CS 545

Finding the closest pair of points

Alon Efrat

Samir Khuller, Yossi Matias:
A Simple Randomized Sieve Algorithm for the Closest-Pair Problem

Problem definition

Given: A set \(S = \{p_1, \ldots, p_n\} \) of \(n \) points in the plane
Problem: Find the pair \(p_i, p_j \) that minimizes \(d(p_i, p_j) \), where \(d(p_i, p_j) \) is the Euclidean distance between \(p_i \) and \(p_j \).

\(O(n^2) \) time algorithm – trivial
\(\Omega(n \log n) \) bound for any deterministic algorithm.

In this talk – a randomized algorithm whose expected running time is \(O(n) \)
Notation

Let $S_i = \{p_1, p_2, \ldots, p_i\}$

Let $d(S_i)$ denote the distance between the closest pair in S_i

Clearly $d(S_1) \geq d(S_2) \geq \ldots \geq d(S_n)$

Idea – incremental algorithm – compute $d(S_{i+1})$ from $d(S_i)$

Let $\Gamma(S_i)$ denote an axis-parallel grid, where the edge-length of each grid-cell is $d(S_i)/2$, and one of its corner is on the point $(0,0)$

Properties of $\Gamma(S_i)$.

Claim 1: there is at most one point of S_i inside every cell of $\Gamma(S_i)$.

Proof – if there are two, then the distance between them is smaller than the length of the diagonal of the cell, which is $(\sqrt{2})d(S_i)/2 = d(S_i)/\sqrt{2} < d(S_i)$

Locating points.

Claim 2: given $d(S_i)$ we can place all points of S_i in a data structure $H(S_i)$, such that we can (in $O(1)$ expected time)

1) insert a new point p_i
2) Given a query point q find if there is a point of S_i in the cell of $\Gamma(S_i)$ containing q.

The structure $H(S_i)$ is described in HW2 Question 7.
Procedure **Rehashing with** $d(S_i)$:

Construct the hash table $H(S_i)$ (from HW1) with $d(S_i)$, and inserting all points of S_i into the table.

Expected time $O(|S_i|)$.

Inserting p_{i+1} and Deciding if $d(S_i) > d(S_{i+1})$:

To decide whether $d(S_i) > d(S_{i+1})$ or $d(S_i) = d(S_{i+1})$ do {

1) find all points of S_i in the cell containing p_{i+1}... and in all the cells whose distance from this cell < $d(S_i)$.

2) Measure the distance from p_{i+1} to each of these points.

}

Note – only a constant number of cells, and due to Claim 1, only a constant number of points. Altogether: (expected) constant time.

Algorithm – version 1

Input: S

Output: $d(S)$, The closest pair of S

Find $d(S_2)$, and construct $H(S_2)$.

For $i=3,4,...,n-1$ do {

Use $H(S_i)$ to decide whether $d(S_i) > d(S_{i+1})$ or $d(S_i) = d(S_{i+1})$

If $d(S_i) > d(S_{i+1})$ then $\Gamma(S_{i+1}) = \Gamma(S_i)$ and $H(S_{i+1}) = H(S_i)$.

Else $^*d(S_i) = d(S_{i+1})$ $*$ rehash with $d(S_{i+1})$. ($O(i)$ expected time)

Running time: Worst case $1+2+3+...+(n-1) = O(n^2)$
Algorithm – version 2
Create random permutation of the points of S before calling the algorithm of version 1.

Assumption: the closest pair is unique.

Claim 3: The probability that \(d(S_i) > d(S_{i+1}) \) is \(\frac{2}{i+1} \).

Proof: There are \(i+1 \) points, two are special (determining the closest pair). All permutations are equally likely, so the probability that one of the special pair appears last in the permutation is \(\frac{2}{i+1} \).

Finishing the analysis

So in the \(i \)th stage we are spending \(O(1) \) time with probability \(\frac{(i-1)}{i+1} \), and \(O(i) \) time with probability \(\frac{2}{i+1} \), so the expected work in this stage is \(O(i) \cdot \frac{2}{i+1} = O(1) \).

Hence the total expected time is \(O(n) \).

Expected time

Let \(T_i \) denote the expected time at stage \(i \). Then

\(T_{i-1} \) with probability \(\frac{(i-2)}{i} \) and \(T_{i-1} \) with probability \(\frac{2}{i} \)

\[E(T_i) = \sum_j j \cdot \Pr(T_i = j) = 1 \Pr(T_i = 1) + i \Pr(T_i = i) = 3 \]

Hence the expected total time is

\[E(\sum_i T_i) = \sum_i E(T_i) = 3 = O(n) \]