Programming Techniques
Using Character Sets
and Character Mappings in Icon¥*

Ralph E. Griswold

TR 78-15

October 13, 1978
Department of Computer Science
The University of Arizona

*This work was supported by the National Science Foundation under
Grant MCS75-01307.

Programming Techniques Using Character Sets
and Character Mappings in Icon*

Ralph E. Griswold
Department of Computer Science

The University of Arizona

1. Introduction

The character set and character mapping facilities in Icon,
used in conjunction with its string-processing facilities, sup-
port a number of unusual programming techniques that can be used
to advantage in a variety of nonnumerical programming problems.

This paper descibes the features that are important to these
techniques and characterizes their usage. Examples are given to
illustrate the major paradigms. A familiarity with Icon [1] is
assumed. This paper uses Icon constructs freely, supplementing
them with additional notation as required. '

2. Character Sets

There are a variety of character sets in use on different
kinds of computers. They differ in size, in the relationship
between the internal representations of characters to control
functions and external graphics, and ‘(hence) in collating se-
quence. The most commonly used character sets are ASCII [2},
EBCDIC [3]), and various forms of BCD [4]. Internally, a charac-
ter is simply an integer in the range from 0 to one less than the
size of the character set. Thus in ASCII, there are 128 charac-
ters with internal representations from 0 to 127 (decimal), in-
clusive. Although graphic representations, control functions,
and collating sequence are all significant in some applications,
the size of the character set is of the most significance in the
techniques described in this paper.

Most of the programming techniques described in this paper
depend on the use of characters within a program, rather than
their input or output. Icon uses the ASCII character set, trans-
lating at the program interface between the host character set
and the internal one. Thus, regardless of the host character
set, whether it be ASCII, EBCDIC, BCD, or any other, there are
128 distinct characters available for use in Icon programs. The
value of the keyword &ascii is a string consisting of the 128
ASCII characters in collating sequence. Although Icon uses
ASCII, the techniques described in this paper are not dependent
on that fact. Consequently, the identifier alpha is used as a
variable whose value is the string of all available characters,
arranged in collating sequence. That is, in Icon

alpha := &ascii

*This work was supported by the National Science Foundation under
Grant MCS75-01307.

Icon supports a character set type, called cset for short.
Csets are sets that contain characters from alpha. Thus in Icon
csets may have from 0 to 128 members.

Csets are constructed from strings using a built-in function
cset(s), which produces a cset consisting of the characters in
the string s. While a string may contain duplicate characters, a
csets cannot, of course. Similarly, the order of characters in s
is irrelevant to the resulting cset. Thus

cset ("armada")
cset ("ramada")
cset("drama")
cset ("dram")

all produce equivalent csets.

Historical Note: The concept of character set is latent in SNO-
BOL4 [5] and related languages. Although there is no character
set type in SNOBOL4, typical implementations of SNOBOL4 deal with
various representations of character sets [6,7] in order to sup-
port lexical analysis functions such as SPAN(S) and BREAK(S).

The emergence of characters sets in Icon is a linguistic eleva-
tion of an implementation mechanism to full status as a source-
language feature. The consequences of this elevation exceed the
mechanisms for which they were originally developed, however.

Aside from type conversions, there is only one operation de-
fined on csets, ~c¢, which produces a cset that is the complement
of ¢ with respect to alpha.

The creation of a cset from a string may be considered to be
type conversion. Conversely, a cset may be converted to a string
using the built-in function string(c). 1In this operation, the
resulting string is alphabetized, that is, the characters of c
are placed in the string according to their relative p051t10n in
the collating sequence of ASCII.

As a consequence of the properties of these conversions, the
result of

So9 := string(cset(sy))
is a string sy which contains every distinct character of s)
arranged in alphabetical order. This feature can be used to
advantage, as is described in later sections.

Icon also supports implicit type conversions, coercing argu-

ments to expected types. For example, s} || s is the concatena-
tion of strings sy and s». Similarly, if c] and c3 are csets,
€1 [l c2 produces a string that is the concatenation of the re-

sults of converting ¢} and ¢ to strings.

Using concatenation, type conversion, and complementation, the
usual set operations of union, intersection, and difference fol-
low naturally:

procedure union(cy,cp) # union of c¢] and c3
return cset(cy || c3)
end

procedure inter(cjy,cp) # intersection of c1 and c3
return “(cy || “c¢2)
end

procedure differ(c),cp) # difference of cj and c¢3
return “(“cy || c93)
end

Note: While these operations are not presently part of the Icon
repertoire of built-in functions, they are certainly candidates
for inclusion, since they are frequently useful (see examples
that follow). Furthermore, these operations can be implemented
efficiently if they are built in, while the procedures above
involve unnecessary and expensive operations of concatenation and
type conversion. See Section 6.1, which describes the implement-
ation of csets.

