Minimal Meandering Strings July 1, 1970

James F. Gimpel
William Keister

A string over an alphabet'of k symbols is said to be

n-meandering (or is called an n-meander) if every word of

length n is contained in the string (wrap arounds are permitted;

i.e., the sequence may be regarded as circular). For example
22212111

is 3-meandering over the alphabet (1,2). Clearly an n-meandering
sequence has length at least k™. The questions that immediately
arise are: is this minimum always obtainable and, if so, is
there a reasonably efficient algorithm for finding such a
sequence (i.e., a non-exhaustive procedure). The answer to

both questions is in the affirmative. We present the following

algorithm and prove that it meets the above requirements.

AN ALGORITHM
1. Place the characters in some arbitrary hierarchial ordering.
Without loss of generality and to avoid subscripts we will

denote the characters of our alphabet A as

A=(L,2,...,K)

with 1 the lowest and K the highest.

2. Initialize a string S as

S =1

(that is (n-1) 1's).

3. Append to S the character K provided this does not cause
a duplicity of n-tuples. Otherwise, try the next lower
character in the hierarchy, continuing in this way until
either a character is found and appended or no character .
can be added. If no character can be added go to 4.
Otherwise repeat 3.

4, Call the resulting string S;. Remove the initial "starter"
substring (i.e., 1™ 1). Call the result S,. Then S, is
an n-meander of length k™.

Example: Let k = 3 and n = 2. Then

Starter = 1
5, = 1332312211
So % 332312211
Example: Let k =2, n =4
Starter = 111
S, = 1112222122112121111

-3 -
82 = 2222122112121111

In what follows, a suffix of a given string is a
substring which occurs at the extreme right and a prefix is a
substring which appears at the extreme left.
Lemma 1. 1" is a suffix of Sl'
Proof:

1n-l

is a suffix of Sl because of the following
argument. Let a be the trailing n - 1 character in Sl. Since
a cannot be continued it must occur (k+l) times within S,
counting the last time. But if it appears k + 1 times, one of
these appearances must be as a prefix or else there would be

k + 1 different n-tuples in the string with o.as a suffix and
this violates our construction rule that an n-tuple not appear
twice. '

Since ln"1 is a suffix of Sl and it could not be
continued then the string 1" must appear somewhere within Sl.
But 1” cannot have a continuation so it must be a suffix of Sl'
Theorem 1.

The string 52 is an n-meander of length k™.
Proof : |

Because the method of construction guaranteed no
repeated n-tuples we need only consider whether 82 is n-

meandering, or what is equivalent, whether S1 contains all

n-tuples.

T

Notation: If X and Y are sets of strings then XY
is .the set of all concatenations obtained by a string from X
and a string from Y. We will use the notation X" to denote
X concatenated with itself n times. Thus A3 is the set of all
strings of length 3. |

We will use
51 = 8o

to mean that if a string (or set of strings) s; is in S, then
the string (or set of strings) So is also in Sl' We will use
x and Xy to denote characters and the Greek letters a and B

to denote strings. As before A will denote the alphabet. We

will prove the theorem by induction.
basis Let a be any string of length n - 1. Then
al = ahA

This is true because before a 1 is added to the end of the

string S all other characters are tried first.

1

induction step Assume that for all a of length n - a

al® = ah®

then if a is of length n - a - 1

a 1a+1 = aAa+l

-5 -

If the induction step can be proved we prove our
theorem by setting a to null and using Lemma 1.

We will first show that

ala+l = Aala

If o = ln—a-l then the statement is true because we have seen

(Lemma 1) that there were k nonprefix instances of ln"1 in Sl‘
The statement follows from the nonduplicity of n-tuples in Sl'

n-a-1

Assuming a # 1 we have

012t 5 0124

by using the same reasoning when proving the basis. Moreover,

none of these are prefix strings since o contains characters

other than 1. Hence

a1a+l => (xlalal,...,xkqlaK)

where each X; € A. Now each of these substrings is unique and

of length n + 1. It follows that the X; are all different.

So that

a+1l a

al = Aol

By the induction hypothesis

= AcA®

-6 -

Consider any string g in aA?. 1Its length is n - 1 so that if

AB occurs so also does BA and hence

= qA%A = oa2td

Then by mathematical induction
10 5 A

Using Lemma 1 we deduce that Sl contains all n-tuples.

ALTERNATE GENERATION METHODS

For alphabets of size pm, where p is some prime and
m is some integer, Galois Field theory provides a method of
generating minimal n-meanders fof any value n [1]. All that
is necessary is to find a primitive polynomial in GF(pn) of
degree n (the existence of which is assured).

