LACE (Du. Knoop; Fr. Dents, Dentelle; Ger. Spitzen; It. Merletti, Fine, N. Francese; Sp. Encaje), a plain or worked network, tastefully composed of many fine threads of gold, silver, silk, linen, or cotton, interwoven, from Laces (Lat.), the great hose or boote of a person. This delicate foliate appears to have come to high antiquity, but its origin is involved in considerable obscurity. That it was worn by Oriental females is certain, and the distribution of the word lace affords presumptive evidence that it was also in use among the Romans. In Venetia, and the neighboring States of Italy, it was very early worn; and May of Medici is supposed to have been the first who introduced its use into France; but it is only as late as 1559 it was included in a list of articles prohibited from importation into England. Hence it had been made in this country prior to the period above mentioned; and the possibility, like many other subsequent acts, was for the protection and encouragement of home manufacture. But plain, which are indissoluble in the process of fine lace-making, were unknown till long afterward; so that it is probable the fabric made was neither very fine in texture nor produced to any great extent. It is uncertain by whom the manufacture of lace was originally introduced into this country. About the middle of the 18th century the lace trade was flourishing in Hampshire; and so greatly had it advanced in England, that, by a royal ordinance in France, passed in 1799, a mark was established upon the lace imported from this country and from Flanders, and upon point lace from Genoa, Venice, and other countries.

Pillow, or Thread Lace, is made by placing a prepared pattern on a hard-stuffed pillow, and the thread required is wound upon bobbins with a groove in the upper part for retaining the thread; when, to form the meshes, pins are stuck in the cardboard, and threads woven or twisted round them, the pattern showing the points of insertion for the pins, and also the direction for the loop, which is interwoven with the fine threads of the fabric to form the pattern. At the commencement of the work the bobbins are arranged on one side of the cushion, and are brought to the back side, two pins at a time, and twisted together. The woman holds one pair of bobbins in each hand, and twists them three times over each other to form the sides of the mesh, the adjacent bobbins of each pair are next interchanged, so as to cross these threads over one another to form the bottom of the mesh. Supposing the four bobbins to be marked 1, 2, 3, 4, No. 1 is twisted round 2, and No. 3 round 4; then, in order to cross 2 and 3, are interchanged, so that 1 and 3 and 2 and 4 come together, and at the next twist these pairs of threads will be combined. As the meshes or half-circles are formed, they are secured by pins. These four bobbins are now put on one side of the cushion; two more pins are brought forward, twisted, and crossed as before, and three operations are repeated until a row of meshes is formed of the required breadth, when the bobbins are worked over again to form another row. From 40 to 60 bobbins are required for every inch of breadth. Pillow or thread
lace, formerly employed a large number of women
and children in the country of Bedford, Northampton,
Northants, and Oxford, and the demand for this
kind of white thread had failed, and black lace took
its place. Black lace differs from pillow lace by hav-
ing the pattern made separately. The emaciated
women were confined to simple work and handl-
ery the fabric was produced their extreme destitu-
tion, with beauty and taste in design: florence,
shawls, shawls, handkerchiefs, bonnets, etc., and
very in price from 10 to 200 guineas. The Heather
lace does not extend above 20 miles along the coast
of Devonshire, and about 12 mile inland. In 1561, from
500 to 600 persons were employed in the manufacture.

French point, merino, and Linenwalk lace are chiefly
used in the manufacture. English point is made chiefly in the
neighborhood of London. Laced point chief at Edlington, Coggeshall, and Nottingham.
while Linenwalk lace is peculiar to Ireland. Linen-
walk now occupies a considerable portion of the atten-
tion of the trade. The most celebrated laces have
been named as:—1. Brussels, the most valuable.
There are two kinds: Brussels ground, having a be-
容量 mesh, formed of plaiting and twisting fine
threads of flax or perpintinii of such a material; from
the ground, made of silk, reaches partly straight
and partly curled. The pattern is worked separately
and fast on the net. 2. Pauvdone: an irregular
hexagon, formed of two threads, partly twisted
and placed in the top of the mesh. The pattern is worked
in the net similar to Brussels lace. 4. Latex; a dis-
ordered mesh of two threads placed in a pillar. 5. Abenca, called French: hexagon, of two threads,
twisted shorter than Brussels lace; considered the
most delicate of any on the cushion. 6. Alge-
point: a form of two threads to a pillar, with ex-
tension and square meshes alternately.