3. Character Mappings

Icon has an apparently innocuous built-in function for mapping
the characters in string, map(sj;,sp,s3). This function produces
a result in which every character of s; that appears in sj is
replaced by the corresponding character in s3. For example, the
result of

map("retroactive" ,"aeiou” ,"----- ")

is "r-tr--ct-v-". Different characters can also be mapped dif- .
ferently. The result of

map("retroactive","aeiou" ,"AEIOU")
is "rEtrOActIvE".
Note: The function map in Icon is virtually identical to the
function REPLACE in SNOBOL4, the difference being in the handling
of the case in which the lengths of sy and s3 are different. 1In
Icon, this is an error, while in SNOBOL4, it causes failure of
the evaluation of the function.

3.1 Properties of Character Mappings

The description of the map function given above is a superfi-
cial one. 1In order to use the full capabilities of this func-
tion, it is necessary to be more precise about the operation and
its consequences. In the discussion that follows, the form of
the call is

sS4 := map(s1,s2,S3)

1. The length of s4 is the same as the length of s;, regardless
of the values of s; and s3. 1In Icon terms, this is stated as

size(s4) = size(s))

To remain in the domain of Icon as much as possible, this termi-
nology is used subsequently.

I1f the notation alvhah is used for the set of all strings of
length n that are composed of characters in alpha, then in gener-
al the result of the operation is a many-to-one mapping of
alphasize(S}l) into itself.

2. The relative order of characters of sy and s3 is significant,
since it establishes the correspondence used in the mapping.
Thus the two expressions

map(51 ,"aeiou" , "AEIUO")
map(sj,"uoiea","UOIEA")

produce the same result, but the two expressions

map(sy,"aeiou","AEIOU") (1)
map(sj,"uoiea","AEIOU") (2)

produce quite different results, in general.

As an aid to visualization, the correspondences between char-
acters in s and s3 are shown as maps indicating the correspon-
dences between individual characters directly. The map for
expression (1) is

pae
@]
ol

52 a e

s3 A E I 0 U

Expression (2) has the map

S92 u o} i e a

53 - A E I 0 U

Note that only the relative order is important. Thus the map

pete
o]
c

82 a e

s3 U) I E A

is equivalent to the previous map. The expression

map(sj,"aeiou","UOIEA")
is also equivalent to expression (2).
3. As illustrated in the first example in this section, s3 may
contain duplicate characters. This results in a mapping that is

illustrated as follows

=P a e i o u

S3 -

4. Duplicate characters in sy are permitted. 1In this case the
last (rightmost) correspondence with s3 holds. For example, the
map for

map(sj),"aeioua","AEIOU-")

is

S e i o u a
| | | | |
v v \{ \{ \{

S3 E I o U -

It is convenient for the purposes of discussion to deal with the
reduced forms of s; and s3, in which there are no duplicate char-
acters in sp. 1In addition, it is convenient to deal with
canonical forms in which s; is in reduced form and in alphabeti-
cal order and s3 is rearranged accordingly. The expression above
in canonical form is

map(s;,"aeiou","-EIOU")

The symbols 85 and 83 are used for the canonical forms of sj and
s3, respectively. See the end of Section 3.4 for a method of
computing canonical forms.

In programming use, it is often convenient or more efficient
to use values of sy and s3j that are not canonical or even re-
duced. The map function can be thought of as performing the
necessary canonicalization. :

5. Characters of s3 that do not occur in sy appear unchanged in
their respective positions in s4. The map function can be
thought of as setting up automatic correspondences with such
characters with themselves, but such detail is cumbersome and is
omitted from maps shown in this paper. It is worth noting that

map(s),s2,s3)
and

map(sj,alpha || sz,alpha || s3)
are equivalent,

6. s3, sz, and s3 may be of any size, althouah the sizes of sy
and s3 must be the same, and size(57) size(S83) <= size(alpha).
Furthermore, as noted above, size(sy) size(s1).

3.2 Substitutions

The use of map(sj,sjy,s3) in which s2 and s3 are fixed and s}
varies is called a substitution for sj,

As a consequence of the properties listed in Section 3.1, the
following condition holds:

Substitution Inverse Condition: For fixed s and s3 and varying
S1, the substitution

S4 := map(sj},s3,S83)

has an inverse if and only if 83 is equal to pi(8j) for some
permutation pi. An inverse is

S1 := map(s4,83,87)

The classical use for this kind of mapping occurs in cryptog-
raphy. Substitution ciphers, which by definition must have in-
verses, aré used to substitute for characters of a message. The
form of substitution given above is directly applicable to
monoliteral substitutions. See Reference 8 for an extended dis-
cussion and for programming technigues in SNOBOL4 that can be
directly employed in Icon.

3.3. Permutations

The map function was originally designed to perform substitu-
tions and its use for this purpose is obvious. It use to effect
permutations (rearrangements) is less obvious.

