DRAWING GILLS.

CIRCULAR DRAWING GILL.

18½" × ⅛" × ¼" Brass.
3½ pins per inch.
17½"—1—60—No. 15, 1½". Rivet No. 8, 1¼".

FIRST PUSH BAR DRAWING GILL.

8" × ⅜" × ¼" Brass.
2½" pins per inch.
7"—2—18—No. 14, 1½" and 1¼". Rivet No. 8, 1
SECOND DRAWING SPIRAL.

7" × 3\(\frac{3}{8}\)" × \(\frac{1}{4}\)" Brass.

5 pins per inch.

6"—2—30. No. 16—1\(\frac{3}{4}\)". Rivet No. 10, 1\(\frac{1}{4}\)".

10" × 5" Roving Gill.

2\(\frac{1}{2}\)" × 3\(\frac{3}{8}\)" × 3\(\frac{1}{2}\)" Brass.

6 pins per inch.

2\(\frac{1}{2}\)"—2—13. No. 16, 1". Gill Rivet, 1", No. 11.
SPECIFICATION AND PARTICULARS OF DRAWING AND ROVING GILLS FOR HESSIAN YARNS.

The student will note as to the arrangement of the dimension.

Push Bar Drawing Gills.

\[8" \times \frac{3}{8}" \times \frac{1}{4}" \text{ brass.} \]

1st row, 18, No. 14, \(1\frac{3}{4}\) and \(1\frac{1}{2}\) — 2½ pins per inch.

Note.—That front row of pins are \(\frac{1}{4}\)th shorter than back row.

Circular Drawing.

\[1\frac{1}{2}" \times \frac{3}{8}" \times \frac{1}{4}" \text{ brass.} \]

1st row, 1, 60, No. 15, \(1\frac{1}{4}\), 3½ pins per inch.

Second Drawing Spiral.

\[7" \times \frac{1}{4}" \times \frac{1}{4}" \text{ brass.} \]

1st row, 2, 30, No. 16, \(1\frac{1}{4}\), 5 pins per inch.

Roving 10" × 5" Pitch.

\[2\frac{1}{2}" \times \frac{3}{8}" \times \frac{3}{8}" \text{ brass.} \]

2nd row, 2, 18, No. 16, — 1", 6 pins per inch.

Gill Rivets Push Bar—No. 8, 1".

" " Circular Bar—No. 8, \(1\frac{1}{2}\")

" " Second Spiral—No. 10, \(1\frac{1}{4}\")

" " Rovings 10" × 5"—No. 11, 1".

GILLS FOR HESSIANS.

(Recommended by Fairbairn).

1st Push Bar Drawing. No. 15 w.g., 21 pins per row of 7 ins.

2nd Spiral " No. 15 w.g., 30 " " 6 ins.

Spiral Roving No. 16 w.g., 14 " " 2½ ins.

GILLS FOR WARPS.

1st Push Bar Drawing, No. 15 w.g., 18 pins per row of 7 ins.

2nd Push Bar Drawing, No. 15 w.g., 25 " " 7 ins.

Spiral Roving, No. 16 w.g., 12 " " 2½ ins.

GILLS FOR WEFTS.

1st Push Bar Drawing, No. 14 w.g., 16 per row of 7 ins.

2nd " No. 15 w.g., 22 " " 7 ins.

Spiral Roving, No. 15 w.g., 11 " " 2½ ins.
FLUTING OF DRAWING ROLLERS.

The Drawing Rollers of first and second drawings and also the rovings are fluted to a certain pitch, so many flutes in the circumference. These are not all of the same pitch, hence the term irregular fluted roller. The reason for making the flutes irregular in the pitch is that when made so, this irregularity of flute prevents the pressing roller becoming fluted by the pressure of the pressing roller. If the pressing roller is allowed to work until it is fluted and working into the flutes of drawing roller, this makes the sliver smaller than is intended, and for the same reason if this takes place at the roving small rove will be the result. Automatic motions are fitted on the drawing rollers of rovings and spinning frames to move the drawing rollers on end; this prevents the drawing rollers getting grooved at one part of the roller, and of course makes the drawing rollers last out much longer.

<table>
<thead>
<tr>
<th>Flutes in Inch</th>
<th>Roller Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 Flutes in 2" Roller</td>
<td></td>
</tr>
<tr>
<td>34 "</td>
<td>$2\frac{1}{2}$ "</td>
</tr>
<tr>
<td>36 "</td>
<td>$2\frac{4}{6}$ "</td>
</tr>
<tr>
<td>38 "</td>
<td>$2\frac{8}{6}$ "</td>
</tr>
<tr>
<td>40 "</td>
<td>$2\frac{1}{2}$ "</td>
</tr>
<tr>
<td>48 "</td>
<td>3 "</td>
</tr>
<tr>
<td>64 "</td>
<td>4 "</td>
</tr>
</tbody>
</table>

Preparing Drawing Rollers.

<table>
<thead>
<tr>
<th>Flutes in Inch</th>
<th>Roller Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 "</td>
<td>$4\frac{1}{6}$ "</td>
</tr>
</tbody>
</table>

Spinning Drawing Rollers.

16 flutes per inch diameter.
DIAGRAMS OF PUSH BAR DRAWINGS.

DIAGRAM OF PUSH BAR DRAWING.

Pressing and Drawing Roller—hard-to-hard. Scale 3" to One Foot.

Drawing Roller.
$2\frac{1}{4}$" diameter.

25 Flutes.
Round top and bottom fluted roller.
DIAGRAM OF PUSH BAR DRAWING.

Pressing and Drawing—Leather covered Pressing Roller.

Scale 3" to One Foot.

Drawing Roller
2½" diameter.

30 Flutes.

V Flute.
ROVING.

ROVING.—The cans being taken in sets of eight each from the second drawing, are put up at the back of the roving, one end over each gill, and are delivered on to the rove bobbin in front of roving. On the roving there are four change pinions—first, the twist pinion; second, the draft or grist pinion; third, the traverse pinion; and, fourth, the rack pinion. For a rove of 70/75 lbs. per spindle, the twist pinion is 35, with 2½ drawing roller; rack pinion, 15; and traverse pinion, 28 teeth.

Note.—Roving Rack Pinion.—A mark on the side of one of the teeth in the pinion is put there for a guide. When you put on a rack pinion, the top catch should be into the marked tooth, after the rack is wound up.

Arrangement of Clock, which is driven from Drawing Roller.—This Clock shows the quantity taken off on a day or week.

Drawing roller = 2½" diam. = 7.06 circumference.

\[1 \times 59 \times 60 \times 60 \times 60 \times 60 \times 60 \times 46 = 732780 = \text{revolutions of roller for}\]

\[1 \times 10 \times 10 \times 10 \times 10 \times 12 \times 24 \times 1 \quad \text{one round of clock.}\]

\[732780 \times 7.06 = 5173429.80 \text{ inches, and}\]

\[5173429.80 \div 36 = 143706.3 \text{ yds.}\]

\[143706.3 \div 14400 = 9.97 \text{ spindles per spindle, and}\]

\[9.97 \times 36 = 358.32 \text{ spindles in one round of clock.}\]

Note.—That the dial of roving clock is marked off in 40 points 10 parts marked 4, 8, 10, 16, 20, 24, 28, 32, 36, and 40.

The following are the Roving, Twist, and Draft arrangements.

Draft arrangement—

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>D</td>
<td>F</td>
<td>H</td>
</tr>
</tbody>
</table>
In this case—

A = Diameter of Drawing Roller
B = Pinion on "
C = " on back shaft.
E) F) = Double intermediate at opposite end of roving.
G = Wheel on retaining roller in gear with F.
H = Diameter of drawing roller.

Thus—

\[\frac{2\frac{1}{4} \times 36 \times 70 \times 70}{35 \times 24 \times 24 \times 1\frac{1}{8}} = 9.35 \text{ draft between drawing roller and retaining roller} \]

Grist or Change pinion. \[\frac{2\frac{1}{4} \times 36 \times 70 \times 70}{C \times 24 \times 24 \times 1\frac{1}{8}} = 2599 = \text{constant number}. \]

Twist Arrangement.—Drawing roller, 2\(\frac{1}{4}\) in. dia. = 7.06 circumference.

A C E
\[\times \times \times \times = \text{twist per inch.} \]
B D F G

In this case—

A = Drawing roller wheel.
B = Twist Pinion.
C = Pinion on driving shaft of roving, driving D, the pinion on end of spindle driver shaft.

D = Pinion on end of spindle driver shaft.
E = Bevel pinion on spindle shaft, driving G, the pinion in spindle.
F = Pinion on spindle.
G = Circumference of drawing roller.

Thus—

\[\frac{60 \times 44 \times 21}{36 \times 22 \times 14 \times 7.06} = 75 \text{ twists per inch.} \]

\[\frac{60 \times 44 \times 21}{\text{Twist pinion} \times 2 \times 14 \times 7.06} = 25.4 = \text{constant number for twists per inch.} \]
ROVING.

SPEED SPINDLES.—Roving shaft, 215 revolutions per minute; Preparing shaft, 160; Drum, 24" diameter; Pulleys, 18" diameter.

\[
\frac{160 \times 24}{18} = 213.33. \quad \text{Say 215 revs. per minute of Main Shaft Roving.}
\]

In this case—

\[
\text{A} \times \text{B} \times \text{C} = \text{D} \quad \text{speed spindles.}
\]

\[
\text{A} = \text{Speed, main shaft of roving.}
\]

\[
\text{B} = \text{Pinion on , , ,}
\]

\[
\text{C} = \text{Pinion on end of spindle shaft of roving.}
\]

\[
\text{D} = \text{Bevel pinion on spindle , , ,}
\]

\[
\text{E} = \text{Pinion on spindle.}
\]

Thus—

\[
\frac{215 \times 44 \times 21}{22 \times 14} = 645 \text{ Revolutions of spindle per minute.}
\]

With the above arrangement of draft, twist, and speed of spindles, the roving will make 28;30 shifts in 10 hours, or 21/22 points on the clock dial, in a week of 56 hours. This, by the clock, means rather more than five spindles per spindle, per week of 56 hours.