The present state of lace, France takes the lead
and it is calculated that the production of lace by
women employed in the country is equal to
200,000 tons of fine silk. In all ages. It is all made with half-
threads upon a small pillow, except at Abenca, where the
material is only employed. The finished goods are
hand-silked with cotton, wool, silk, and gold
and silver threads. Point d' Alencon is the only lace
decorated with genuine silk hand-silked; this lace
is worth from 40 to 600,000 pound. White lace
now chiefly made with silk thread, new 200, 103 in 1775.

That the contact of the manufacturer—Case and
Bayres, Chantilly, and the neighborhood, Lille, Arret,
Monte, Pes, Belland, and Abenca. Each of these
has its own peculiar style, and although the
style may be made in the same way, and with the same
material, in all these districts except the last, yet such
lace is easily recognized. Silk broad embroidered at Case
and was worked in from being made of mixed silk of
a marble color: the finest white or finest black
lace is now employed. Case and Bayres used all
other places in the production of gros-grain, and
manufactured shawls, scarves, mantles, etc., more exclu-
sively than any other districts in the world. By
means of a stitch called roses, the women of the de-
partment of Calvados (the several parts lace can place
do cloths and lace decorations, even with a single
stitching on the ground. Most of the improvements and materials
are in lace-making originated at Marseilles; at producing
the same kind of lace as Lille and Arret, viz., lace founda-
tion, fonds chine, and also, fonds de chine, the white
thread, also a kind resembling the Brussels called per-
poids.

Flowers are also made, and sewed upon the ext-
tremely fine lace called Brussels, and closely resemble-
ling the Brussels lace. The whitest and cheapest
laced Spanish lace is produced at Bayeux.

Belgium is the great rival of France in the ma-
ufacture of lace, the chief of which are known as
Brussels, Lille, Cherubin, and German lace. Brussels pro-
cusses two descriptions of lace, known as:
point d'Alencon, and point de l'Alsace, the former
made entirely with the needle, and the latter on the pillow.
The finest kind is made of very fine flax thread, and
some of hemp. It is extremely rare and costly, but
very costly. Meridian laces are made at Malles, Arras,
etc. They are made in one piece on the pillow,
and the flowers are surrounded by a plain thread,
which forms the outline, and has the effect of em-
broidery. Venetian laces are made chiefly at
Ypres, Monta, Beauvais, Brussels, and Arras, and their
respective neighborhoods, each town having its charac-
teristic productions which by its peculiarities are
identified. These produce lace of the finest
quality, varying in price from 10 to 200 guineas
the English yard.

It is natural to suppose that attempts would be
made to lessen the cost of production of so beautiful and
expensive a material as lace. It was not, however,
until machinery had been largely introduced for the
purpose of manufacturing textile fabrics that lace ma-
ufactury could be said to have been successfully employed.
About the year 1658 a framework knitter of Norin-
ham employed the common stock-knitting frame in the
manufacture of lace, and about the same time another
person of the same name introduced a pin machinery
for making single-point lace in imitation of the Brus-

ellesque ground. Various machines were then in use to
make lace, all of which, except the woven machine,
have been superseded by the dobby-knitting machine,
it called merino lace, that makes the lace partly
replied from the bobbin and partly from a warp.

Brussels and Moline Lace—The machine of the first
thread used for lace-making in the Netherlands.
It was invented by a Dutchman, and operation demanding so high a degree of exquisite
skill, exact manipulation, and vigilant attention,
that it appears impossible that it can ever be taken
from human hands by machinery. Most but Belge-

lace is skillful in this art. The finest sort of
lace is made in this country, in cheap, and
regularly distributed by the English yard.

A century and more is held rear-
ously in the markets of Europe, and the

lace was considered the perfection of lace, corre-
sponding to the highest of the finest, and having the
grace of the finest lace. It was
however, fall very considerably of late years in sup-
ply and demand. While this lace is not so fine as that
which is used at Brussels, it is much more durable,
and therefore more suitable for an article
use. In regard to lace not produced, that
lace, which is known as table-lace is said to require
very fine materials for its manufacture, being
manufactured of a large number of the finest filaments. It

lace and lace even of this kind of Lace, the

which is made at Brussels, it is much more durable,
and therefore more suitable for an article
use. In regard to lace not produced, that
lace, which is known as table-lace is said to require
very fine materials for its manufacture, being
manufactured of a large number of the finest filaments. It
in the number of slits in the comb, and hence on the number of buttons in an inch; thus pegs over 300 points indicate nine openings in each inch of the comb. The length of work consumed in this manner, containing 340 holes or meshes, is called a yard. A circularized machine may produce about 1000 yards per week.