A simple example illustrates the technique. Suppose that the
order of the characters of a string is to be reversed end-for-

end. As a specific case, suppose size(s3) = 6. Then
S 1= "123456"
S) := "654321"
S4 1= map(s1,s2,83)

produces the desired result. 1In this expression, the mapping
between s and s3 depends on the particular characters in s3. 1If
s3 consists of characters cjcjycicycscg, then the map is

S2 1 2 3 4 5 6

S3 cy cp c3 c4 Cs C6

The desired permutation is accomplished since the characters of
S] are mapped through sj, by relative position, into those of s3,
as illustrated by the following diagram. ’

s1 6 5 4 3 2 1

52 1 2 3 4 5 6

53 €1 c2 €3 C4 C5 Cé

Sq Cg cs c4 c3 c2 c1

Historical Note: The use of character mapping to effect string
reversal was first called to the author's attention in a private
communication from Morris Seigel [9], who noted the technique is
a use of the IBM 360 translate instruction [10]. This specific
use was mentioned in the second edition of the SNOBOL4 program-
ming language manual [5]. Jim Gimpel subsequently generalized
the technique, which is described in Reference 11. A more exten-
sive, but less formal presentation is given in Reference 8.

From the example above, it is clear that the technique can be
used to perform any permutation, provided s3 is not longer than
size (alpha). Specifically:

Permutation Property: 1If pi is a permutation on a string of size
n <= size(alpha) and s is a string of n distinct characters,
then the result of

s4 := map(pi(s32),s2,s53)
is s4 = pi(s3). Furthermore, an inverse to the permutation is
s3 := map(s2,pi(s2),s4)

Note that for constant values s and pi(sp), the first expression
above applies the permutation pi to all strings s3 of size n.

An application of fixed permutations applied to a set of
strings occurs again in classical cryptography, where various
transposition ciphers (route transposition, columnar transposi-
tion, and so forth) can all be seen as instances of this paradigm
(8] .

“3.4. Positional Transformations

Permutations are a restricted case of more general positional
transformations [11]). A positional transformation rho(s) of a
string s 1s a rearrangement of the charcters of s in which

(1) Any character in a specific position in s may appear in
zero or more fixed positions in rho(s).

(2) Additional constant characters, independent of the char-
acters in s may appear in rho(s) at other fixed positions. These
characters are called nulls, :

For example, (abc) (cba) is a positional transformation of abc.
The same positional transformation applied to xxy produces
(xxy) (yxx). In this example, the parentheses are nulls.

Positional Transformation Property: If rho(s) is a positional
transformation, then the result of

s4 := map(rho(sjy),s3,s3)
is s4 := rho(sj).

Obviously not all positional transformations have inverses.
For example

s4 := map("f1","f111111",s3)

produces a two-character string consisting of the first and last
characters of a seven-character string sj.

One form of positional transformation that always has an in-
verse is the permutation, as described in Section 3.3. The class
of positional transformations with inverses is more general,
however.

Positional Transformation Inverse Property: Given a positional
transformation rho, the mapping

S4 := map(rho(sjy),s2,s3)
has an inverse if and only if
(1) All the characters in sy are distinct.
(2) All characters in s appear at least once in rho(sjy).

If these conditions hold, the inverse is

83 := map(s2,rho(sy),sy)

In the first place, if there is a duplicate character in sj,
only the last correspondence with s3 will hold, and a character
of s3 will be deleted in the transformation and hence cannot be
restored, in general, by any mapping.

Similarly, it is easy to see that if rho(s)) does not contain
. some character in s2, then the corresponding character in s3 will
not appear in s4 and hence cannot be restored by any mapping. It
remains to show that characters of s, can occur more than once in

rho(sy) and that nulls in rho(sy) do not affect the inverse map-
ping. '

Consider a positional transformation in which a character of
S2 is duplicated.

S3: C]C2...Cn
rho(sy): Cl1C2...CpnC]
S3: djda...dn

Then the map has the form

82 Cl C2 . . . Cn

S3 dy dr . o . dp
and s4 is clearly djdj...dpd;. When the inverse transformation
is applied, rho(sp) and s4 stand in the correspondence

rho(sj): c1 (o) .« o . Cn c1

Cl C2 . . . Cn
| I . . . I
v ¢ . . L] v
dl d2 . . . dn

which is clearly an inverse to the original map. That is, dupli-
cate characters of s2 in rho(s3) always stand in the same corre-

spondence to characters of s3. Furthermore, this applies to any

rearrangement or duplication of ¢y, ¢c9, ..., ¢cp in rho(sy), since
duplicate characters always produce identical correspondences.

Consider next the case in which the positional transformation
contains a null xj;. For simplicity, suppose rho(sj) has the form

rho(sy): C1C2...CnX}]
Then s4 will have the form
S4: dyda...dnx1

and in the inverse transformation the following correspondences
hold:

rho(sy): c1 c2 « . e Cn X1

Since by definition xj; does not occur in sj3, it will not appear
in the result.

It is easy to show that the same situation exists for other
nulls and that their location in rho(sj) is irrelevant.

Note: The canonical forms in the substitution paradigm can be
obtained as follows:

§9 := string(cset(sy))
§3 := map(sy,s2,83)

This mapping is the inverse of the positional transformation that
maps S5 into sj.

Positional transformations with inverses appear in classical
transposition ciphers, such as grilles [8], in which null charac-
ters are added to the cipher to obscure the transposed message.
It is interesteing to note, as well, that message characters can
be duplicated in the cipher without interfering with the inverse
deciphering process.