Draft and Twist Plate attached to 10" x 5" spiral roving, with drawing roller 2\(\frac{1}{4}\)" diameter.

<table>
<thead>
<tr>
<th>Draft</th>
<th>Pinion</th>
<th>Twist</th>
<th>Pinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
<td>1.5</td>
<td>17</td>
</tr>
<tr>
<td>5(\frac{1}{2})</td>
<td>23</td>
<td>1.25</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>6(\frac{1}{2})</td>
<td>26</td>
<td>0.9</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>0.8</td>
<td>32</td>
</tr>
<tr>
<td>7(\frac{1}{2})</td>
<td>30</td>
<td>0.7</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>0.6</td>
<td>43</td>
</tr>
<tr>
<td>8(\frac{1}{2})</td>
<td>34</td>
<td>0.5</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9(\frac{1}{2})</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*When changing a roller from 2\(\frac{1}{4}\) to 2\(\frac{3}{16}\)" diameter, put on a 37 pinion on drawing roller, and for every \(\frac{1}{16}\)th smaller the roller wears. When it is turned up, allow one-tenth less on the drawing roller pinion. This will keep the draft plate correct. Example:—

Teeth.

2\(\frac{1}{4}\)" : 2\(\frac{3}{16}\)" : : 38 : 37 almost.

*NOTE.—A full sized Drawing Roller, that is 2\(\frac{1}{4}\)" diameter, has on it a 38 teeth pinion.
SPIRAL DISC ROVING FRAME.

SPIRAL DISC ROVING FRAME, 10\" x 5\" BOBBIN.

Sectional elevation showing gearing at end opposite to the driving pulleys.

Scale \(\frac{1}{4}\)th.

A Twist Changes (on driving shaft), ... 17 to 52 teeth.
B Intermediate, 150 teeth.
C Twist Wheel (on drawing rollers), 60 teeth.
D Drawing roller wheel, 38 teeth.
E E Intermediates, 36 teeth.
F Intermediate, 40 teeth.
G Draught Changes (on back shaft), 20 to 40 teeth.
H Wheel for driving single back shaft (separate for each head), 22 teeth.
I Wheel on single back shaft, 22 teeth.
J Bevel wheel for driving screws, 24 teeth.
K Bevel pinion on bottom screw, 16 teeth.
L L Wheels for driving top screw, 14 teeth.
M Intermediate, 54 teeth.
N Wheel on countershaft for driving discs, 30 teeth.
O O O Mitres for driving discs, 28 teeth.
P Pinion on end of bowl shaft, 20 teeth.
Q Wheel on short countershaft, 96 teeth.
R Traverse Changes, 20 to 40 teeth.
S Intermediate, 32 teeth.
T Wheel on mangle wheel pinion shaft, 108 teeth.
U Pinion for driving differential wheel, 12 teeth.
V Intermediate, 27 teeth.
W Differential Wheel, 78 teeth.
X X X Differential bevels, 30 teeth.
Y Wheel on pap of differential bevel, 30 teeth.
Z Wheel on countershaft, 24 teeth.
a Wheel on countershaft, 48 teeth.
b Intermediate, 96 teeth.
c Intermediate, 92 teeth.
d Wheel on bobbin shaft, 30 teeth.
e Bevel wheel on bobbin shaft (one for every two spindles), 21 teeth.
f Spur and bevel intermediate, 28 teeth.
gg Bobbin pinions, 14 teeth.
h Bevel wheel on pinion shaft (one for every two spindles, 21 teeth.
i Spur and bevel intermediate, 28 teeth.
j Spindle pinions, 14 teeth
k Rack pinion (for traversing bobbins), 20 teeth
SPIRAL DISC ROVING FRAME.

SECTIONAL ELEVATION SHOWING GEARING AT END OPPOSITE TO DRIVING PULLEYS.

Scale 1/4th.
SPIRAL DISC ROVING FRAME, 10" × 5" BOBBIN.

Sectional elevation showing gearing at pulley end.

Scale \(\frac{1}{3}\)th.

A	Wheel for driving single back shaft (separate for each head),	22 teeth.
B	Wheel on single back shaft,	22 teeth.
C	Bevel wheel for driving screws,	24 teeth.
D	Bevel pinion on bottom screw,	16 teeth.
E E	Wheels for driving top screw,	14 teeth.
F	Back shaft pinion,	24 teeth.
G	Intermediate,	30 teeth.
H	Stud Wheel,	70 teeth.
I	Stud Pinion,	24 teeth.
J	Retaining roller wheel,	70 teeth.
K K K	Wheels for driving lower retaining roller,	24 teeth.
L	Wheel on driving shaft,	44 teeth.
M M	Intermediates,	84 teeth.
N	Wheel on spindle shaft,	22 teeth.
O	Bevel wheel on spindle shaft,	21 teeth.
P	Spur and bevel intermediate,	28 teeth.
Q Q	Spindle Pinions,	14 teeth.
R	Bevel Wheel on bobbin shaft,	21 teeth.
S	Spur and bevel intermediate,	28 teeth.
T T	Bobbin Pinions,	14 teeth.
U	Mangle wheel pinion,	5 teeth.
V	Mangle wheel,	72 teeth.
W	Rack pinion (for traversing bobbins),	20 teeth.

Draft Arrangement—

\[
\frac{24 \times 86 \times 70 \times 70}{38 \times 24 \times 14 \times 1\frac{1}{3}} = 9.35 \text{ draft.}
\]

\[
\frac{24' \times \text{C.P.} \times 70 \times 70}{38 \times 24 \times 24 \times 1\frac{1}{3}} = 2599 \text{ constant No. for draft.}
\]

Twist Arrangement—

\[
\frac{60 \times 44 \times 21}{36 \times 22 \times 14 \times 7.06} = 75 \text{ twists per inch.}
\]

\[
\frac{60 \times 44 \times 21}{\text{C.P.} \times 22 \times 14 \times 7.06} = 25495 \text{ constant No. for twist.}
\]

Speed Spindle = Speed Main Shaft Roving × 3. Main Shaft Roving, 215 revolutions per minute,

\[
\frac{44 \times 21}{22 \times 14} = 3. \text{ Thus, } 215 \times 3 = 645 \text{ revolutions per minute.}
\]
SPIRAL DISC ROVING FRAME.

Sectional Elevation showing Gearing at Pulley End

Scale 1/8th.
SPIRAL DISC ROVING FRAME.

ROVING SCREWS AND GILL BARS.

Scale 3" to One Foot.

Cross Section.

Front Elevation.
Automatic Motion for Roving Frame Drawing Roller.

Scale 3" to One Foot.
PARTICULARS OF AUTOMATIC MOTION FOR ROVING DRAWING ROLLER.

(For Diagram see page 159).

Wheel in gear with worm (single thread) on Drawing Roller, 64 teeth.

Two pinions each 36 teeth in gear, with single thread worms, as shown on diagram. Thus—

\[
\frac{1}{64} \times \frac{1}{36} \times \frac{1}{36} = \frac{1}{82944}
\]

Movement of eccentric 1\(\frac{1}{2}\) inches—that is \(\frac{3}{4}\) to the right and \(\frac{3}{4}\) to left side.

Then—

\[
\frac{1\frac{1}{2}}{82944} \times \frac{\frac{3}{4}}{82944} = \frac{3}{2} \times \frac{1}{82944} = \frac{3}{165888} = \frac{1}{55296}
\]

of an inch of travel of the eccentric for each revolution of the drawing roller.
GENERAL INSTRUCTIONS AS TO WORKING OF ROVING.

There is no doubt that the roving is one of the most important machines in a jute mill. Two parts of this machine require continual attention, namely, the differential motion and traverse gear, and the screws working the gill bars.

First, in reference to the differential motion, a description of this having been given by Mr. Joseph Hovell, which has been much appreciated by those interested in jute machinery, it is not necessary to go into this in detail; only a diagram of this part of the roving frame is therefore given, and the calculations stated, so that the student will have the particulars ready to hand as a reference.

The second part of the machine which is of importance is the gill bars and screws actuating same. If a large and steady production is wanted of the roving, this part of it will require constant and careful attention by those in charge. I have already stated my opinion as to their repair and upkeep; and can only repeat here, that the importance of this part of the roving cannot be overrated—the gill bars must be kept thoroughly clean, the gill pins sharp and well set up. All this can only be done by so many heads of bars being taken out each day and cleaned, the screws also cleaned and picked, the collar for pitch pin being carefully kept in order. Never allow the hole in collar for pitch pin to become wide at the edge next the pinion, or the pin will bend round between the collar and pinion, instead of breaking clean off, and when this occurs, will sometimes drive the carriage or head of bars in a jerky way, thus making thin parts on the rove, may not be noticed until the roves are on the spinning frame—small rove and small yarn being the result. All this may be avoided by care and attention combined with a knowledge of the proper working of the gill bars and the screws actuating them.

One other point may be mentioned, and that is never allow the crown wheels, as they are usually called, that drive the bobbin drivers to be too much worn and round in the teeth, as this also tends to make the rove soft and irregular, and consequently unfit for spinning purposes.

Make sure that the mangle wheel is in good order at the turning pins, and the bracket-carrying mangle wheel pinion is kept firm. With due attention to these details, there will not be much wrong with the roves, and you will have a chance to get a fair quantity of them from the roving.
ROVING SCREWS AND GILL BARS.
SHOWING ARRANGEMENT OF COLLAR AND PINION WITH "PITCH PIN."

Scale 3" to One Foot.
DIFFERENTIAL MOTION.

SCALE 1\(\frac{1}{2}\) to One Foot.

PLAN.
DESCRIPTION OF THE DISC AND DIFFERENTIAL MOTION ON A ROVING FRAME

The following formula shows how to calculate the position of the bowl between the disc plates for any diameter of bobbin or drawing roller, but note that in the calculation the number of teeth in the differential wheel is taken at half of the actual number for the reason that one revolution of the differential wheel has a double effect on the wheel which it controls.

Working dia, on discs for full bobbin—5·85. Diameter of full bobbin—5".

