The following solutions for Homework 2 are sketches, meant to convey the ideas behind the solutions to the problems, but may not exhaustively cover all details of a complete solution.

(1) **(Longest suffix-prefix overlaps)** Suppose we have a collection of \(k \) strings \(S = \{S^{(1)}, S^{(2)}, \ldots, S^{(k)}\} \). For an ordered pair of strings \((A, B)\), their **suffix-prefix overlap** is the longest exact match between a suffix of \(A \) and a prefix of \(B \). For each string \(S^{(i)} \) in \(S \), we would like to know the longest suffix-prefix overlap \((S^{(i)}, S^{(j)})\) that \(S^{(i)} \) has over all other strings \(S^{(j)} \), and similarly the longest overlap \((S^{(j)}, S^{(i)})\) that \(S^{(i)} \) has over all other strings \(S^{(j)} \). Note that for \(k \) strings, this is \(2k \) pieces of information: two longest overlaps for each string \(S^{(i)} \).

Given a collection \(S \) of \(k \) strings of total length \(n \), design an algorithm that determines these longest suffix-prefix overlaps for all \(k \) strings in \(O(n \log n) \) time. Argue why your algorithm is correct.

Solution sketch Form the concatenated string

\[
S^* := S^{(1)} ∈ S^{(2)} ∈ \cdots ∈ S^{(k)},
\]

where \(∈ \) is a symbol not in the alphabet of the input strings. Construct the suffix array \(A \) for \(S^* \), the inverse \(B \) of the suffix array, and the height array \(H \).

Consider a given string \(S^{(i)} \), for which we wish to compute its longest suffix that overlaps with another string \(S^{(j)} \). For each position \(p \) within \(S^{(i)} \) in \(S^* \), find the location of position \(p \) in \(A \) (using the inverse array \(B \)). Suppose \(p \) occurs at index \(i \) in \(A \). Let arrays \(L[1 : n] \) and \(R[1 : n] \) be defined as follows:

- \(L[i] \) is the index in \(A \) of the closest start position of some \(S^{(j)} \) that occurs to the left of index \(i \), and similarly
- \(R[i] \) is the index of the closest start position of some \(S^{(j)} \) that occurs to the right of \(i \).

Take the minimum of the height array \(H \) over the two intervals \([L[i], i) \) and \([i, R[i))\), which gives the longest common prefix length between this suffix of \(S^{(i)} \) and a prefix of any string \(S^{(j)} \) falling to the left or right in \(A \), and hold onto the larger of these two minima. If the larger minimum has length at least \(|S^{(i)}| - p + 1 \), then this longest common prefix match extends all the way to the end of string \(S^{(i)} \), and hence is a match with a suffix of \(S^{(i)} \). Record the position \(p \) in \(S^{(i)} \) which gave the longest such length.

In the above process, if index \(L[i] \) happens to hold the start position of string \(S^{(i)} \), then instead use index \(L[L[i]] \). Similarly if \(R[i] \) corresponds to \(S^{(i)} \), then use \(R[R[i]] \). This is to guarantee that we are finding the longest overlap with a string \(S^{(j)} \) that is not \(S^{(i)} \).

This procedure finds the longest suffix-prefix overlap for every string \(S^{(i)} \). To find the longest prefix-suffix overlap for every \(S^{(i)} \), simply reverse all the input strings and repeat the above procedure.

In the above, arrays \(L \) and \(R \) can be precomputed in a preprocessing step by respectively doing a right-to-left and left-to-right scan of the suffix array \(A \).

To analyze the running time, precomputing arrays \(A, B, H, L, \) and \(R \) takes total time \(O(n) \), where \(n \) is the length of \(S^* \). Computing the two minima of \(H \) for every
position p takes total time $O(n \log n)$ using an efficient data structure for interval-minimum queries. So the entire algorithm takes $O(n \log n)$ time.

(2) (Minimum cover) Given strings A and B, a minimum cover of A by B is a decomposition $A = w_1w_2 \cdots w_k$ where each w_i is a substring of B and k is minimum.