4. Applications and Examples

As mentioned above, many of the models for substitution and
positional transformation are found in classical enciphering
techniques. While there are no longer many practical applica-
tions of classical enciphering techniques, there are a number of
related applications that are of interest. The examples that
follow illustrate techniques that many be useful in such cases.

For brevity, program solutions are stripped down to their
essentials. Tests for the validity of arguments and so forth are
deliberately omitted; these amcnities easily can be added if
desired.

10

4.1 Substitutions

Example 1: Case Folding

One of the common uses for substitution is to establish equiv-
alences between characters by mapping one set into anothecr. For
example, it is often convenient to consider upper- and lower-case
letters to be equivalent. Instances of this situation arise in
command processors that are insensitive to case. To simplify
processing, therefore, the input is "folded" into a single case.
The following procedure maps upper-case letters into lower-case
ones using the Icon keywords for these values:

procedure fold(s)
return map(s,&ucase,&lcase)
end

Example 2: Bit String Operations

Bit strings can be simulated by character strings composed of
zeroes and ones. The logical negation operation is then simply

procedure not (b)
return map(b,"01","10")
end

The logical operations of "or", "“and", and "exclusive or" can be
performed by adding bit strings as integers and making appropri-
ate substitutions:

procedure or (bl,b2)
return map(bl+b2,"2","1")
end

procedure and(bl,b2)
return map(bl+b2,"12","01")
end

procedure exor (bl,b2)
return map(bl+b2,"2","0")
end

Note: 1In general it is necessary to perform symbolic addition,
since bits strings of any reasonable size are too large to repre-
sent as integers on most computers. Furthermore, bit strings are
usually considered to be of fixed length with leading zeroes as
necessary. Therefore the expression bl+b2 above should be re-
placed by sum(bl,b2), where sum is a procedure that handles these
problems.

Example 3: Displaying Card Decks

A related application of substitution is illustrated by the
problem of manipulating and displaying a deck of cards. Here a
standard deck of playing cards can be represented by 52 distinct
characters. Although any 52 distinct characters can be used, it
is convenient to use the upper- and lower-case letters, since

11

their graphic representations facilitate program development and
debugging. Therefore

deck := deckimage := &ucase || &lcase

provides a "fresh" deck. The identifier deckimage is retained as
a labeling of the cards, while deck may, for example, be shuf-
fled. Since individual characters are used to represent the
cards, shuffling can be done easily by character exchanges [12]:

procedure shuffle(deck) local m
every m := size(deck) to 2 by -1 do
deck[random(m)] :=: deck[m]
return deck
end

In order to display a shuffled deck, it is necessary to determine
the suit and denomination of each card. Again, this can be done
by a substitution in which the first 13 characters of deckimage
are mapped into the character C (for clubs), the second 13 into D
(for diamonds), and so on. The third argument to map in this
case is

suits := repl("C",13) || repl("D",13) || repl("H",13)
|| repl("s",13)

Similarly, the denominations can be identified by associating the
first character of each 1l3-character group of deckimage with A
(for ace), the second character in each group by 2, and so on.
The third argument of map in this case is

denoms := repl("A23456789TJQK",4)

A simple display of a deck of cards is then provided by the fol-
lowing procedure

procedure display(deck)
global deckimage,suits,denoms
write(map(deck,deckimage,suits))
write(map(deck,deckimage,denoms))
return

end

This procedure displays the deck with the suits on the first line
and the denominations directly below. For example, if the shuf-
fled deck begins with the 3 of clubs, the ace of hearts, and the
8 of spades, and so on, the display has the following form:

CHS * e @
3A8 e 0 0

A refinement to this display is given in Section 4.2,

12

Example 4: Masking Characters

In order to isolate characters of interest from those that are
not of interest, it is useful to map all uninteresting characters
into a single "null" that is not in the set of interest. The
following procedure substitutes the character s3 for all charac-
ters in sl that are not contained in s2.

procedure mask(sl,s2,s3)
return map(sl,~s2,repl(s3,size("s2)))
end
For example,
mask ("Watch for spooks","aeiou","-")

produces -a----- 0----00-- .

An alternate form of coding that uses duplicate characters
rather than character-set complementation is

procedure mask(sl,s2,s3)
return map(sl,alpha || s2,repl(s3,size(alpha)) || s2)
end

Here a correspondence between each character of alpha and s3 is
first established and then the correspondences of characters in
s2 with themselves are appended to override their correspondences
with s3.

Example 5: Extracting and Displaying Suits

In card games like bridge, it is customary to sort hands into
suits and to order the suits by denomination. All the cards in
the same suit can be extracted by substituting some null for all
characters that are not in the desired suit. Standard templates
for the suits can be set up as follows:

blanker := repl(" ",13)

denom := substr(&lcase,13)

clubs := denom || repl(blanker,3)

diamonds := blanker || denom || repl{(blanker,2)
hearts := repl(blanker,2) || denom || blanker
spades := repl(blanker,3) || denom

The mapping to get the clubs, for example, is

suit := map(hand,deckimage,clubs)
The identifier denom is used to associate the cards of each suit
with the same denominations, regardless of suit. For example,
the 2 of clubs and the 2 of hearts are both mapped into b. 1In
each case, all characters that do not correspond to a given suit
are mapped into a blank. Note that it is essential to select a
null that is not among the characters used to represent the
cards.