" " empty " 19·5 " empty bobbin shank—1½".

Drawing Roller Wheel \(\times \) Diameter on disc \(\times \) Pinion on end of bowl shaft \(\times \) Pinion on short shaft \(\times 3^* \) \(\times \) Diameter of bobbin shank \(\ldots \) \(\ldots \) \(\ldots \) \(\ldots \)

Wheel on end of counter shaft for driving disc plates \(\times \) Diameter of bowl \(\times \) Wheel on end of short shaft \(\times \) differential wheel \(\times 1^* \) \(\times \) Diameter of drawing roller \(\ldots \) \(\ldots \) \(\ldots \) \(\ldots \)

\(\left\{ \begin{array}{c}
1.
\end{array} \right. \)

*The figures here 3 to 1 express shortly the net result of the train of wheels from driving shaft to spindles, and also from the loose running bevel wheel controlled by the differential motion wheel to bobbin.

Wheel upon shaft driving spindle driver shaft \(\ldots \) \(44 \) teeth.

Pinion upon spindle shaft \(\ldots \) \(\ldots \) \(\ldots \) \(22 \) " \(\left\{ \begin{array}{c}
44 \times 21 \quad 3
\end{array} \right. \)

Bevel pinion upon spindle driver shaft \(\ldots \) \(\ldots \) \(21 \) " \(\left\{ \begin{array}{c}
22 \times 14 \quad 1
\end{array} \right. \)

Spur pinion upon spindle \(\ldots \) \(\ldots \) \(\ldots \) \(14 \) " \(\left\{ \begin{array}{c}
44 \times 21 \quad 3
\end{array} \right. \)

Formula for full bobbin

\(\frac{60 \times 5\cdot85 \times 20 \times \frac{12}{5} \times 3 \times 5}{30 \times 5 \times 96 \times \left(\frac{1}{2}\right) 39 \times 1 \times 24} = 1. \)

" empty "

\(\frac{60 \times 19\cdot5 \times 20 \times \frac{12}{5} \times 3 \times 1\frac{3}{4}}{30 \times 5 \times 96 \times \left(\frac{1}{2}\right) 39 \times 1 \times 24} = 1. \)

\(\frac{69 \times A \times 20 \times \frac{12}{5} \times 3 \times B}{30 \times 5 \times 96 \times \left(\frac{1}{2}\right) 39 \times 1 \times 24} = 29\cdot25 \) Constant No.

From this Constant No. you can find the diameter of bobbin, and the working diameter for friction ball upon the disc plate as follows:

A Working diameter of friction ball upon disc plate.

B Diameter of bobbin

Full bobbin 5" diameter \(\frac{29\cdot25}{5} = 5\cdot85\) working dia. of ball upon disc.

Working dia. of ball upon plate \(\frac{29\cdot25}{5\cdot85} = 5\) dia. of bobbin when ball is working 19 5" disc plate.
The position of the bowl between the discs will not practically be quite the same as the calculations because an allowance must be made for contraction of the rove by the twist.

The figures used in above calculations are taken from the rovings made by Messrs Fairbairn, Naylor, Macpherson, & Co., Leeds, at the present day.

To find the speed of the empty bobbin $1 \frac{1}{2}$" diameter, and say $2 \frac{3}{4}$" diameter, the same diameter as the drawing roller, and also when full, say 5" diameter.

Speed of roving main shaft 218 revolutions per minute.

" " spindles 654 " "

" " drawing roller 127:16 " "

Twist pinion 35 teeth.

Bobbin Shank $1 \frac{1}{2}$" diameter = 4:71" circumference.

" $2 \frac{3}{4}$ " = 7:06 "

Bobbin when full 5 " = 15:70 "

\[
\frac{127:16 \times 60 \times 19:5 \times 30 \times 12}{30 \times 5 \times 96 \times (\frac{3}{2}) \times 39} = 63:58 \text{ revolutions of differential wheel.}
\]

which subtract from the speed of the roving shaft 218 — 63:58 = 154:42 and

\[
\frac{154:42 \times 30 \times 48 \times 21}{24 \times 30 \times 14} = 463:26 \text{ revolutions of bobbin.}
\]

which subtract from the speed of the spindles 654 — 463:26 = 190:74 and

190:74 \times 4:71 = 898:38 inches of rove laid on per minute.

Again when the bobbin is say $2 \frac{3}{4}$" diameter the same as the drawing roller.

\[
\frac{127:16 \times 60 \times 13 \times 20 \times 12}{30 \times 5 \times 96 \times (\frac{3}{2}) \times 39} = 42:38 \text{ revolutions of the differential wheel.}
\]

which subtract from the speed of the roving shaft 218 — 42:38 = 175:62 and

\[
\frac{175:62 \times 30 \times 48 \times 21}{24 \times 30 \times 14} = 526:86 \text{ revolutions of bobbin.}
\]

which subtract from the speed of the spindles 654 — 526:86 = 127:14 and

127:14 \times 7:06 = 897:60 inches of rove laid on per minute.

Again when the bobbin is full say 5" diameter.

\[
\frac{127:16 \times 60 \times 5:85 \times 20 \times 12}{30 \times 5 \times 96 \times (\frac{3}{2}) \times 39} = 19:07 \text{ revolutions of differential wheel.}
\]

which subtract from the speed of the roving shaft 218 — 19:07 = 198:93 and

\[
\frac{198:93 \times 30 \times 48 \times 21}{24 \times 30 \times 14} = 596:79 \text{ revolutions of bobbin.}
\]

which subtract from the speed of the spindles 654 — 596:79 = 57:21 and

57:21 \times 15:70 = 898:19 inches of rove laid on per minute.
ARRANGEMENT TO FIND THE SPEED OF ROVING TRAVERSE.

Arrangement to find the speed of Roving Traverse when the bobbin is empty and full, that is 1 1/2" and 5" diameter, or 4.71 and 15.70 inches in circumference.

Speed of Drawing Roller 127.16 revolutions per minute; Traverse Pinion 22 teeth for 75/80 lb. rove.

when empty \[
\frac{127.16 \times 60 \times 19.5 \times 20 \times 22 \times 5}{30 \times 5 \times 96 \times 108 \times 73} = 2.88 \text{ speed of traverse.}
\]

when full \[
\frac{127.16 \times 60 \times 5.85 \times 20 \times 22 \times 5}{30 \times 5 \times 96 \times 108 \times 73} = 8.64
\]

\[
\frac{127.16 \times 60 \times C \times 20 \times 22 \times 5}{30 \times 5 \times 96 \times 108 \times 73} = 147.8 \text{ Constant No.}
\]

There is no method of calculating what traverse pinion should be used. This is not a question of length, but a question of the thickness of each size of rove; on this roving we find a 22" teeth pinion gives the proper build for a 75 lb. rove.

When the bobbin is empty (that is 4.71 inches in circumference), the drawing roller moves 127.16 revolutions per minute, and the traverse 2.88 per minute, which is equal to 44 to 1, and the circumference of the roller 7"; therefore 308 inches are delivered for each up and down movement of traverse, and

\[
\frac{308}{4.71} = 66.69 \text{ layers of rove.}
\]

For a thicker rove the traverse would have to go faster, and for a finer a little slower.

When the rove is full (that is 15.70 inches circumference), the drawing roller moves 127.16 revolutions per minute, and the traverse 8.64 per minute, which is equal to 147.17 to 1, and the circumference of the roller being 7"; therefore 1039.19 inches are delivered in each up and down of the traverse.

\[
\frac{1039.19}{15.73} = 65.6 \text{ layers of rove.}
\]

The pinions upon the traverse shaft of this roving are 20 teeth, No. 6 pitch, and therefore equal to 3 3/4" diameter at pitch lines. One revolution of this pinion is 10.40 inches, but the pinion, owing to the shape of the turning points of the mangle wheel, only moves the traverse of the bobbin board 10° up and 10° down.

You will therefore observe that when the bobbin is empty it goes slower and the traverse faster, and vice versa when the bobbin is full; the speed of the bobbin is always opposite to the speed of the traverse.
SNAIL.

(Old Style).

Scale 3" to One Foot.
ROTARY DRAWING AND ROVINGS.

I do not feel called upon to say much about these machines. Their use for hessian yarn is limited to a small portion of the trade. The gills are fixed upon a shaft placed close up to the drawing roller. An illustration is given of drawing and also of roving showing the arrangement and the relation of the speed of gill to retaining and drawing roller. All the other parts of the machines are much the same as in spiral machinery. For heavy wefts, a rotary roving will be found very convenient—you can take off a good production of rove, and make a good job, as sliver is light; but you can make up the weight, owing to the shortness of the draft required in a rotary roving. *I have given an arrangement with rotary roving, and have also given an example for hessian wefts—say, from 8/12 lbs. per spynadle. As in the case of spiral machinery, it is important that the gills be kept clean, and the gill pins sharp and carefully sett up. If this is not done, the tendency is for the rotary gill to “lap,” and this causes irregularity in the rove. If this roving is, however, kept clean and in good order, not much trouble will be experienced in doing the work of an arrangement such as is given in a few pages further on.

Rotary Roving.—For heavy rove, 200 to 250 lbs., if made from poor stuff, and from which sacking wefts are to be spun, rotary rovings are generally employed. An illustration on page 170 shows the centres of gills and rollers; three different sets of wheels and pinions are given. This allows of the reach between centre of gill shaft and retaining rollers being set in three different positions, according to the rove being made. If the material is weak, the retaining roller should be closer upon the gill than when it is strong. When the jute is strong, the retaining roller must not be too near the gills, or the sliver will not draw at the pressing roller.