Bobbinet is made up in pieces of from 50 to 70, or more yards in length, and of variable breadth. Narrow spillings are worked together in a number of breadth, united by threads, which are afterwards removed. In wide widths the meshes are slightly elongated in the direction of the spillings. Ornamental consisting of openwork, diverging, zigzag, etc., are worked in by a Jacquard apparatus attached to the frame; and in the ornamental are generally connected by a supplementary, which forms them, the net according to the cut out with scissors, by children cut out for the purpose. When the meshes produced are less than one plain not, the pattern is worked in by hand, the base being then got by a cuticular pattern placed under the net. When the cuticular pattern is completed, it is examined, defective parts being marked by tying the base in a knot, and these are marked in a distinct set of words called foremen.

In addition to the bobbinet machine for making bales, there is also the warp machine, invented about the year 1776. It was suggested by the stocking-frame, in which only one thread is required, while in the warp-frame there is a thread to each needle. The first articles made by it were silk stockings, with laces and white zigzag, stripes, or veugla. They were called, from the name of one of the few elements in the structure of the warp-frame, the other three being Engledenoms. About 1784 a Nottingham mechanic greatly improved the warp-frame by the application of the rotary motion, and the same principle was applied in the days of the Jacquard machine, the other three being Engledenoms. About 1784 a Nottingham mechanic greatly improved the warp-frame by the application of the rotary motion, and the same principle was applied in the days of the Jacquard machine.

Warp-frame, produced different patterns on lace, such as spots, foliate, roses, etc., which had been previously embroidered or embroidered by hand. The bobbinet machine, invented in 1840, soon became a formidable rival of the warp, and influenced its development. About 1850, when the Jacquard apparatus was applied to it, and it was used much more extensively, and as a result of this, the frame was improved, and its use became more widespread. The English methods of dressing ropes, especially in silk goods. Many new kinds of silk fabrics, in gauzes, and other materials, have been introduced. Valen, and velvet in combination with lace, have also added to the variety of goods. The English methods of dressing ropes, especially in silk goods. Many new kinds of silk fabrics, in gauzes, and other materials, have been introduced. Valen, and velvet in combination with lace, have also been used in the warp-frame. At the time of the Great Exhibition there were about 140 warp-frame machines in operation, namely about 600 in Leeds alone, and about 600 in other districts. About 1300 in 1850.

The employment in the various branches was estimated as follows: 186 machines engaged in the production of bale, and other silk goods; 155 in cotton goods; 550 in linen, and 10 in woolen, cloth, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 machines engaged in the production of bale, 109 in woolen cloths, hosiery, print, and various fabrics for gilding. Of the 186 ma...
of the Society of Arts, No. 178, in the Report of Mr. F. Jenkins's paper on "Thread or Trio Gilding."—R. B.

The exports of lace from the United States for the year 1855, were as follows:

<table>
<thead>
<tr>
<th>Country</th>
<th>Weight</th>
<th>Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td>$2,000</td>
</tr>
<tr>
<td>British settlements</td>
<td></td>
<td></td>
<td>$1,495</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td>$495</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$3,540</td>
</tr>
</tbody>
</table>

Statement showing the Imports of Lace and Embroideries into the United States for the Year ending June 30th, 1855.

<table>
<thead>
<tr>
<th>Country</th>
<th>Quantity</th>
<th>Value in Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden and Norway</td>
<td>20</td>
<td>$10</td>
</tr>
<tr>
<td>Denmark</td>
<td>12,000</td>
<td>$15,000</td>
</tr>
<tr>
<td>Holland</td>
<td>111</td>
<td>$52</td>
</tr>
<tr>
<td>England</td>
<td>21,345</td>
<td>$3,158,808</td>
</tr>
<tr>
<td>France</td>
<td>513</td>
<td>$3,196</td>
</tr>
<tr>
<td>Madeira</td>
<td>27</td>
<td>$35</td>
</tr>
<tr>
<td>Turks</td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>British West Indies</td>
<td>52</td>
<td>$12</td>
</tr>
<tr>
<td>British India</td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>France on the Atlantic</td>
<td>108,000</td>
<td>$100,400</td>
</tr>
<tr>
<td>Principal of the Meeting</td>
<td>112</td>
<td>$1,022</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>China and other places</td>
<td>27</td>
<td>$37</td>
</tr>
<tr>
<td>Total</td>
<td>10,670</td>
<td>$87,925</td>
</tr>
</tbody>
</table>

Total exports: $87,925