13

If the suit above is converted to a cset and back to a string,
the result is an (alphabetized) version of the suit with a single
instance of the null. A further substitution can be performed to
get the corect visual representation of each card:

map(cset(suit) ,denom,"AKQJT98765432")

I1f the hand contains the ace, queen, ten, and two of clubs, the
result would be AQT2.

Note that the null used here is "invisible" in printed output,
although is it actually the first character in the string pro-
duced above (for the ASCII collating sequence). It can be re-
moved, if desired, by performing the following operation instead:

map(differ(suit," "),denom,"AKQJTI98765432")
Note that in any case the final mapping to get the desired visual
representation is done after the formation of the cset, since the
visual representations are not in alphabetical order according to
rank.

Other Applications

A number of other interesting uses of substitution are given
in Reference 11. Two are the translation of Roman numeral to a
higher "octave" in the conversion of Arabic numerals, and the use
of ten's-complement arithmetic to effect symbolic subtraction by
addition.

4.2 Positional Transformations

Example 6: Reversal

The reversal of the order of characters in a string, as de-
scribed in Section 3.3, is not of interest in itself, since there
is a built-in function in Icon for performing this operation.

The solution of the problem, however, serves as a model for a
number of other positional transformations.,

The approach is to provide, by conventional means, general
templates for the transformation. The second argument of map
serves as a labeling for the third argument, while the first
argument is the desired permutation. The terms image and object
are used to refer to these two strings, respectively. For re-
verse, a possible image, object, and corresponding template size
are

revimage := "abcdefghijklmnopgrstuvwxyz"
revobjct := "zyxwvutsrgponmlkjihgfedcba"
revsize := size(revimage)

and the procedure is
procedure reverse(s)
global revimage,revobjct,revsize

if size(s) <= revsize then
return map(

14

section(revobijct,-size(s)),
section (revimage,size(s)),
s

)

else

return reverse(section(s,revsize+l))

| | map(revobjct,revimage,substr(s,l,revsize))
end

If s is not longer than the image template, the reversal is done
in one mapping. 1In this case, specific templates of the correct
length are selected from the general ones. Note that the first
part of revimage is used, while the last part of revobjct is
used. If s is too long, it is divided into two portions. One
portion is reversed by a recursive call, while the other is re-
versed using the full templates. This process can also be done
iteratively at the expense of some complication of the code.

Note that the templates can be chosen in any convenient fash-
ion, as long as revobjct is the reversal of revimage. For maxi-
mum efficiency in reversing long strings, the templates should be
as long as possible: alpha and its reversal. These strings can
be formed by conventional means:

revimiage := ""
every ¢ := l!alpha do
revimage := ¢ || revimage

In fact, these strings can be obtained by bootstrapping:

revimage := "ab"

revobjct := "ba"

revobjct := reverse(alpha)
revimage := alpha

This technigue had the advantage of using the most elementary
characterization of the positional transformation as well as
avoiding possible errors in constructing the two long strings by
conventional methods.

It is reasonable to question the use of map to effect this
permutation, since it can be more easily coded by conventional
techniques. One method is simply to concatenate successive char-
acters in reverse order. The most compact code for this method
is

procedure reverse(s) local t
every t := !s || t
return t

end

Both this method and the mapping method are approximately time
linear in size(s) if secondary effects such as storage management
anomalies are ignored. The conventional method is clearly lin-
ear. The map function itself is time linear in the sizes of its
first and second argquments (see Section 6.2). In the procedure
above, these two sizes are the same. Hence the mapping method is

15

also time linear in size(s). The interesting fact is that the
(measured) constant of proportionality for the iterative method
is nearly 3.5 times that of the mapping method. Furthermore, the
cross-over point is at two characters! That is, the two methods
take about the same amount of time for two-character strings, and
the relative performance of the mapping method improves rapidly
thereafter. Although the space requirements in terms of tran-
sient strorage are dependent on the details of internal storage
management, the mapping method has the clear advantage of creat-
ing fewer transient strings. Part of the cost of transient allo-
cation is shown in the relative constants of proportionality, but
part is deferred in the form of garbage collection that may occur
at unpredictable times to the detriment of the conventional meth-
od. These remarks apply in general to the relative efficiency of
effecting positional transformations by conventional means versus
mapping.