*See page 185 for arrangement of Machinery Making Rove 105 lbs. per spynadle, from which is to be spun 20 lbs. Weft.
The following are particulars of two arrangements of Rotary Gills:

First drawing rotary, $7\frac{1}{2}'' \times 3'' \times \frac{1}{4}''$ brass, $3\frac{1}{2}$ pins per inch, set over $6\frac{3}{4}''$, 30 rows, 24 pins, No. 14—$\frac{3}{4}''$, $\frac{1}{2}''$ out; or,

Second drawing rotary, $6'' \times 3'' \times \frac{1}{4}''$ brass, $3\frac{1}{2}$ pin per inch, 30 rows, 21 pins, No. 14—$\frac{3}{4}''$, $\frac{1}{2}''$ out;

Rotary roving gill, $2'' \times 3''$ dia. brass, 28 rows, 8 pins, No. 14—$\frac{3}{4}''$, set over $1\frac{3}{4}''$, 5 pins per inch, and $\frac{1}{8}''$ out;

First drawing rotary, $7'' \times 3'' \times \frac{1}{4}''$ brass, 5 pins per inch, 30 rows, 30 pins, No. 15—$\frac{3}{4}''$, $\frac{1}{2}''$ out; to work with

Roving rotary, $1\frac{5}{8}'' \times 2\frac{1}{4}'' \times \frac{1}{4}''$ brass, $5\frac{1}{2}$ pins per inch, 26 rows, 7 pins, No. 16—$\frac{5}{8}''$, $\frac{3}{8}''$ out.
ROTARY ROVING FRAME.

Scale $\frac{1}{8}$th.

Diagrams showing Three Sets of Wheels and Pinions for altering "Reach" between Retaining Roller and Gill Shaft.

B = Pressing " , D and E = Retaining Rollers.

Note — The surface speed of the Rotary Gill at the point of the pin is almost equal to the surface speed of the Retaining Roller.
ROTARY DRAWING FRAME.

ARRANGEMENT OF DRAFT GEARING

SCALE $\frac{1}{3}$TH.
ROTARY DRAWING FRAME.

Draft Arrangement.

Back Roller Wheel, 52 teeth.
Change Pinion, 25 teeth.
Stud Wheel 80 teeth.
Front Roller Wheel, 47 teeth.
Working diameter of Front Roller, 3 4 inches.

" " Back Roller, 2 "

\[
\frac{52 \times 80 \times 3.4}{25 \times 47 \times 2} = 6 \text{ draft.}
\]
DOUBLE ROTARY DRAWING FRAME.

ARRANGEMENT OF DRAFT GEARING.

Scale 1/4th.
DRAFT GEARING FOR DOUBLE ROTARY FRAME.

<table>
<thead>
<tr>
<th>Part</th>
<th>Teeth</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back Roller Wheel</td>
<td>106</td>
<td>$106 \times \frac{84 \times 2\frac{1}{2}}{27 \times 46 \times 3} = 6$ draft.</td>
</tr>
<tr>
<td>Draft Pinon</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Stud Wheel</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Drawing Roller Wheel</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Diameter of Drawing Roller</td>
<td>24"</td>
<td></td>
</tr>
<tr>
<td>Retaining Roller</td>
<td>3"</td>
<td></td>
</tr>
</tbody>
</table>
SPINNING ROVING FRAME.

ARRANGEMENT OF DRAFT AND TWIST GEARING FOR ROVING, BOBBIN 8" x 4".

SCALE 1/2" TH.
SPINNING ROVING FRAME, 8° TRAVERSE.

DAFT ARRANGEMENT—

Retaining Roller Wheel, 56 teeth.
Drawing Roller Pinion, 34 ,,.
Double Intermediate, 54 and 20 ,,.
Back Shaft Pinion, 20 ,,.
" " Change, 20 ,,.

Diameter of Drawing Roller and Retaining Roller, 2" and 1½".

\[
\frac{56 \times 54 \times 20 \times 2^\prime}{20 \times 20 \times 34 \times 1\frac{1}{2}} = 5 \text{ draft.}
\]

\[
\frac{56 \times 54 \times \text{C.P.} \times 2^\prime}{20 \times 20 \times 34 \times 1\frac{1}{2}} = .254 \text{ Constant for draft.}
\]

TWIST ARRANGEMENT—

Drawing Roller Wheel, 90 teeth.
Wheel on Main Shaft of Roving, 44 ,,.
Bevel Pinion on Spindle Shaft, 24 ,,.
Twist Pinion, 14 ,,.
Pinion on end of Spindle Shaft, 22 ,,.
" on Spindle, 16 ,,.

Diameter of Drawing Roller, 2" = 6.28 circumference.

\[
\frac{90 \times 44 \times 24}{14 \times 22 \times 16 \times 6.28} = 3 \text{ Twist per inch.}
\]

\[
\frac{90 \times 44 \times 24}{\frac{\text{Twist Pinion}}{22 \times 16 \times 6.28}} = 43 \text{ Constant Number.}
\]

\[
\frac{44}{22} = 2 \frac{4}{16}
\]

Speed Roving Spindles, \(\frac{24}{16} = 3. \)

Speed Spindles = Speed Main Shaft of Roving \(\times 3. \)

The Speed of Spindles of Roving Spinning 48/60 lbs. weft yarn is about 1050 revolutions per minute.
SPEEDS OF JUTE SPINNING MACHINERY.

(Recommended by Fairbairn, Naylor, Macpherson, & Co., Ltd., Leeds.)

4 ft. x 6 ft. SHELL BREAKER CARD.

Cylinder, 190 revolutions per minute; Surface Speed, 2485 ft. over points of pins.
7" Workers, 24 revolutions per minute; Surface Speed, 54 ft. over points of pins.
11" Strippers, 133 revolutions per minute; Surface Speed, 443 ft. over points of pins.

Change pinion on Cylinder, 48 teeth.

4 ft. x 6 ft. CIRCULAR Finisher CARD.

Cylinder, 190 revolutions per minute; Surface Speed, 2470 ft. over points of pins.
7" Workers, 15 revolutions per minute; Surface Speed 33 ft. over points of pins.
11" Strippers, 147 revolutions per minute; Surface Speed, 490 ft. over points of pins.

Change Pinion on Cylinder, 56 teeth.

1ST AND 2ND SPIRAL DRAWINGS.

150 to 160 Drops of Gill Bars per minute.

PUSH BAR or SLIDE DRAWING.

350 Drops of Gill Bars per minute.

1ST CIRCULAR DRAWING.

306 Drops of Gill Bars per minute.

SPIRAL ROVINGS, 10" x 5" BORROWS.

Speed of Spindles, 540 revolutions per minute.

Drops of Gill Bars will vary with the Twists and Drafts, but the bars can be run at the same speed as for Spiral Drawing.

SPEED OF SPINNING FRAME SPINDLES.

<table>
<thead>
<tr>
<th>Size</th>
<th>Revolutions per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>1500</td>
</tr>
<tr>
<td>5½"</td>
<td>1600</td>
</tr>
<tr>
<td>5½"</td>
<td>1800</td>
</tr>
<tr>
<td>4½"</td>
<td>2000</td>
</tr>
<tr>
<td>4½"</td>
<td>2200</td>
</tr>
<tr>
<td>4"</td>
<td>2500</td>
</tr>
<tr>
<td>3½"</td>
<td>2800</td>
</tr>
<tr>
<td>3½"</td>
<td>3000</td>
</tr>
<tr>
<td>3½"</td>
<td>3200</td>
</tr>
<tr>
<td>3½"</td>
<td>3400</td>
</tr>
<tr>
<td>2½"</td>
<td>3400</td>
</tr>
</tbody>
</table>
REMARKS ON PREPARING MACHINERY.

Before finishing this chapter upon preparing machinery, let me make a few general remarks. If work of a fair quality and quantity is to be made, the machinery must be kept clean and in good mechanical order; the breaker and finisher workers, strippers, &c., should be regularly picked and cleaned in a thorough manner during the meal hours; and once every three months the setting of the rollers should be tried, to see if they are correct, and adjusted where necessary; all the pins in cylinder, &c., kept in good order; the drawings and rovings cleaned thoroughly once every six weeks or two months at least, and the cleaning should be done as much as possible in the day time, so that the condition of the machines can be thoroughly seen and examined, and little things can then be put right—wheels and pinions, &c., renewed, where necessary. If all this is done in an orderly and systematic manner, the machinery will run without much trouble or annoyance to the workers, and quality and quantity will be ensured; without this there will neither be the one nor the other, but continual worry and annoyance will be the daily result.

Dimensions of Sliver Cans in use for Preparing Machinery:—

Breaker Cans, 13" × 11" × 36". Oval.
Finisher " 12" × 9" × 36". "
Drawing " 12" × 9" × 36". "
Roving " 10" × 7" × 36". "

Note.—Sometimes the breaker, finisher, and drawing cans are made oblong, the roving cans are always made oval.

All the calculations and illustrations in this chapter are off machines made by Messrs Fairbairn, Naylor, Macpherson, & Co., Limited, Leeds, who stand first as makers of jute machinery, their attention to the many intricate details, as well as to the general finish and fitting up of this class of machinery, having secured for them a world wide reputation. Without their kind assistance and permission it would have been impossible to illustrate the various machines. The calculations for machines by other makers are worked out by the same methods.
ROVE BARROW. Scale $\frac{3}{4}$" to One Foot.

Front Elevation.

End Elevation.

This Barrow holds one shift—
56 roves \times 10" \times 5" roving.

BARROW FOR BOXES WITH SPINNING BOBBINS. Scale $\frac{3}{4}$" to One Foot.
ARRANGEMENT TO PRODUCE ROVE FOR 9/12 Lbs. WEFT AND WARP HESSIAN QUALITY.

Weight of Rove Wanted 72\frac{1}{4}/75 Lbs. per Spindle.

Breaker Single Doffer—Cylinder, 190 revolutions per minute; cylinder pinion, 46 teeth.

Dollop, 33 lbs.; clock, 13·13, calculated from feed roller 10\frac{3}{4}" diameter = 33·77 inches circumference.

Draft between feed and drawing roller—
\[\frac{4 \times 80 \times 110 \times 110}{52 \times 26 \times 20 \times 10\frac{3}{4}} = 13·32 \text{ draft.} \]

Finisher, 10 ends into 1; Cylinder, 190 revolutions per minute; cylinder pinion, 56 teeth.