Although this generation method works for only
certain values of alphabet size and requires a search for a
primitive polynomial, it nonetheless has the advantage of
producing a meander with an algebraic structure which presum-
ably can be used to advantage in determining indexing schemes
(i.e., mappings between an n-tuple and its location within

the meander).

-7 -

APPLICATIONS

1. Drum Synchronization

A minimal meander has the characteristic of minimal
redundancy and this property can be used to advantage in
certain synchronization problems. .

Let a drum consist of t tracks (and t read heads)
and in each circular track there are m cells (equi-spaced) and
in each cell we can place any one of k symbols.

We assume a program is synchronized with the drum
in the sense that it is aware at any given moment which of
the m cells are under the read heads. In order to build. into
our system the capability of regaining lost synchronization
we can do one of several things. We can place a special mark
in track 1 to indicate position 0. This however requires a
half drum revolution (on the average) to detect and recover.
We could use P tracks to encode the position where kP = m.,
This has the advantage that drum synchronization can be ob-
tained immediately but has the disadvantage that P tracks
have to be given up. A third scheme is to use a minir.al P-
meander over the alphabet of k symbols on track 1. This has
the advantage that only 1 track is used and that synchroniza-
tion can be regained in a fraction (logkm/m) of a rotation.

2. Gear Synchronization

It is possible to design a set of self-synchronizing
gears such that one gear will slip with respect to the other

until synchronism is achieved. (The authors are unaware of

-8 -

any previous publication of such a device). The method is as
follows. Assume that rather than have one gear, we have two
gears firmly fixed to a driving shaft. Further assume each
gear has some teeth missing in a way that the teeth of one
gear complement the set of teeth of the other. Wherever the
right gear has a tooth we will say this corresponds to a
binary digit 1 and wherever the left gear has a tooth this
will correspond to the binary digit 0. The teeth around the
gear pair can then be described by a 1-0 sequence. Assume
ﬁhat on the driven shaft we have a similar gear-pair arrange-
ment with the identical 1-0 sequence (in the opposite direc-
tion). An example of such a system 1is depidted in Figure laj;

the associated i—O sequence is
1111111100000000

Whenever a'bit in the upper gear is aligned with the opposite

bit in the lower gear, the upper gear will slip with respect

to the lower gear so that a nonslip (stable) situacion will

not be reached until the sequence on the upper gear matches

the sequence on the lower gear.l Once the sequences correspond,

no more slippage can take place and the gears are in synchronism.
Thus in order to obtain a self-synchronizing set of

gears all that is necessary is to have a 1-0 sequence which is

different from any cyclic (end-around) shift of itself.

'9

Consider now the operation of the set of gears
shown in Figure la. After revolving freely for almost 180°
the upper gear meshes with teeth on the lower (left) gear.
This is shown in Figure 1b. After both gears, enmeshed, move
through én angle of almost 180°, the léft gears disengage as
shown in Figure lc. Finally, after a relatively small angle,
the right gears engage and the system of gears is synchronized
(as shown in Figure 1d).

A disadvantage of the system shown in Figure 1 is
that a substantial impact of one gear upon another may be felt
if the traverse is considerable (as in going from la to 1b).

Define the clunk index as the longest run of 1's or O's in’

the 1-0 sequence descfibing the geérs. Then the clunk index
will be the maximum traverse, measured in teeth, over which
the driving gears can rotate freely without engaging in teeth
of the driven gears. The gear arrangement shown in Figure 1
has a clunk index of 8.

The gear arrangement shown in Figure 2 has a 1-0

sequence

1010101010101100

and has a clunk index of 2. It is always possible to design
a clunk index of 2 for any number of teeth and a clunk index
of 1 is inconsistent with a unique settling point unless the

number of teeth is 1 or 2.

- 10 -

The gear arrangement of Figure 2, while having a

low clunk index has a relatively large index of rotation

defined as the maximum number of turns required to move the
driving gear in order to achieve synchronism. This is a
consequence of the fact that the 1-0 sequences are locally
similar even though not in synchronism.

A meandering string represents a reasonable
compromise between these two cases (one such is shown in
Figure 3). On the one hand the clunk index is log,n where n
is the number of teeth. On the other hand the index of
rotation is bounded above by logzn because slippage is
guaranteed to occur at least once every loggﬁ tooth movements.
As a practical matter the average slippage rate appears to be
closer to 1/2 so that; on the average, synchronism could be
restored in 1 turn of the driving wheel.