Example 7: Character Exchange

A positional transformation that is similar to reversal is the
exchange of adjacent characters in a string, For example, ABCDEF
becomes BADCFE. The model for the solution to this problem is
the same as reversal: an image to label the string to be trans-
formed and an object that is the desired transformation of the
labels. Suitable values are

ximage := "abcdefghijklmnopgrstuvwxyz"
xobjct := "badcfehgjilknmporgtsvexwzy"
Xsize := size(ximage)

The procedure is virtually identical to the one for reversal, the
difference being in the method for selection of the appropriate
parts of the templates and the order of concatenation if the
string is too long to be processed in one map:

procedure xchar (s)
global ximage,xobjct,xsize
if size(s) <= xsize then
return map(
substr (xobjct,1,size(s)),
substr (ximage,1,size(s)),
s
)
else
return map(xobjct,ximage,substr(s,1l,xsize))
|| xchar(section(s,xsize+l))
end

As with reversal, longer images and object provide more efficien-
cy for processing long strings.

This example is included to illustrate an important aspect of
this kind of positional transformation: the object must be a
permutation of the image. 1In this case, this is only true if s
is of even length. Suppose, for example, that the value of s is
ABCDE. The map produced by the procedure above is

map("badcf","abcde","ABCDE")

16

Since the first argument contains a character, f, that does not
appear in the second arqument, this character is not changed by
the mapping and appears in the result, which is BADCf, the last
character being spurious. The procedure above only produces
meaningful results for strings of even length. Of course, the
exchange operation is not well defined for strings of odd length,
~which is the essential source of the problem. It is easy to add
a check or modification to handle strings of odd length, but the
problem is a general one and must be taken into account when
performing positional transformations.

Example 8: Decollation

Both the positional transformaticns in the preceding examples
are permutations. An example of a positional transformation that
is not a permutation is decollation, the selection of every other
character of a string. For example, to get the even characters,
the following values can be used:

decimage := "-a-b-c-d-e-f-g-h-i-j-k-1l-m-n-o-p-g-r-s-t-u-v-w-x-y-z"
decobjct := "abcdefghijklmnopgrst"
decsize = size (decimage)

with the procedure

procedure decollate(s)
global decimage,decobjct,decsize
if size(s) <= decsize then
return map(
substr (decobjct,1,size(s)/2),
substr (decimage,l,size(s)),
s
)
else
return map(
map (decobjct,decimage,substr (s,1,decsize))
|| decollate(section(s,decsize+l))

)

end

Here only the even-numbered characters in the image have corre-
spondences in the object and hence the result is the even-
numbered characters in s. Any characters can be used as nulls in
the image, provided that they are not the same as any of the
labels for the even-numbered characters.

The odd-numbered characters can be selected by using the
values above, but with a slightly modified image:

"a-b-c-d-e-f-g-h-i~j-k-l-m-n-o-p-g-r-s-t-u-v-w-x-y-z"

Since this value is just a one-character offset of the one above,
the two operations can be combined into a single procedure decol-
late(s,n), where n is an inteqger whose parity, odd or even,
determines whether the odd- or even-numbered characters are se-
lected. A general-purpose procedure for decollation is

17

procedure decollate(s,n) local length
length := size(s)
n := mod(n,2)
if length+n <= decsize then
return map(
substr (decobjct,1, (length+n)/2),
substr (decimage,n+l,1length),
S
)
else
map (
substr (decobjct,1, (decsize-2)/2),
substr (decimage,n+l,decsize-2),
substr (s,1,decsize-2)
) || decollate(section(s,decsize-1) ,n)
end

The decollation of a smaller size than usual in the second
section of the procedure allows for the fact that if n is odd,
the substring of decimage starts at the second character. The
choice of decsize-2 allows both parts of the decollation to oper-
ate on strings of even length, assuming s is of even length. An
examination of this procedure will reveal that it operates cor-
rectly for strings of odd length. 1If s were split at decsize-1,
however, the parity would have.to be reversed for the second
part.

Example 9: Collation

Strings can be collated as well as decollated by mapping.
Since there are two strings specified in the collation process,
it is useful to have two corresponding images, one to label each
of the strings to be collated. The object is then the collation
of these two images:

colimagel := "abcdefghijklm"

colimage?2 "noparstuvwxyz"

colobject := "anbocpdgerfsgthuivjwkxlymz"
colsize := size(colimagel)

i n u

A collation procedure is

procedure collate(sl,s2)
global colimagel,colimage2,colobject,colsize
if size(s) <= colsize then
return map(
substr (colobject,1,2*size(s))
substr (colimagel,l,size(s)) |
sl || s2
)
else
return map(
colobject,
colimagel || colimage2,
substr(sl,1,colsize) || substr(s2,1,colsize)
) |] collate(section(sl,colsize+l) ,section(s2,colsize+l))

14
| substr(colimage2,1,size(s)),

end

18

This procedure assumes that sl and s2 are of the same length. It
is instructive to examine the result when this condition is not
satisfied.