Draft between feed and drawing roller—
\[\frac{4 \times 104 \times 96 \times 96}{75 \times 32 \times 28 \times 4} = 14·26 \text{ draft.} \]

Speed pulleys, 180 revolutions per minute.

Push bar drawing, 4 ends into 1; pulley pinion, 34 teeth.

Leather pressing roller—
\[\frac{160 \times 16}{14} = 182\frac{4}{9} \text{ revolutions pulley per minute.} \]
\[\frac{24 \times 56 \times 74 \times 50 \times 28 \times 32}{52 \times 29 \times 34 \times 39 \times 40 \times 1\frac{1}{6}} = 3·5 \]

Pulleys, 160 revolutions per minute.

Second drawing spiral, 2 ends into 1; pulley pinion, 30 teeth—
\[\frac{160 \times 16}{16} = 160 \text{ revolutions of pulleys per minute.} \]
\[\frac{24 \times 34 \times 69 \times 69}{43 \times 25 \times 25 \times 1\frac{1}{6}} = 7·65 \text{ draft.} \]

Roving, 1 end into 1—Speed pulleys, 225 revolutions per minute.
\[\frac{24 \times 32 \times 70 \times 70}{38 \times 24 \times 24 \times 1\frac{1}{6}} = 8·31 \text{ draft.} \]

The following example will show arrangement and weight of rove in this system:

Breaker dollop, 33 lbs.

" clock, 13·13 yards.

" draft, 13·32.
ARRANGEMENT TO PRODUCE ROVE OF A GIVEN WEIGHT.

\[13\;32 \times 13\;13 = 174\;89\] yards delivered at front of breaker, weighs 33 lbs.

Finisher, 10 ends into 1.

Draft, 13\;32.

\[
\frac{33 \times 10}{13\;32} = 24\;77\text{ lbs. weight of }174\;89\text{ yards at front of finisher.}
\]

Push bar drawing, 4 ends into 1.

Draft 3\;5

\[
\frac{24\;77 \times 4}{3\;5} = 28\;31\text{ lbs. weight of }174\;89\text{ yards at front of 1st drawing.}
\]

Second drawing spiral, 2 ends into 1.

Draft.

\[
\frac{28\;31 \times 2}{7\;85} = 7\;40\text{ lbs. weight of }174\;89\text{ yards at front of 2nd drawing.}
\]

Roving Spiral—58 spindles, 10" x 5" pitch—675 revs. of spindles per minute.

Draft 8\;31.

\[
\frac{7\;40}{8\;31} = 890\text{ lbs. weight of }174\;89\text{ yards at front of Roving.}
\]

174\;89 : 14400 :: 890 : 78\;2 lbs. per spindle.

The actual weight of this rove was 72\frac{2}{3} lbs.

ARRANGEMENT TO PRODUCE ROVE FOR 7/8 LBS. WARP.

Weight of Rove Wanted 67\frac{1}{2} lbs.

Breaker Double Doffer—cylinder, 190 revolutions per minute; cylinder pinion, 44 teeth.

" clock, calculated from feed roller 20\frac{1}{4}" diameter = 12\;95 yards.

" draft, 9\;7; dollop, 22 lbs.

\[12\;95 \times 9\;7 = 125\;6\] yards delivered at front of breaker in one round of clock.

Finisher single doffer—10 ends into 1; cylinder, 190 revs. per minute.

Draft cylinder pinion, 56 teeth.

\[
\frac{22 \times 10}{14\;25} = 15\;42\text{ lbs. weight of }125\;6\text{ yards at front of finisher.}
\]
ARRANGEMENT TO PRODUCE ROVE OF A GIVEN WEIGHT.

Push Bar Drawing, 4 ends into 1; draft, $3\frac{1}{4}$; leather pressing rollers; pulley pinion, 34 teeth.

$$\frac{160 \times 16}{14} = 182\frac{2}{4} \text{ revolutions pulleys per minute.}$$

$$\frac{1542 \times 4}{3\frac{1}{4}} = 17\cdot62 \text{ lbs. weight of 125\cdot6 yards at front of 1st drawing.}$$

Second Drawing Spiral, 2 ends into 1.

Draft, 7\cdot65.

$$\frac{17\cdot62 \times 2}{7\cdot65} = 4\cdot60 \text{ lbs. weight of 125\cdot6 yards at front of 2nd drawing.}$$

Roving Spiral, 1 end into 1—Speed Spindles 675 revs. per minute.

Draft, 8.

$$\frac{4\cdot60}{8} = 0\cdot575 \text{ lbs. weight of 125\cdot6 yards at front of roving.}$$

$$125\cdot6 : 14400 : : 0\cdot575 : 65\cdot9 \text{ lbs. per spyndle.}$$

Actual weight of this rove, 65/67\frac{3}{4} lbs.

Roving, - - -

Twist Pinion, - - 32

Grist ,, - - 31

 Traverse ,, - - 28

Rack ,, - - 17

These three examples are sufficient for the explanation of this part of the subject. Different arrangements are in operation to do the same thing. Many of them are based upon the opinion and experience of those in charge, others are in a measure based upon convenience. The production required from the system also determines to a certain extent the arrangement. Theory in this matter has often—within limits, of course—to give way to what is best in practice.

ARRANGEMENT TO PRODUCE ROVE FOR 16/24 LBS. WEFT OF ORDINARY HESSIAN QUALITY.

Rove to be 105/110 lbs.

Breaker Single Doffer—cylinder, 195 revolutions per minute; cylinder pinion, 46 teeth.

Dollop, 33 lbs.; clock—13\cdot16 yds., calculated from feed roller 10\frac{3}{4}" dia. = 33\cdot77 inches.
ARRANGEMENT TO PRODUCE ROVE OF A GIVEN WEIGHT.

Draft between feed and drawing roller—
\[\frac{4 \times 80 \times 110 \times 110}{52 \times 26 \times 26 \times 108} = 13.32 \text{ draft.} \]

Draft between doffer and drawing roller—
\[\frac{4}{23} \times \frac{54}{26} \times \frac{88}{15\frac{1}{2}} = 2.05 \text{ draft.} \]

This is only shown as a draft that is necessary for delivery of material from doffer to drawing roller. This draft is not necessary in working out the total draft of breaker.

Finisher Single Doffer—cylinder, 195 revolutions per minute; cylinder pinion, 64 teeth.

Finisher, 10 ends into 1.

Draft between feed and drawing roller—
\[\frac{4}{75} \times \frac{104}{32} \times \frac{96}{32} \times \frac{96}{4} = 12.48 \text{ draft.} \]

Circular Drawing—pulley pinion, 32 teeth.
\[\frac{21}{14} = 240 \text{ revolutions per minute.} \]

Pressing and drawing roller, hard to hard (3\(\frac{1}{2}\))—
\[\frac{3}{22} \times \frac{120}{50} \times \frac{27}{15} \times \frac{15}{3} = 3.43 \text{ draft.} \]

4 ends into 1.

Second drawing spiral—pulley pinion, 30 teeth.

Leather pressing rollers—
\[\frac{16}{16} = 160 \text{ revolutions per minute.} \]

\[\frac{24}{32} \times \frac{34}{25} \times \frac{68}{25} \times \frac{69}{1.15} = 10.32 \text{ draft.} \]

2 ends into 1.

Roving—Rotary, 48 spindles; 10\(\frac{1}{2}\)" x 5" pitch.

Speed spindles—
\[\frac{25}{18} \times \frac{44}{22} \times \frac{21}{14} = 666\frac{3}{4} \text{ revolutions of spindles per minute.} \]
ARRANGEMENT TO PRODUCE ROVE OF A GIVEN WEIGHT.

Twist arrangement—

\[
\frac{60 \times 44 \times 21}{42 \times 22 \times 14 \times 7\text{ oz}} = 60 \text{ twist on rove.}
\]

\[
\frac{60 \times 44 \times 21}{6 \times 22 \times 14 \times 7\text{ oz}} = 25.495
\]

Grist arrangement—

\[
\begin{array}{ccc}
2\frac{1}{4} & 80 & 60 \\
44 & 25 & 1\frac{1}{6}
\end{array} = 4.69 \text{ draft between retaining drawing roller.}
\]

\[
\frac{2\frac{1}{4} \times 80 \times 60}{44 \times 25 \times 1\frac{1}{6}} = 126.686 \text{ constant number.}
\]

The following example will show the way to find weight of rove in this system—

Breaker dollp, 33 lbs.

" clock, 13·13 yds.

" draft, 13·32 "

13·32 \times 13·13 = 174·89 yards delivered at front of breaker, weighs 33 lbs.

Finisher, 10 ends into 1.

Draft, 12·48.

\[
\frac{33 \times 10}{12\text{·}48} = 27·24 \text{ lbs. weight of } 174·89 \text{ yards delivered at front of finisher}
\]

Circular—1st drawing, 4 ends into 1.

Draft—

\[
27·24 \times 4 = 108·96 \text{ lbs., weight of } 174·89 \text{ yards delivered at front of first drawing.}
\]

Second drawing—spiral 2 ends into 1.

Draft, 10·32.

\[
\frac{108·96 \times 2}{10\text{·}32} = 21·15 \text{ lbs., weight of } 174·89 \text{ yards delivered at front of second drawing.}
\]

Roving rotary, 1 end into 1—draft.

Draft—4·69.

\[
\frac{21·15}{4\text{·}69} = 1·31 \text{ lbs., weight of } 174·89 \text{ yards delivered at front of roving.}
\]

174·89 : 14400 : : 1·31 : 107·8 lbs. per spynlde.

The actual weight of this rove was 105/106 lbs.

Roving twist pinion, 42 teeth.