3. Random String Generation

Consider the problem of constructing a (pseudo-)
random string generator where the strings are uniformly
distributed over all strings of length n from a given alphabet.
The normal procedure 1s to generate n (pseudo-) random integers
to index randomly (n times) into a string denoting the alphabet

One can trade storage space for rﬁnning time in the
following way. The alphabetic string can be considered a
l-meander. If in place of the l-meander we used an m-meander
then only n/m random integers need be generated and n/m random

selections nced be made.

- 11 -

4. Conversion Algorithms

The notion of a meandering string leads to a rather
unique method of programming certain kinds of string conver-
sion problems. Consider, for example, the following program
which converts from an alphabetic character to Morse code.

A straightforward approach to the problem would be
as follows: obtain somehow a number and use that number to
index into an array of character strings which depict the set
of Morse Code equivalents. The storage required for this
method is several (probably 4) characters of Morse code for
each alphabetic character.

Since a meandering string meanders over all possible
combinations, a single string can be uéed to house all the
codes and instead of indexing into the array one can index
into the meander. A problem arises dﬁe to the fact that Morse
code is variable length whereas the item obtained by indexing
into the meander has, because no other information is given,

a fixed length. We, therefore, use the convention that all
characters up to and including the first dash of a 5-cnaracter
sequence is to be ignored. In this way, the U4-character,
variable-length Morse Code is transformed into a fixed-length
5-character code.

Figure 4 shows a PL/I program to convert to Morse

code using this meandering string algorithm.

- 12 -

One could eliminate the need for storing Morse codes
altogether by simply using the indexing number (which are
arbitrarily associated with the alphabetic dharacters) as bit
patterns from which to construct the Morse characters. How-
ever, the meandering string does not consume much storage so
that the storage-saving advantages of the latter method are

probably not worth the increase in computation time.

OPEN QUESTIONS
Several open questions remain. How many minimal
n-meanders are there over a given alphabet without permitting
the relabeling of characters, or the cycling or reversing of
the meander to permit producing a different meander? For
example there are exactly 4 minimal 4-meanders over the

alphabet 0-1. These are
1111011001010000
1111010010110000
1101111001010000
1100101111010000

Thg first is the one which would be generated using the
algorithm presented above; by seeming coincidence it would
also be obtained using either of the 2 primitive polynomials
of degree 4 over GF(2). Are there ways short of exhaustion

of' generating all minimal n-meanders for a given alphabet?

- 13 -

To determine the location of any given n-tuple
within a meander (decoding), a search can be made. Can this
be reduced to a computation which would presumably speed up
the decoding process?

It is possible to speak meaningfully of multi-
dimensional meanders. For example, a 2x2 meander cver the

alphabet (A,B) is shown below.

AAAB
BBAB

BBAB

b v -

AABA

A lower bound on the number of cells in such 2x2
meanders is 16. It is not known whether this minimum is
obtainable. In fact, it is not known whether the lower bound
nlnz...nd

of k can be reached for any (n; x n, x ... x nd)-

meander for both d and kK > 1. On the other hand, there are

no known applications of multi-dimensional meanders.

-1 -

ACKNOWLEDGMENT
Technical illustrations were kindly furnished by

Charles P. Gimpel of Philadelphia, Pa.

{ e) LZ/(

JMIES F. GIMPEL

u"’/m. /=, Jéi:

WILLIAM KEISTER

Att.
Reference
Figures 1-4

REFERENCES

[1] W. W. Peterson, "Error-Correcting Codes," M.I.T. Press,

1961, Chapter 8.3.

. lay

(¢}

FIGURE 1

FIGURE 2

FIGURE 3

-DECLARE A CHAR(32);
DECLARE X CHAR({5);
DECLARE TXT CHAR(16) VAR
DECIARE P €HAR(80) VAR;
DECLARE C CHAR(36);
/* assign to A a string containing in the ith
positign the character whose index is i */
A="¥*tmo¥**q j*gzxynkc*wpdbvearlufish';
¥ aésign to C the meandering string */
C='eeenmmmnn e e S e il T
/* read in the text to be converted */
START:. GET LIST(TXT); , e
/¥ null out the resultgstring, P */
P='';)
/* for each character in:the input text... */
DO K=I TO LENGTH(TXT); '
F & détermine whére, within A, thHe character
lies and assign to N i%s position *
N=INDEX(A, SUBSTR(TXT,X,1));
IF N=0 THEN GO TO NEXT;
/* if not found, ignore; otherwise extract the
nth 5-character string from C */
< X=SUBSTR(C, N, 5);
/* remove everything up to and including the
first dash of this string and append onto F */
P=P || SUBSTR (X, INDEX(X, '-')+1);
/* append on a blank to separate codes ¥/
NEXT: P=P |{* '3
END;
/¥ print the results and repeat'*/
PUT LIST(P);
GO TO START;

Figure 4