Design an algorithm that computes a minimum cover (if one exists) of strings A and B of lengths m and n in $O((m + n) \log(m + n))$ time. Argue why your algorithm is correct.

Algorithm Given input strings $X[1 : m]$ and $Y[1 : n]$, start with $j := 1$, $i := 0$, and while $j \leq m$, do the following:

(a) Find the longest prefix x of $X[j : m]$ that is a substring of Y.
(b) Set $i := 1$ and $w_i := x$.
(c) Advance $j := |w_i|$.

Set $k := i$, and output w_1, w_2, \ldots, w_k.

Finding longest prefixes We answer the longest prefix queries in Step (a) as follows.

Form string $S := X♯Y$, where ♯ is a character not in the alphabet of X and Y, and construct the suffix array A and height array H for S.

Suppose suffix X_j occurs at position \tilde{k} in S and index k in A. Identify the closest indices $\ell < k$ to the left and $r > k$ to the right that correspond to positions in Y. By the same reasoning as in the Longest Common Substring Problem,

$$h := \max \{ \text{lcp}(S_A[\ell], S_A[k]), \text{lcp}(S_A[r], S_A[k]) \},$$

is the length of the longest substring that is a prefix of X_j and is common to Y. We can obtain these two lcp values from

$$\min_{\ell \leq i < k} \{ H[i] \}, \min_{k < i \leq r} \{ H[i] \}.$$

For the preprocessing, we compute arrays A and H, the inverse suffix array B for mapping \tilde{k} to k, and two arrays L and R such that $L[k] = \ell$ and $R[k] = r$. Arrays L and R can each be filled in by a linear scan of A in opposite directions. This preprocessing takes $\Theta(m + n)$ time.

To answer the query for X_j, we obtain k, ℓ, r using B, L, R, and then find h by computing two interval minima of H. Since the intervals $[\ell, k]$ and $[k, r]$ are effectively fixed for all k, we can precompute and tabulate these minima for all queries when filling in L and R without increasing the preprocessing time, after which we can lookup the value of h from an additional array in $O(1)$ time for any X_j. This answers the longest prefix query for X_j in $O(1)$ total time.

Analysis of cover algorithm Using this solution for finding the longest prefix of X_j in Step (a) of the prior procedure for Minimum Cover, it finds the decomposition $w_1w_2 \cdots w_k$ in $O(m + n)$ preprocessing time and $\Theta(k)$ time for the k iterations of the while loop, for a total of $\Theta(m + n)$ time.

Correctness of cover algorithm We prove correctness of the prior greedy procedure for Minimum Cover using the following lemma.
Lemma 1 Suppose $w_1 w_2 \cdots w_i$ is a prefix of an optimal cover for strings X, Y. Let \bar{w}_{i+1} be the next substring chosen by the greedy procedure. Then $w_1 w_2 \cdots w_i \bar{w}_{i+1}$ is also a prefix of an optimal cover for X, Y.

Proof Let $w_1 \cdots w_i w_{i+1}^* \cdots w_k^*$ be an optimal cover for X, Y. Suppose $w_{i+1}^* \neq \bar{w}_{i+1}$. Since the greedy procedure always chooses a longest prefix, $|w_{i+1}^*| < |\bar{w}_{i+1}|$.

Let w_j^* be the substring where \bar{w}_{i+1} ends in the optimal cover, and \bar{w}_j be the remaining suffix of w_j^* following \bar{w}_{i+1}. Then

$$w_1 \cdots w_i \bar{w}_{i+1} \bar{w}_j w_{j+1}^* \cdots w_k^*$$

is a cover of X by Y that uses no more substrings, so it is an optimal cover as well. Moreover, it has prefix $w_1 \cdots w_i \bar{w}_{i+1}$. \qed

Theorem 1 The greedy procedure for Minimum Cover is correct.

Proof Immediate from the lemma using induction on k. \qed