" grist " 25 "

" rack " 11 "

" traverse " 36 "
This roving made 44 shifts in 10 hours, and produced rove at 105 lbs. per spyndle, and kept three frames 72 spindles each, 4 in. pitch, 5 in. traverse, spinning 20 lbs. weft. The production from these three frames was 242 spindles in 10 hours, this average being taken over a period of three months.

\[
\text{Tons. Cwts. Qu. Lbs.}
\]

\[
242 \times 20 = 4840 \text{ lbs.} = 2 \ 3 \ 1 \ 6.
\]

Spinning frame—Particulars of speed spindle.

\[
220 \times 28 \times 10 \div 14 \times \frac{12}{12} = 2014.2 \text{ revs. of spindles per minute.}
\]

To find speed of spindle—

\[
\frac{A \times B \times D}{C \times E}
\]

A = Speed Driving Shaft.
B = Drum upon Driving Shaft.
C = Pulleys on Cylinder Arbor of Frame.
D = Diameter of Cylinder.
E = Diameter of Spindle Wove.

Cylinder 10" diameter; Drawing Roller Wheel 120 teeth.
Twist Wheel and Pinion 90 and 76 teeth.
Spindle Werve 1\frac{3}{4}" diameter.
Drawing Roller 4\frac{3}{8}" diameter.
Retaining 1\frac{1}{2}" Wheel 75 teeth.

Double Intermediate 80/86. Draft arrangement.

Twist arrangement—cylinder pinion, 34 teeth; drawing roller, 4\frac{1}{8}" dia. = 12.95 circumference.

\[
\frac{10 \times 90 \times 120}{12 \times 34 \times 76 \times 12.95} = 1.84 \text{ twist per inch upon this yarn.}
\]

Grist arrangement—Drawing Roller Pinion or Grist Pinion 35 teeth.

\[
\frac{41 \times 80 \times 75}{35 \times 86 \times 1\frac{1}{2}} = 5.4 \text{ draft.}
\]

80 spindles from 72 spindles =

\[
\frac{80}{72} = 1\frac{1}{18} \text{ spindles per spindle in 10 hours.}
\]
ARRANGEMENT TO PRODUCE ROVE OF A GIVEN WEIGHT

DOUBLINGS AND DRAFTS.

7 to 12 lbs.

Breaker—30 lbs. dollop—to 12 yards clock—draft 12.
Finisher—10 ends into 1—circular—draft 16.
1st drawing—4 ends into 1—push-bar—draft 4.
2nd drawing—2 ends into 1—spiral—draft 6 1/2.
Roving,

Will give 72 lbs. rove—exclusive of allowance for waste.

DOUBLE DOFFER CARDS.

Breaker—22 lbs. dollop—to 12 yards clock—draft 10.
Finisher—10 ends into 1—circular—draft 14.
1st drawing—4 ends into 1—push-bar—draft 4.
2nd drawing—2 ends into 1—spiral—draft 6 1/2.
Roving,

Will give 72 1/4 lbs. rove—exclusive of allowance for waste.

DOUBLINGS AND DRAFTS.

7 to 12 lbs.

Rotary System.

Breaker 30 lbs. dollop to 12 yards clock,
Finisher, 10 ends into 1—circular, 1 Draft 14.
1st Drawing, 4 ends into 1, 2 21.
2nd " 2 1, 3 4 1/2.
Roving, 5 6.

Will give 73 1/4 lbs. rove—exclusive of allowance for waste.

SACKING WEFT—AVERAGE 32 LBS.

Breaker 28 lbs. dollop to 12 yards clock,
Finisher, 10 ends into 1—half circular,
1st Drawing, 4 ends into 1—push bar,
2nd " 2 16.
Roving—spiral, 3 4 1/2.

Will give 128 lbs. rove—exclusive of waste allowance.

The results given above will be the same whether the finisher card be fed from laps or cans, provided the same number of ends be put up in each case.

The machines and draft arrangements for Sacking Warps are precisely the same as for Hessian Yarns, the only difference being that the quality of jute is lower in the former case, and the yarn is frequently harder twisted.
ARRANGEMENT TO PRODUCE ROVE OF A GIVEN WEIGHT.

SACKING WARP ARRANGEMENT.

Dollop 82 lbs. .. Breaker Clock = 10 yds.

Breaker Draft Arrangement.

\[
\frac{4^\circ \times 72 \times 120 \times 120}{72 \times 18 \times 24 \times 9\frac{1}{4}} = 14 \text{ draft.}
\]

\[14 \times 10 = 140 \text{ yds. at front of breaker.}\]

Finisher—10 ends into 1.

\[
\frac{4^\circ \times 72 \times 120 \times 120}{72 \times 18 \times 22 \times 9\frac{1}{4}} = 15\frac{1}{31} \text{ draft.}
\]

\[32 \times 10 \div 15\frac{1}{31} = 20\frac{9}{9} \text{ lbs. weight of 140 yards at front of finisher.}\]

1st Drawing (Lawson) 8 ends into 1.

\[
\frac{2\frac{3}{8} \times 40 \times 70 \times 23}{23 \times 20 \times 33 \times 2} = 4 \text{ draft.}
\]

\[15\frac{31}{8} \times 8 \div 4 = 30\frac{62}{6} \text{ lbs. at 1st Drawing.}\]

2nd Drawing (Push Bar) one into one.

\[
\frac{23^\circ \times 56 \times 74 \times 50 \times 23 \times 35}{60 \times 20 \times 34 \times 39 \times 40 \times 11\frac{1}{8}} = 4\frac{1}{2} \text{ draft.}
\]

\[30\frac{62}{6} \div 4\frac{1}{2} = 6\frac{8}{9} \text{ lbs. at 2nd Drawing.}\]

Roving (Lawson Spiral) one into one.

\[
\frac{24^\circ \times 36 \times 56 \times 63}{48 \times 24 \times 24 \times 14\frac{1}{8}} = 5\frac{9}{9} \text{ draft.}
\]

\[6\frac{8}{9} \div 5\frac{9}{9} = 1\frac{1}{15} \text{ lbs. at roving.}\]

\[140 : 14,400 : 1\frac{1}{15} : 118 \text{ lbs. weight of rove.}\]

Rove actually weighs 115/120 lbs.

From this is spun 10/14 lbs. Warp.
SACKING WEFT ARRANGEMENT.

Dollop 32 lbs. Breaker Clock = 10 yds.

Breaker Draft Arrangement.

\[
\frac{4' \times 72 \times 120 \times 120}{72 \times 18 \times 26 \times 93} = 12.03 \text{ draft.}
\]

\(12.03 \times 10 = 120.30\) yds. at front of breaker.

Finisher—10 ends into 1.

\[
\frac{4' \times 72 \times 120 \times 120}{72 \times 18 \times 26 \times 93} = 12.95 \text{ draft.}
\]

\(32 \times 10 \div 12.95 = 24.71\) lbs. weight of 120.30 yds. at front of finisher.

1st Drawing (Lawson’s Link Gill) 8 ends into 1.

\[
\frac{3 \frac{1}{3} \times 40 \times 70 \times 23}{20 \times 33 \times 2} = 4 \text{ draft.}
\]

\(24.71 \times 8 \div 4 = 49.42\) lbs. at 1st Drawing.

2nd Drawing (Push Bar) one end into one.

\[
\frac{2 \frac{1}{4} \times 66 \times 74 \times 50 \times 23 \times 35}{67 \times 20 \times 34 \times 39 \times 40 \times 11 \frac{1}{2}} = 4 \text{ draft.}
\]

\(49.42 \div 4 = 12.35\) at 2nd Drawing.

Roving (Rotary) one into one—(Lawson Roving).

\[
\frac{2 \frac{1}{4} \times 144 \times 74}{72 \times 20 \times 3} = 5.55 \text{ draft.}
\]

\(12.35 \div 5.55 = 2.22\) lbs. at roving.

Actual weight of rove is 240 lbs. From this we spin from 32 lbs. up to 44 lbs.
JUTE SPINNING.

When the rove bobbins are filled at the roving, they are taken off and put into a rove barrow. They are then taken to the spinning department, put upon the spinning frames, and it is here that the operation of spinning commences.

The spinning operation is performed by one machine. This machine is called a spinning frame. Spinning frames are very much of the same construction, they only vary in the size of the spindle and the pitch of the spindles. By the pitch of the spindle is meant the distance between the centre of each spindle; and in speaking of a spinning frame, we usually speak of the frame as being of 4 inch pitch, 4\(\frac{1}{2}\) inch traverse, 4\(\frac{1}{2}\) inch pitch, 4\(\frac{1}{2}\) inch traverse, and so on as the case may be. As already mentioned, the pitch of the frame is the distance between the centre of the spindles; and by the traverse is meant the length of the bobbin which is to be filled upon the frame. In the spinning of hessian warps and wefts three sizes of bobbins are commonly in use—3\(\frac{1}{2}\) inch, 4 inch, and 5 inch. The 3\(\frac{1}{2}\) inch bobbin is used to spin from 7 to 8 pounds warp; the 4 inch bobbin, from 9 to 12 pounds, and sometimes 16 pounds. The 5 inch bobbin is used to spin from 16 to 24 pounds per spynle. In the plan of the mill in this book the frames are all given 72 spindles, 4 inch pitch; but in a mill of from 5000 to 6000 spindles it is better to have a certain proportion of the spindles 3\(\frac{1}{2}\) inch, 4 inch, and 5 inch traverse; when this is the case, care should be taken to have all the frames made the same length, or nearly so, over all. This will keep up the uniform width of the passes from north to south, and to a considerable extent facilitate the regular traffic as well as add to the general appearance of this part of the mill.

The successful production of the yarn from a spinning frame depends more upon the worker in attendance (called a spinner) than any other machine in the mill. The frame may be in perfect order and mechanically correct, but everything will depend upon the ability of the spinner to produce good work, and a fair quantity of it. This ability can only be attained by long experience at this class of work.