Example 10: Displaying a Card Deck

The display of the deck of cards as done in Example 3 above
produces as unattractive result. A more attractive display is
obtained if the suit and denomination of each card are adjacent
and there are separators (say blanks) between the representation
of each card. Here there are 104 objects to be labeled (52 suit
characters and 52 denomination characters) and some 156 charac-
ters in the result if one separating character is placed after
the representation of each card. While the result can be obtain-
ed with a single map using long image and object strings, for
display purposes it is more reasonable to divide the result into
sections, say four sections of 13 cards each. For this purpose,
suitable image and object strings are

disimage := "ABCDEFGHIJKLMabcdefghijklm"
disobjct := "Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk L1 Mm"

where it is assumed that the upper-case letters label the suits
and the lower-case letters label the denominations. The suit and
denomination strings are then concatenated before mapping. A
procedure is .

procedure display(deck) local i
global disimage,disobjct,deckimage,suits,denoms
every i := 1 to 52 by 13 do
write(
map (
disobjct,
disimage,
map(substr (deck,i,13) ,deckimage,suits)
)

)
end

Example 11: Directed Graphs

While it is customary to represent directed graphs by list structures

or adjacency matrices, they can also be represented by character strings
by associating a distinct character with each node and representing

the arcs as character pairs. For example the graph

has arcs AB, AC, CD, BD, and DD. Represented as a single string,

19

this graph is ABACCDBDDD. (If nodes without connecting arcs are
allowed, a separate node list may be kept.) This representation
is very compact and with the string processing operations of
Icon, many graph operations can be performed economically. For
example, a procedure to compute the number of nodes in a graph is
simply

procedure nodecount (g)
return size(cset(g))
end

Other graph operations are easily performed. For example, a list
of all-nodes that are predecessors of other nodes is produced by

pnodes := string(cset(decollate(g,l)))

Although the representation above is very compact and easy to
manipulate, it is not suitable for display purposes. A position-
al transformation can produce a much more attractive result.
Using an image and object of the form

grimage := "1234567890"
grobjct := "1 -> 2; 3 ->4; 5 ->6; 7 -> 8; 9 -> 0;"

produces a display of the graph above as
A ->B; A->C; C->D; B->D; D->D;

It is an easy matter to generate longer image and object strings and
to write a general-purpose procedure for producing the display.

Translation between various formats for input, output, display, and
internal manipulation are easily derived in this manner.

Example 12: Biliteral Substitution

A classical ciphering technique is biliteral substitution, in which
two characters are substituted for each character of the message.
For example, DZ might be substituted for A, FR for B, and so on.
This substitution is easily seen to be the collation of two

simple substitutions, which can be performed as follows:

procedure bilit(s,image,first,second)
return collate(
map(s,image,first),
map(s,image,second)
)

end

where first and second are the two substitutions for the charac-
ters of image. .

One use of this kind of "cipher" is in obtaining the hexadeci-

mal representation of a character string. For ASCII, the values
are

20

epl ("0",16) || repl("1",16) || repl("2",16) || repl("3",16)
",16) || repl("5",16) || repl("6",16) || repl("7",16)
epl ("0123456789ABCDEF", 8)

"~
2]
T
oo P o6
N~ 1t
Lot -]

For example, the value of
bilit("hello",sascii,hexl,hex2)
is 68656C6C6F.

The use of this technigue to convert character strings to
their bit representations is left as an exercise.

Other Applications

References 8 and 11 provide numerous examples of positional
transformations ranging from the reformatting of dates to the
generation of pig latin.

5. Limitations

The main limitation on the programming techniques described in
this paper are imposed by the limited size of the character set.
In positional transformations, this is usually more of an annoy-
ance than an actual limitation, since most positional transforma-
tions such as the reversal of a long string can be decomposed
into a sequence of shorter transpositions. However, if the scope
of the transpostion requires more labels than there are charac-
ters in the character set, a different technigque has to be used.

The really serious limitation occurs in the use of characters
to represent distinct objects. The representation of a deck of
playing cards in this way works nicely with any commonly used
character set, but that is merely a convenient coincidence. 1In
the case of graphs, this kind of representation clearly limits
the cases that can be handled. Furthermore, since the methods
specifically rely on character operations, there is no way to
extend the techniques if the size of the character set is inade-
guate,

6. Implementation

The techniques used to implement string and cset operations
are only of interest here to the extent that they affect the
efficiency of the programming technigues that have been describ-
ed. See Reference 13 for a description of dynamic storage man-
agement in Icon and the details of data layout.

6.1 Character Sets

Character sets are represented as bit strings, with the bit in
the position of the character in collating sequence set to 1 if
the character is in the character set and set to 0 otherwise.

The amount of space required for a cset depends on the size of
the character set (128 in the case of ASCII), not on the number
of characters it contains. 1In any event, csets require compara-
tively little storage space.

21

The construction of a cset from a string involves processing
the characters of the string in sequence, setting the correspond-
ing bit in the cset. This process is time linear in the size of
the string.

Constructing a string from a cset involves the converse pro-
cess and is also time linear in the number of characters in the
cset.

Complementing a character set is time linear in the number of
characters not in the character set, but is a comparatively fast
operation compared to those that involve accessing characters.

6.2 Mapping

map(sjy,sj,s3) is performed by first building a table of corre-
spondences between the characters of sy and those of s3. This
table contains one entry for each character in the character set
(128 in Icon) and is initialized by having each character corre-
spond to itself. Then the entry for each character is sy is
replaced by the corresponding character in s3, working from left
to right. Thus if there are duplicate characters in sp, the last
(right-most) correspondence results naturally.

