaper emphasizes the problem of unfriendly flows in our current
vat, nv, vic, wb, and RealAudio fall into this category. Secondr|FO Internet, and is less concerned with fire-hose flows in an
some applications use congestion-control algorithms that, whjlgernet with fair bandwidth allocation.
responsive, are not TCP-friendly. As we saw in Section IlI-C, Nonetheless, the fire-hose problem should not be ignored;
RLMis such an algorithm. Third, some users will cheat and Ufiews should be given an incentive to adopt responsive
anon-TCP congestion-control algorithm to get more bandwidi@ind-to-end congestion. A possible method is to explicitly
An example of this would be using a modified form of TCRyunish unresponsive flows by denying them their fair skare.
with, for instance, larger initial window and window opening One way to implement this method in CSFQ is to change the

A. Unfriendly Flow Problem

constants. computation of drop probability [see (2)] to
Each of these forms of noncooperation can have a significant
negative impact on the performance obtained by cooperating a(t) 2
flows. At present, we do not yet know how widespread non- max | 0,1 — (r:(f)) 9)
cooperation will be and, thus, cannot assess the level of harm o

it will cause. However, in lieu of more solid evidence that non-
cooperation will not be a problem, it seems unsound to base

the Internet’s congestion-control paradigm on the assumption of**PProximations to complete drop-tolerance can be reached in video trans-
ort using certain coding schemes or file transport using selective acknowledg-

universal cooperation. Therefore, we started this paper with t,?r\gm,

fundamental assumption that one needs to deal with the problenThese fire-hose coding and file transfer methods also have some overhead

of unfriendly flows. associated with them, and it is not clear whether, in practice, the overheads are

greater or less than the advantages gained. However, one can certainly not claim,

5Actually, the term TCP-friendly in [11] means that “their arrival rate does ngts We did above for drop-intolerant applications, that the allocation approach

exceed that of any TCP connection in the same circumstances.” Here, we ugivgs drop-tolerant applications a strong incentive to use responsive end-to-end

to mean that the arrival rates are roughly comparable. We blur this distinctior@@ngestion-control algorithms.

avoid an overly unwieldy set of terms. However, we think the distinction may 8Another possible method, used in ATM Available Bit Rate (ABR), is to

be rendered moot since it is unlikely that congestion-control algorithms that drave network provide explicit per-flow feedback to ingress nodes and have edge

not TCP-equivalent but are TCP-friendly—i.e., they get much less than their faindes police the traffic on a per-flow basis. We assume this is too heavyweight

share—uwill be widely deployed. a mechanism for the Internet.

44 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

As aresult, a flow with an arrival rate: (> 1) times larger than problem asks to find the enclosing region among a set of re-
the fair ratex will receive an allocation of onlyy/k, instead of gions. In the case of nonoverlapping regions, the best bounds
« as in the original CSFQ. Thus, the higher the bandwidth offar n regions in anF’-dimensional space a@(logn) in time

flow is, the less bandwidth it receives. Another important poiandO(n) in space, or, alternatively)(log” !) in time and

to note here is that, unlike other proposals that aim to punisi{n) in space. This suggests a clear tradeoff between space and
high-bandwidth flows [11], our solution does not require coréme complexities. It also suggests that it is very hard to simul-

routers to maintain any state. taneously achieve both speed and efficient memory usage.
2) Stateless SolutionsRecently, several solutions using a
V. RELATED WORK CSFQ-like architecture were proposed to address the scalability

imitations of traditional fair queueing solutions [5], [7], [35].

. . I
There are, in the literature, two general approaches that ike CSFQ, these solutions differentiate between edge and core

dress the problem of unfriendly flows: 1) the allocation ap-

proach, and 2) the identification approach. In the rest of thriguters. Edge routers maintain per-flow state and insert state

section. we discuss these two approaches in more detail. M the packet headers, while core routers maintain no per-flow
' PP * state. However, unlike CSFQ where the packet labels represent

the estimated rate of their flow, in these schemes the packets of
the same flow are marked withfferentlabels. In turn, each core