There are three motions on the spinning frame:

First, - The twist arrangement.
Second, - The grist arrangement.
Third, - The traverse arrangement.
The twist arrangement of wheels fixes the amount of turns or twists per inch to be put upon the yarn being spun. The grist arrangement of wheels fixes the weight of the yarn—say, 7, 8, 9, or 10 pounds per spindle of 14,400 yards, usually termed a spindler. Whatever the size of yarn may be given, it is always understood that the spindler contains 14,400 yards (see yarn table in reeling chapter). The traverse arrangement, consisting of heart and heart motion wheel and pinion on the end of retaining roller, by the action of the lever from the heart (which is a form of eccentric or cam) to the traverse pulleys, which are fixed upon the traverse shaft, chains attached to these pulleys, and also to lever which is actuated by the eccentric or cam—commonly termed the heart motion—moves the bobbin board up and down. If the frame is for 4" bobbins, that means the traverse of the bobbin up and down will be 4 inches up and 4 inches down, and so on alternately. The form of the heart determines the shape of the bobbin. The usual practice is to shape the heart so that the bobbin will be thickest in the centre, and this makes the bobbin build better while filling. An illustration of the heart motion and arrangement of the traverse pulleys and chains is given, and also the calculation for the traverse.* The same heart or eccentric is used for 3½", 4", 4½", and 5" traverse, the difference being made in the lever and pulleys for each of these sizes. In the spinning frame it is of the utmost importance that the bands, or lists, as they are commonly termed, be kept in good order. If this band which drives the spindle is not kept uniformly tight, slack-twisted yarn will be the result. The broader the band you can work with the better; for 3½ inch spindles the band should be 1½ in. broad, 4 inch spindles 2 inches broad, and 4½ to 5 ins. 2¼ in. bands; the length of band required in an ordinary frame, 4 inch pitch, 4 inch traverse, is 65 inches. The pressing rollers should also have great care and attention bestowed upon them; and the frames in a large mill should be systematically gone over day by day, and the rollers carefully examined, and the bad ones—that is, those that are chipped or "off the truth"—taken out and turned in a turning lathe. The remaining point of importance to be mentioned is the adjustment of the rove plate over which the rove passes as it comes from the retaining roller to the drawing roller.

* See page 207 for illustration of Heart Motion and Traverse Arrangement.
INSTRUCTIONS AS TO THE WORKING OF ROVE PLATE ON JUTE SPINNING FRAME (See Page 213).

First, let it be understood that the movement backward and forward of the rove plate and conductor in a spinning frame is intended either to open out the twist of the rove or to keep it in for a certain length of time while the rove is passing between the retaining and drawing rollers. The slower the rove passes down from the retaining roller the longer time will be taken for the twist to come out of the rove; hence the reason for keeping the rove forward by the plate, and keeping the top half of conductor well back when the rove is passing quickly between retaining and drawing rollers, as in a heavy size more freedom is required by the rove to allow the twist to come out of it quickly, otherwise the rove "will run."

Again, when spinning a light size of yarn, 7 to 8 lbs. per spindles, you wish to keep the twist on the rove while passing between retaining and drawing rollers as long as you possibly can—within limits, of course—as in a light size, if you open up the twist of the rove too quickly as it comes off the rove plate to the bite of pressing and drawing rollers, it will tend to breakage of the yarn—particularly weft yarn.

Thus, for yarn, say, 8 lbs. weft, to allow the twist being kept on the rove, set the rove plate so that rove will rest easy on the front of conductor. This eases the strain down to the bite of pressing and drawing rollers, and saves the yarn from breaking where there is not much twist being put on, as in weft of the lighter weights.

Then, for 8 lbs. warp yarn, bring forward the plate a little, to allow the twist to come off the rove a little quicker than in the previous case. This will allow the yarn to draw more equally, and it will take on the twist better; and there is not so much danger of the yarn breaking with the twist that is put on warp yarns.

Then, for, say, from 12/14 lbs. warp and weft yarns, bring forward the rove plate about a ¼ of an inch from the position referred to in above instructions for 8 lbs. weft and warp, and let the rove touch the plate across its whole breadth. This putting forward the plate is intended to make the rove tighter between the retaining roller and conductor, and tends to keep the rove from "running," as it is termed. Then put back the rod from which the conductor is hung, so that the rove while passing through the conductor will only touch the back of
its lower half, the upper half of the length of conductor being kept about \(\frac{3}{4} \) clear of the rove as it comes over the rove plate. This position of rove plate, conductor rod, and conductor, allows the twist to come out off the rove in sufficient time to allow the drawing roller to put on the proper draft without breakage to the yarn or the "running" of the rove. Then, say, for 16/24 lbs. yarn, as the rove will in these sizes be heavier, and also be passing still faster through between retaining roller and drawing roller the distance forward of rove plate will have to be slightly increased, and the conductor rod also put a little further back, than in the case of the 12/14 lbs. yarn.

A new arrangement of gear attached to the rove plate of spinning frames made by Messrs Fairbairn, Naylor, Maepherson, & Co., Limited, saves much time. All the rove plates are fixed upon one rod, and by the movement of a handle placed at driving end of frame the rove plates across the whole length of frame are moved at one time, and can be readily set to the position required for the yarn being spun. An illustration is given (see page 213).

*With reference to the pressure on the pressing rollers, you will require more pressure on the rollers for 24 lbs. than for 8/12 lbs.; but one cannot be too careful as to the pressure put upon the pressing rollers. If more pressure is being put on the rollers than is absolutely necessary, this means more horse-power, which, in a mill of 5,000 spindles, might be—and, I believe, often is—a very serious thing in regard to consumpt of coal, oil, &c. This pressing of the rollers is one of the things that must be learned by care, attention, and experience.

Explanation of the term the rove "running"

If the twist is not entirely out of the rove by the time it is actually at the bite of the drawing and pressing rollers, the rove will "run"—that is, the rove will be caught by the pressing and drawing rollers and dragged down at the surface speed of the drawing roller. The pressure on the retaining roller will not keep it back. This, of course, is owing to the strength of the rove, the twist not being out of it. By the time the rove is in the bite, it must be in the form of a thin sliver. The causes for this "running" may be various. If the pressing roller against the retaining roller gets out of order this would cause it; but it mostly happens when the rove plate and conductor are not properly set for the size of the yarn being spun. For example, if you attempted to spin, say 20 lbs. with rove plate and conductor set to spin 8 lbs., the rove would certainly "run." This, of course,

See pages 210 and 211 for illustrations of the methods adopted to apply pressure to pressing rollers.
will be readily gathered from what has been said as to the setting of rove plate and conductor, for the different sizes; and in the extreme case which we have taken as an example, the running of the rove would in that case be caused by the increased speed of the rollers drawing the rove down before the twist was properly out; and this, in a certain degree, is more or less always the cause of the rove “running”—always, of course, making certain that the pressing roller, drawing roller, &c., are in proper working order.

SPEED OF SPINNING FRAME SPINDLES.

So far as the speed of the spindles is concerned, very much depends upon the size of them, if a fair speed is to be kept upon the frame without damage to the spindles. Very many of the spindles are made too light both in the haft and in the blade. A heavy collar or neck, fitted tight into the spindle rail, will also conduce very much to the life of the spindle, if a fair speed is being put upon it, and if that speed is to be kept on continuously without damage. Whenever any lift is noticed upon the spindle, the neck should be knocked down, to take the lift off. Nothing will damage the spindles more than the neck slack in the neck rail, or the cone of the spindle being allowed to wear in the neck until the spindle has a lift between the neck and the step. It is imperative that the neck be kept close down on the cone—this is the secret of the life of the spindle. The following speeds are given to show what is the regular speed to be put upon the different sizes of spindles for the different sizes and twists of yarn being spun.

- $3\frac{3}{8}$" spindle, spinning 8 lbs. hard warp, say, 5½ to 6 turns per inch, speed spindle = 3,500 revolutions per minute.
- $3\frac{1}{4}$" spindles, spinning 8 lbs. starching warp, say, 4½ turns per inch = 3,100 revolutions per minute.
- 4" spindles, spinning 8 to 10 lbs. weft = 2,700 revolutions per minute.
- 12 to 16 pounds = 2,600 revolutions per minute.
- 18 to 24 pounds weft = 2,500 revolutions per minute.
SPINNING SPINDLE AND FLYER.

4" Traverse—Half Size.

4" Bobbin.
THE PRODUCTION FROM THE SPINNING FRAMES.

So far as the production of the spinning frames is concerned, everything here, as in the roving in the preparing flat, depends upon the organization, steadiness, care, and attention of the workers from the overseer onwards. Without organization, perseverance, and the individual attention of the workers, the production will suffer. As in every department of the mill, cleanliness here is of the utmost importance. Without cleanliness you cannot be doing much good in the spinning department. If you are clean in this department you may not be doing all that you might desire to do; but if you are dirty you may rely upon it, you cannot be doing very much good.

The question of production in this department is considered by many the most important in the mill. I think, however, that the production from the preparing machinery is quite as important as the production from the spinning machinery. We very seldom hear anything of what the production of the preparing machinery is. The production from a roving frame is of quite as much importance as the production of a spinning frame. Many things go to decide the question of production in the spinning department. First, the question of twist is an important factor in the production. If a mill be spinning a large proportion of weft yarns, the result will, or ought to be, a much larger production than from a mill working a large proportion of warp yarn. The cause of this difference of production is, of course, owing to the difference between weft and warp twist. A frame which would do 60 spindles of 8 or 9 pounds hessian weft, the same frame spinning warps of the same quality would not do much more than 50 spindles. While it is perfectly true that the twist plays an important part in the question of production, there are other causes which will add to it, and the want of which will just as readily tend to the loss of production. In speaking of production in this department, it is great folly to speak of what is the best that can be done in the course of a day, a week, or even a month. The only correct average for the production of a spinning department is to take the average over a year. We very seldom here what the production for a year is, but we often hear of what we have done in a day—shall we say a very fine day, with the weather and everything else in favour of a good result. Strangely enough, we never hear how much production has been taken off in the morning. If a fair production is being made—say, 4 to 4½ spindles per spindle, in a mill spinning warps and wefts, the whole of which is
to be woven in a factory which may be a part of the same works, an average of 4 to 4½ spindles per spindle for all the year round will be a fair production; and to do this, will require the jute not only to be of the quality indicated in the chapter upon batch, but it will require all the points which the reader’s attention was directed to in the introductory chapter—namely, punctuality, cleanliness, and organization. Without determination to be punctual the production suffers, and without the same determination to be clean, you will not have much chance to get this production; and without organization, which should be the constant care and attention of those in charge of this department, you will not have very much chance of the daily and weekly output being of any regularity worthy of the name. But given these points, and if attention and consideration be bestowed upon them by all those interested, a very fair and reasonable production, day by day, may be looked for; and will, with perseverance, give to a mill an average for a year which will compare favourably with the ordinary run of a jute spinning mill. While we have said all this on the question of production, no one, not even an expert, can very well speak upon the production of a jute mill without thoroughly understanding the kind of work that is being done. The production of a spinning department might seem to an outsider fairly good; and if investigated by an expert, there would be nothing special about it. This, you will see, might be the case from what has already been said as to the twist being put upon the yarn; while it is also true that the production of a mill might seem to an outsider a very ordinary one—they might say it was very poor, but which, upon investigation, might be very good; this being also to some extent depending upon the class of yarn being spun. The real success, so far as production is concerned, will be found by every one who is personally interested doing every day their very best, and if all do this, the best results will be sure to follow.