Once the table is built, the characters in s; are processed in
sequence and the result is built from the characters obtained by
the entry in the table that corresponds to the character of sj.

The amount of time regquired to build the table of correspon-
dences 1s proportional to the size of s and the amount of time
required to do the actual mapping is proportional to the size of
S]. Thus the total time required for the mapping is approxi-
mately

a*size(s)) + b*size(sy) + ¢

where ¢ is constant overhead including the initialization of the
table of correspondences.

The only storage allocation required for mapping is for the
resulting string. The table of correspondences is static. Fur-
thermore, if map is called successively with the same values of
so and s3, the previous table of correspondences is used without
reinitialization.

7. 'Conclusions

The character set and string processing facilities of Icon
make programming technigues feasible that otherwise would require
data to be represented in different ways. The main advantages of
these techniques are the compactness of the data representations
and the comparative efficiency of the operations.

This efficiency is larqgely obtained by the internalization of
processes that would ordinarily involve loops at the source-
language level. Specific examples of this are identifying dis-
tinct characters and sorting them using cset(s) and positional
transformations of long strings using a single mapping operation.

22

It is interesting to note that csets prove so useful in their
role as sets, despite the limitation on the number of objects
that can be represented. At the same time, csets provide an
economical facility, largely because they are so limited.

There is no inherent reason why the language character set
should be resticted to the character set of the host machine.
Indeed, in the CYBER 175 implementation of Icon, the language
character set is twice the size of the (standard) host character
set. Character sets larger than those normally supported by any
computer could easily be implemented, increasing the scope of the
string processing facilities. ‘

The problem of supporting a language character set that is
different from the host character set is not as difficult as it
might appear. 1In fact, it is an advantage in Icon, especially
for enhancing portability, since the bulk of the system is writ-
ten in machine-independent form and the known collating seguence
of ASCII can be used to advantage (for example, in the lexical
analyzer), whereas if the character set varied according to the
host character set of the target computer, there would be many
complications.

The penalty for a larger character set is primarily in the
space required for representing csets and strings. Doubling the
size of the character set doubles the amount of space required
for storing a cset proper, although there is storage overhead
that is independent of the size of the character set. Similarly,
the larger the character set, the more space is required for each
character of every string. The time for some operations is in-
creased also. The larger size of strings requires more time in
data movement and the number of items that have to be processed
is increased for csets and the correspondences established in
map. :

Such "super character sets" would extend the domain of appli-
cability of the techniques described in this paper. A different,
but perhaps more important advantage lies in the capacity of such
character sets to provide internal representations for larger
sets of graphics than are supported by the host character set and
hence in the processing of data for devices like phototypeset-
ters. There are thorny problems related to the imbedding of the
host character set in the character set of the language, espe-
cially with respect to "differences of opinion" about collating
seguence.

Acknowledgement

I am indebted to Jim Gimpel for introducing me to the marvels
of character mappings. Students in my string and list processing
classes have served in an exemplary manner as guinea pigs. David
R. Hanson and John T. Korb have provided helpful suggestions on
the presentation of the material in this paper.

23

References

1. Griswold, Ralph E. User's Manual for the Icon Programming
Language. Technical Report TR 78-14, Department of Computer
Science, The University of Arizona, Tucson, Arizona. October 6,
1978.

2. American National Standards Institute. USA Standard Code for

Information Interchange, X3.4-1968. New York, New York. 1968,

3. 1IBM Corporation. System/370 Reference Summary. Form GX20-
1850-3. White Plains, New York. 197/6.

4, Control Data Corporation. SCOPE Reference Manual. Publica-
tion Number 60307200. Sunnyvale, California. JI971.

5. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky.
The SNOBOL4 Programming Language, 2nd ed. Prentice-Hall, Engle-
wood CIiffs, New Jersey. 1971.

6. Griswold, Ralph E. The Macro Implementation of SNOBOL4; A
Case Study in Machine-Independent Software Development. W. H.
Freeman, San Francisco. 1972.

7. Gimpel, James F. "The Minimization of Spatially Multiplexed
Character Sets", Communications of the ACM, vol. 17, No. 6 (June,
1974). pp. 315-318.

8. Griswold, Ralph E. String and List Processing in SNOROL4,
Techniques and Applications. Prentice-Hall, Inc. Englewood
Cliffs, N.J. 1975,

9. Seigel, Morris M. Letter to author, October 12, 1969.

10. Computer Usage Company, Programming the IBM/360. John Wiley
& Sons, New York. 1966. p. 208IL.

11. Gimpel, James F. Algorithms in SNOBOL4. John Wiley & Sons,
New York. 1976. pp. 46-51.

12. Knuth, Donald E. The Art of Computer Programming, Vol. 2.
Addison-Wesley, Reading, Massachusetts. 1969. p. 125.

13. David R. Hanson. A Portable Storage Management System for
the Icon Programming Lanquage. Technical Report TR 78-16,
Department of Computer Sclence, The University of Arizona, Tuc-
son, Arizona. October 8, 1978.

24