In the allocation approach, a router isolates flows from eagbuter computes a threshold and then drops all packets with la-
other by allocating the bandwidth fairly between them. As lgels higher than this thresholelBy properly assigning labels to
result, unfriendly flows can only have a very limited impact ofhe packets and computing the threshold at a congested link such
other flows. It is important to note that the allocation approaghat the sum of the allocated rates equals the link capacity, all
does not demand that all flows adopt some universally standa@fidse schemes are able to accurately approximate fair queueing.
end-to-end congestion-control algorithm; flows can choose @ne potential advantage of these solutions over CSFQ is that
respond to the congestion in whatever manner that best stigy do not require core routers to relabel packets. In addition,
them without harming other flows. Tag Unified Fair Queueing differentiates between the TCP and

1) Stateful SolutionsTraditionally, fair allocations were UDP flows in order to avoid the TCP flows being overpenalized
achieved by usinger-flowmechanisms such as Fair Queueingue to their response to losses [7].
[9], [26] and its many variants [2], [14], [29], or per-flow CHOKe is another recent proposal for approximating fair
dropping mechanisms such as FRED [20]. However, theggeueing [25]. With CHOKe, an incoming packet is matched
mechanisms require each router to maintain state and perfeigainst a random packet in the buffer. If the packets belong to
operations on a per-flow basis. For each packet that arrivestaé same flow both packets are dropped, otherwise the packet
the router, the router needs to classify the packet into a flow,enqueued. As a result, this simple mechanism preferentially
update per-flow state variables, and perform certain operatiafieps the packets of high-bandwidth flows. While CHOKe is
based on the per-flow state. The operations can be as simgley simple to implement and does not require edge routers
as deciding whether to drop or queue the packet (e.g., FRER),maintain any per-flow state, it may fail to accurately ap-
or as complex as manipulation of priority queues (e.g., Fgfoximate fair queueing when the number of flows is large
Queueing). While a number of techniques have been proposgdn the presence of very high-speed flows. For instance, the
to reduce the complexity of the per-packet operations [Idimulations reported in [25] show that a high-speed UDP can
[29], [33], and commercial implementations are available iget several times more bandwidth than it deserves.
some intermediate class routers, it is still unclear whether these) ATM ABR: The problem of estimating the fair share
algorithms can be cost-effectively implemented in high-speegte has also been studied in the context of designing ABR
backbone routers because all these algorithms still requiigorithms for ATM networks. While the problems are similar,
packet classification and per-flow state management. there are also several important differences. First, in ATM

While in this paper we have assumed that a packet is clas&BR, the goal is to provide explicit feedback to end systems
fied based on its source and destination IP addresses, in geniigholicing purposes so that cell losses within the network can
a packet can be classified on any combinatiopartially spec- be prevented. In CSFQ, there is no explicit feedback and edge
ified fields in the packet header. Besides source and destinatilicing. Packets from a flow may arrive at a much higher rate
IP addresses, these fields usually include the port numbers @gh the flow’s fair share rate and the goal of CSFQ is to ensure,
the protocol typé.Unfortunately, the general problem of classiby probabilistic dropping, that such flows do not get more
fication is inherently difficult. Current solutions [15], [19], [31], service than their fair shares. Second, since ATM already keeps
[32] work well only for a relatively small number of classes, i.e per-virtual-circuit (VC) state, additional per-VC state is usually
no more than several thousand. In particular, Gupta and McKdded to improve the accuracy and reduce the time complexity
eown [15] have shown that the packet classification problemds estimating the fair share rate [6], [10], [18]. However, there
similar to the point location problem in the domain of compuare several algorithms that try to estimate the fair share without
tation geometry. Given a point in @i-dimensional space, this keeping per-flow state [27], [30]. These algorithms rely on the

flow rates communicated by the end system. These estimates
9For instance, one could use a general packet classifier in conjunction with
the weighted version of CSFQ to allocate a higher bandwidth to the Web traffic,1%Tag Unified Fair Queueing is slightly different in that it drops the packet
or to control the allocation of the entire traffic between two given subnetworkaith the highest label from the queue when the queue overflows [7].

