1. Let P be a simple (but not necessarily convex) polygon with n vertices. Explain how to find a triangulation’s so the sum of squares of the triangles is as small as possible.

2. Let $G(A \cup B, E)$ be a bipartite and let $M^* \subseteq E$ be a maximum-cardinality matching. We suggest the following greedy algorithms for finding a large matching M. We start with $M = \emptyset$, and at each itetions, we find, we find an edge $(u, v) \in E$ where neither u nor v are matched. If no such edge is found, the algorithm terminates. Otherwise, we add (u, v) to M, and repeat.

 (a) show how to implement the algorihtm in $O(m+n)$ time. (hint - similar to the greedy vertex cover algorithm)

 (b) Prove that when the algorithm terminates $M^*/2 \leq M \leq M^*$.

 Hint: recall that M^* exists. Let edges of M be charged for edges of M^* that are deleted.

3. Let $G(A \cup B, E)$ be a bipartite and let $M^* \subseteq E$ be a maximum-cardinality matching. weight graph (each edge $(u, v) \in E$ is given with a weight $w(u, v) > 0$). The maximum weighted bipartite matching is to pick a matching $M^* \subseteq E$ whose sum of weights is as larger as possible. Show that a variant the algorithm from the previous question would give a factor $1/2$ approximation. That is, it will find a matching M such that

 $$w(M) \leq 2w(M^*)$$

where $w(M)$ is the sum of weights of edges in M.

4. Let X, Y, Z be the sequences of characters (E.g. $X = "aaabcadex"$). Assume $n = |X| = |Y| = |Z|$. Suggest an algorithm that computes a longest sequence W such that W is a subsequence of X, subsequence of Y and a subsequence of Z. What is the running time of the algorithm? What is the space (memory) requirement? Will you change your answer is instead of seeking W, we just want to know $|W|$?

 What would be the running time, as a function of both m and n, if the input contains $m > 3$ sequences (rather than 3)?

5. Let $P = \{p_1 \ldots p_n\}, Q = \{q_1 \ldots q_n\}$ be given n-gons, and let k be a given value. Explain how to find $DTW(P, Q)$ in $O(nk)$ time, if it is known that for every i, when the person is on p_i, the dogs could be only on one of the vertices

 $$\{q_{i-k}, q_{i-k+1}, \ldots q_{i+k}\}$$

That is, on a vertex of Q between q_{i-k} and q_{i+k}.

6. Let X, Y be two given sequences of n characters each. Let t be your lucky number. We say that X is similar to Y iff $ed(X, Y) \leq t$.

 Here we assume that each operation (insert/delete/replace) cost 1 unit.
So given X, Y suggest an $O(tn)$ time algorithm that either reports that X and Y are not similar, or if they are similar, compute what is exactly $ed(X,Y)$.

Hint: Use the previous question.

7. Let X,Y be two given sequences, each of length n. Suggest an $O(nk)$ algorithm for computing $ed(X,Y)$. Here $k = ed(X,Y)$ and is not known to you in advance.

Hint: Use the previous question.