A. Allocation Approach

STOICAet al. CORE-STATELESS FAIR QUEUEING 45

are assumed to remain accurate over multiple hops, due t®ne open question is the effect of large latencies. The logical
the accurate explicit congestion control provided by ABR. laxtreme of the CSFQ approach would be to do rate estimation
contrast, in CSFQ, since the number of dropped packets canabthe entrance to the network (at the customer/ISP boundary),
be neglected, the flow rates are recomputed at each routerrifl then consider everything else the core. This introduces sig-

needed (see Section 1I-B3). nificant latencies between the point of estimation and the points
of congestion; while our initial simulations with large laten-
B. Identification Approach cies did not reveal any significant problems, we do not yet un-

In theidentificationapproach, a router uses a lightweight dedérstand CSFQ well enough to be confident in the viability of
tection algorithm to identify ill-behaved (unfriendly) flows [11], {hiS “all-core” design. However, if viable, this “all-core” design
[21]. Once a router detects the ill-behaved flows, it uses eithey/Qu!d allow all interior routers to have only very simple for-
scheduling scheme such as Class-Based Queueing [13] or p%[dlng and dropping mechanisms, withoutany need to classify

erential dropping to manage the bandwidth of these unfriend?;"?‘CketS into f_IO_V_'S' . .

flows. This bandwidth management can range from merely re_One of the initial assumptions of this paper was that the more
stricting unfriendly flows to no more than the current highej:[aditional mechanisms used to achieve fair allocations, such as
friendly flow’s share to the extreme of severely punishing u ar Q_ueuemg or F.RED’ were too comple>.< t9 implement cost

friendly flows by dropping all their packets effectively at sufficiently high speeds. If this is the case, then

While these solutions can be incrementally deployed onZgMore sc_alable approach_ like CSFQ is necessary to ac_hleve
: fair allocations. The CSFQ islands would be comprised of high-
router-by-router basis, they have several drawbacks when com-
. . : speed backbones, and the edge routers would be at lower speeds
pared to CSFQ. First, these solutions require routers to mairi- e ;
ere classification and other per-flow operations were not a

tain state for each flow that has been classified as unfriend\fv.

. o oblem. However, CSFQ may still play a role even if router
In contrast, CSFQ does not require core routers to maintain gn o
S . I hnology advances to the stage where the more traditional
per-flow state. Second, designing accurate identification tesfs . .)
: L e S : mechanisms can reach sufficiently high speeds. Because the
for unfriendly flows is inherently difficult. This is mainly be-

. _..core version of CSFQ could presumably be retrofit on a siz-

"Me fraction of the installed router base (since its complexity

(RTT),_and Itis very hard fpr a router to acc_urately estlmaﬁg roughly comparable to RED and can be implemented in soft-
RTT with only local information. For example, in [34] we ShOV\(,\fare) it may be that CSFQ islands are not high-speed back-
using simulations that the solution presented in [11] may faﬂones, but rather are comprised of legacy routers

to identify an unfriendly flow that uses up to three times more Finally, we should note that the CSFQ approach requires

bandwidth than, a regular TCP ﬂO_W' Finally, the.idtlantificatiogome configuration, with edge routers distinguished from core
approach requires that all flows implement a similar congegs ters. Moreover, CSFQ must be adopted one island at a time

tion-control mechanism, i.e., TCP-friendly. We believe this iSyher than router by router. We do not know if this presents a
overly restrictive as it severely limits the freedom of designing,io,s impediment to CSFQ's adoption.

new congestion protocols that best suit application needs.

REFERENCES

) . o [1] J. C. R. Bennett, D. C. Stephens, and H. Zhang, “High speed, scalable,
This paper presents an architecture for achieving reasonably and accurate implementation of packet fair queueing algorithms in ATM
fair bandwidth allocations while not requiring per-flow state in ~ networks,” inProc. IEEE Int. Conf. Network Protocqlétianta, GA,

. : Oct. 1997, pp. 7-14.
core routers. Edge routers estimate flow rates and insert themy, ; ¢ g Begﬁeu and H. Zhang, “WB: Worst-case fair weighted fair

into the packet labels. Core routers merely perform probabilistic queueing,” inProc. IEEE INFOCOM San Francisco, CA, Mar. 1996,

dropping on input based on these labels and an estimate of the Pp- 120-128. , _ _
fair sh te th tation of which requires only agare atéS] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.
air share rate, the computatl whi qui y aggreg Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. K. Ra-

measurements. Packet labels are rewritten by the core routers makrishnan, S. Shenker, and J. Wroclawski. (1998) Recommendations

to reflect output rates, so this approach can handle multihop on queue management and congestion avoidance in the Internet. LBL
. . Network Research Group. [Online]. Available: http://ftp.ee.lbl.gov/nrg-

situations. other.html

We tested CSFQ and several other algorithms on a wid€g4] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A.

variety of conditions. We find that CSFQ achieves a significant Viswanathan. (1997) A framework for multiprotocol label switching.

. . . . IETF. [Online]draft-ietf-mpls-framework-02.txt
degree of fairness in all of these circumstances. While Nots; 7 cao 7. Wang, and E. Zegura, “Rainbow fair queueing: Fair band-

matching the fairness benchmark of DRR, it is comparable or width sharing without per-flow state,” ifroc. INFOCOM Tel-Aviv,
superior to FRED and vastly better than the baseline cases of !srael, Mar. 2000, pp. 922-931. o -
RED d EIFO [6] A. Charny, “An algorithm for rate allocation in a packet-switching
an ! :))) network with feedback,” Master’s thesis, Massachusetts Inst. Technol.,
The main thrust of CSFQ is to use rate estimation at the edge Comput. Sci. Div., Cambridge, MA, 1994,
routers and packet labels to carry rate estimates to core routers$/] A. Clergetand W. Dabbous, "Tag-based unified faimessPioc. IEEE

. INFOCOM, Anchorage, AK, Apr. 2001, pp. 498-507.
The details of our proposal, such as the exact form of bUﬁer[S] M. E. Crovella and A. Bestavros, “Self-similarity in World-Wide Web

management or the constants used in the averaging procedures, traffic evidence and possible causes,”Rmoc. ACM SIGMETRICS
are still very much the subject of active research. However, the Philadelphia, PA, May 1996, pp. 160-169. o

lts of our initial experiments with a rather untuned alaorithm [9] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
resu S.O u - p g9 fair queueing algorithm,J. Internetw. Res. Experiengep. 3-26, Oct.
are quite encouraging. 1990.

VI. SUMMARY

46

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

[10] S. Fahmy, R. Jain, S. Kalyanaraman, R. Goyal, and B. Vandalore, “Ofj34] |. Stoica, S. Shenker, and H. ZhandgZdre-stateless fair queueing:

(11]

(12]

(13]

(14]

(15]
[16]
(17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

[31]

(32]

(33]

determining the fair bandwidth share for ABR connections in ATM net-
works,” inProc. IEEE Int. Conf. Communications (IC@pl. 3, Atlanta,

GA, June 1998, pp. 1485-1491.

S. Floyd and K. Fall, “Promoting the use of end-to-end congestion con{35]
trol in the internet, 1TEEE/ACM Trans. Networkingol. 7, pp. 458-472,

Aug. 1999.

S. Floyd and V. Jacobson, “Random early detection for congestiorf36]
avoidance,”IEEE/ACM Trans. Networkingvol. 1, pp. 397-413, July

1993.

——, “Link-sharing and resource management models for packet net-
works,” [IEEE/ACM Trans. Networkingol. 3, pp. 365-386, Aug. 1995.

S. Golestani, “A self-clocked fair queueing scheme for broadband appli-
cations,” inProc. IEEE INFOCOM Toronto, ON, Canada, June 1994,

pp. 636—646.
P. Gupta and N. McKeown, “Packet classification on multiple fields,” i
Proc. ACM SIGCOMMSept. 1999, pp. 147-160.

V. Jacobson, “Congestion avoidance and control,Pioc. ACM SIG-
COMM, Aug. 1988, pp. 314-329.

J. Jaffe, “Bottleneck flow control,l[EEE Trans. Communvol. 29, pp.
954-962, July 1981.

R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathd
“ERICA switch algorithm: A Complete description,” ATM Forum,
96-1172, 1996. ‘
T. V. Lakshman and D. Stiliadis, “High speed policy-based packet fof**
warding using efficient multi-dimensional range matching,”Rroc.
ACM SIGCOMM Vancouver, BC, Canada, Sept. 1998, pp. 203-214.
D. Lin and R. Morris, “Dynamics of random early detection,”Rmnoc.
ACM SIGCOMM Cannes, France, Oct. 1997, pp. 127-137.

R. Mahajan, S. Floyd, and D. Whaterall, “Controlling high-bandwidth
flows at the congested route,” Proc. IEEE Int. Conf. Network Proto-
cols Riverside, CA, Nov. 2001, pp. 192-201.

S. McCanne, “Scalable compression and transmission of internet m
ticast video,” Ph.D. dissertation, Comput. Sci. Div., Univ. California
Berkeley, 1996.

J. Nagle, “On packet switches with infinite storage¢fZEE Trans.
Commun.vol. 35, pp. 435-438, Apr. 1987.

Ucb/Ibnl/vint Network Simulator—ns (Version 2) [Online]. Available: | |
http://www-mash.cs.berkeley.edu/ns/

R. Pan, B. Prabhakar, and K. Psounis, “CHOKe—A stateless acti
queue management scheme for approximating fair bandwidth al
cation,” in Proc. IEEE INFOCOM Tel Aviv, Israel, Mar. 2000, pp.
942-951.

A. Parekh and R. Gallager, “A generalized processor sharing approg
to flow control—The single node casdEEE/ACM Trans. Networking
vol. 1, pp. 344-357, June 1993.

L. Roberts, “Enhanced PRCA (proportional rate control algorithm),
ATM Forum, 94-0735R1, 1994.

S. Shenker, “Making greed work in networks: A game theoretical anal-
ysis of switch service disciplines,” iRroc. ACM SIGCOMMLondon,
U.K., Aug. 1994, pp. 47-57.

M. Shreedhar and G. Varghese, “Efficient fair queueing using defid
round robin,” inProc. ACM SIGCOMMBoston, MA, Sept. 1995, pp.
231-243.

K. Y. Siu and H. Y. Tzeng, “Intelligent congestion control for ABR ser-
vice in ATM networks,” Dept. Electr. Comput. Eng., Univ. California,
Irvine, CA, Tech. Rep. 1102, 1994.

V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuy
space search,” iRroc. ACM SIGCOMMCambridge, MA, Sept. 1999,
pp. 135-146.

V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast scalak
algorithms for level four switching,” ifProc. ACM SIGCOMNMBC,
Canada, Sept. 1998, pp. 191-202.

D. Stilliadis and A. Varma, “Efficient fair queueing algorithms for
packet-switched networks|EEE/ACM Trans. Networkingvol. 6, pp.
175-185, Apr. 1998.

2000.

1998.

Achieving approximately fair bandwidth allocations in high speed
networks,” Carnegie Mellon Univ.,
CMU-CS-98-136, 1998.

N. Venkitaraman, J. Mysore, R. Srikant, and R. Barnes, “Stateless pri-
oritized fair queueing,” SPFQ, draft-venkitaraman-diffserv-spfg-00.txt,

Pittsburgh, PA, Tech. Rep.

Z. Wang, “User-share differentiation (USD) scalable bandwidth alloca-
tion for differentiated services,” IETF, draft-wang-diff-serv-usd-00.txt,

lon Stoicareceived the Ph.D. degree from Carnegie
Mellon University, Pittsburgh, PA, in 2000.

He is currently an Assistant Professor with the
Department of Electrical Engineering and Computer
Science, University of California, Berkeley, where
he does research on resource management, scalable
solutions for end-to-end quality of service, and
peer-to-peer network technologies in the Internet.

Dr. Stoica is the recipient of a National Science
Foundation CAREER Award in 2002, and the As-
sociation for Computing Machinery (ACM) Doctoral

Dissertation Award in 2001. He is a member of the ACM.

Scott Shenker (M'87-SM’96—F'00) received the
B.Sc. degree from Brown University, Providence,
RI, and the Ph.D. degree in theoretical physics
from the University of Chicago, both in theoretical
physics.

After a postdoctoral year with the Department of
Physics, Cornell University, Ithaca, NY, in 1983, he
joined the Xerox Palo Alto Research Center (PARC).
He left PARC in 1999 to head up a newly established
Internet research group at the International Computer
Science Institute (ICSI), Berkeley, CA. His research

over the past 15 years has ranged from computer performance modeling and
cCcanuter networks to game theory and economics. Most of his recent work has
ocused on Internet architecture and related issues.

Dr. Shenker received the ACM SIGCOMM Award in 2002. He has been a
Member of the Association for Computing Machinery (ACM) since 1986.

Hui Zhang (M'95) received the B.S. degree in
computer science from Beijing University, Beijing,
China, in 1988, the M.S. degree in computer
engineering from Rensselaer Polytechnic Institute,
Troy, NY, in 1989, and the Ph.D. degree in computer
science from the University of California at Berkeley
in 1993.

He is currently Chief Technical Officer with Turin
Networks and an Associate Professor with the School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA. His research interests are in Internet,

quality-of-service, multicast, peer-to-peer systems, and metro networks.

Dr. Zhang received the National Science Foundation CAREER Award in 1996
and the Alfred Sloan Fellowship in 2000. He has been a Member of the Asso-
ciation for Computing Machinery (ACM) since 1995.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