When the bobbins have been filled they are put into boxes and wheeled away on a bobbin barrow to either the cop-winding, the warp-winding, or the reeling departments. To see that the empty bobbins are kept steadily on the road back from these departments to the spinning frames is not the least important point to be kept before the people in charge of the spinning department. Every empty bobbin should be set up in its place ready to be handled by the shifters when they come to shift the frames. If this is not done endless annoyance and confusion, not to say anything of loss of time, will be the result.
Illustrations are given of spinning frames by two makers. The Messrs Low, of Monifieth, make almost a speciality of this machine; and as makers of frames, they stand in the front rank. I am indebted to them for their kindness in giving me permission to illustrate their spinning frame. The following pages give the particulars of gearing for twist, and draft calculations by both makers. There is also given the heart and traverse motion arrangement by both firms. The diagrams will be of much service in showing the whole arrangement of this part of a spinning frame, which is so important to the proper filling of the bobbin.

TWIST OF HESSION YARNS.

The twist of these yarns may vary according to the quality of the jute and the quality of the hessian being made; but for a good standard hessian, in a mill where it is the aim and intention to produce the same all the year round, there should be no necessity for varying the twist; and I am convinced, from experience, that it is unnecessary and should never be permitted on any consideration. Twist is money, and this should never be lost sight of. But apart from that, tampering with the twist of the yarn, either warp or weft, means tampering with the quality and appearance of the cloth. You will not have any suggestion as to softening the twist, it will always be the other way—"harden it up." This, of course, reacts upon the finish of the cloth, and may lead to serious trouble, on the delivery of the goods. But, as has been already said, if there is an effort all round to keep the quality of the batch as equal as possible, there will not be any necessity to tamper with the twist, which can only lead to loss of production in the first place, and trouble as to the quality of the goods manufactured from the same.

The following twists are given as an illustration of the twist put upon these yarns when they are to be worked into cops and wound on a bobbin warp winding machine, and woven at once in a factory adjoining a mill. If the yarns, weft and warp, are to be reeled and bundled, they must be coped and wound again; a little more twist may sometimes be necessary, but not much—say, not more than 3% on the weft, and 2% on the warp pinion.
TWIST OF HESSIAN YARNS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3·80</td>
<td>7</td>
<td>4·49</td>
<td>8</td>
<td>5(\frac{3}{4}) to 6</td>
</tr>
<tr>
<td>8</td>
<td>3·44</td>
<td>8</td>
<td>4·28</td>
<td>10</td>
<td>4·87</td>
</tr>
<tr>
<td>9</td>
<td>3·14</td>
<td>9</td>
<td>4·1</td>
<td>14</td>
<td>3·81</td>
</tr>
<tr>
<td>10</td>
<td>2·89</td>
<td>10</td>
<td>3·81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2·58</td>
<td>12</td>
<td>3·65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2·40</td>
<td>14</td>
<td>3·13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2·19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1·90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1·68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usual weft sizes for hessians, 7/14 lbs.
\(\text{warp}\) \(\text{7/9 lbs.}\)

Spinning frame, 4" pitch, 4" traverse (Fairbairn).

Twist arrangement and calculations—

Diameter of drawing roller, 4".

Cylinder pinion, 28 teeth.

\[
\begin{array}{c}
\text{A} \\
\times \text{C} \\
\times \frac{\text{E}}{\text{B}} = \text{twist per inch}
\end{array}
\]

\[
\begin{array}{c}
\text{D} \\
\times \text{F} \\
\times \frac{\text{G}}{\text{E}}
\end{array}
\]

In this case—

A = diameter of cylinder.
B = \(\text{spindle werve.}\)
C = wheel of double intermediate, on which is twist pinion.
D = cylinder pinion.
E = drawing roller wheel.
F = twist pinion.
G = circumference of drawing roller.

\[
\begin{array}{c}
\text{Diameter,} \\
\text{D. Roller.}
\end{array}
\]

\[
\begin{array}{c}
4" \\
10 \times \frac{90}{28} \times \frac{120}{60 \times 12 \cdot 56} = 2\cdot92 \text{ twists per inch,}
\end{array}
\]

\[
\begin{array}{c}
1\frac{1}{2} \\
10 \times \frac{90}{28} \times \frac{120}{60 \times 12 \cdot 56} = 175\cdot484 \text{ constant number for twist}
\end{array}
\]

\[
\begin{array}{c}
3\frac{1}{2} \\
10 \times \frac{90}{28} \times \frac{120}{60 \times 12 \cdot 56} = 178\cdot179 \text{ constant number.}
\end{array}
\]

\[
\begin{array}{c}
3\frac{1}{2} \\
10 \times \frac{90}{28} \times \frac{120}{60 \times 12 \cdot 56} = 181\cdot107 \text{ constant number.}
\end{array}
\]

\[
\begin{array}{c}
3\frac{1}{2} \\
10 \times \frac{90}{28} \times \frac{120}{60 \times 12 \cdot 56} = 184\cdot133 \text{ constant number.}
\end{array}
\]

\[
\begin{array}{c}
1\frac{1}{2} \\
10 \times \frac{90}{28} \times \frac{120}{60 \times 12 \cdot 56} = 11\cdot67
\end{array}
\]
Diameter of drawing roller, 4".

Cylinder pinion, 34 teeth.

Twist arrangement and calculations—

Spinning frame 4" pitch, 4" traverse (Fairbairn).
Diameter, D. Roller.

\[
\frac{10}{1\frac{3}{4}} \times \frac{90}{34} \times \frac{120}{\text{Twist}} = 165.161 \text{ constant number.}
\]

Spinning frame, 4" pitch, 4" traverse (Fairbairn).

Draft arrangement—

Diameter of drawing roller, 4".

,, retaining roller, 2\frac{1}{6}".

Double intermediate, 7\frac{1}{2}".

\[
\begin{array}{ccc}
A & C & E \\
B & D & F \\
\end{array}
\]

= draft.

In this case—

A = diameter of drawing roller.

B = drawing roller pinion or grist pinion.

C = double intermediate.

D = retaining roller wheel.

F = diameter of retaining roller.

Thus—

Diameter, D. Roller.

\[
\frac{4}{45} \times \frac{90}{44} \times \frac{111}{2\frac{1}{6}} = 9.08 \text{ draft between drawing roller and retaining roller.}
\]

\[
\frac{4}{44} \times \frac{90}{2\frac{1}{6}} = 363.272 \text{ constant number for draft.}
\]

G. p.

\[
\begin{array}{ccc}
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{3}{4} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
\end{array}
\]

= 357.596 constant number.

G. p.

\[
\begin{array}{ccc}
3\frac{2}{3} & 90 & 111 \\
3\frac{3}{4} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
\end{array}
\]

= 351.920 constant number.

G. p.

\[
\begin{array}{ccc}
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
\end{array}
\]

= 346.244 constant number.

G. p.

\[
\begin{array}{ccc}
3\frac{2}{3} & 90 & 111 \\
3\frac{3}{4} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
\end{array}
\]

= 340.568 constant number.

G. p.

\[
\begin{array}{ccc}
3\frac{2}{3} & 90 & 111 \\
3\frac{3}{4} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{2}{3} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
3\frac{1}{6} & 90 & 111 \\
\end{array}
\]

= 334.892 constant number.
| Diameter,
D. Roller.	3\(\frac{3}{8}\)	90	111
G. p.	44	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	44	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	44	2\(\frac{1}{2}\)	

Spinning frame, 4" pitch, 4" traverse (Fairbairn).

Draft arrangement—

Diameter of drawing roller, 4".

,, retaining roller, 2\(\frac{1}{2}\)".

Double intermediate, 2\(\frac{3}{8}\)".

| Diameter,
D. Roller.	4	90	111
G. p.	60	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	60	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	60	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	60	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	60	2\(\frac{1}{2}\)	
3\(\frac{3}{4}\)	90	111	
G. p.	60	2\(\frac{1}{2}\)	
DRY SPINNING FRAME.

Sectional elevation showing gearing at end opposite to the driving pulleys.

Scale $\frac{1}{16}$th.

(For Diagram see page 204).

A A Drawing roller wheels, 44 teeth.

B B Stud wheels, 90 teeth.

C C Draught changes, 33 to 60 teeth.

D D Retaining roller wheels, 111 teeth.

E E Pinions on retaining rollers for driving heart wheels, 11 teeth.

F F Heart wheels, 120 teeth.
DRY SPINNING FRAME.

Sectional Elevation showing Gearing at end opposite to the Driving Pulleys.

Scale 1/8th.
DRY SPINNING FRAME.

Sectional elevation showing gearing at pulley end.

Scale $\frac{1}{16}$th.

(For diagram see page 206.)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A</td>
<td>Cylinder pinions</td>
<td>...</td>
</tr>
<tr>
<td>B B</td>
<td>Intermediates</td>
<td>...</td>
</tr>
<tr>
<td>C C</td>
<td>Twist wheels</td>
<td>...</td>
</tr>
<tr>
<td>D D</td>
<td>Twist changes</td>
<td>...</td>
</tr>
<tr>
<td>E E</td>
<td>Drawing roller wheels</td>
<td>..</td>
</tr>
</tbody>
</table>
DRY SPINNING FRAME.

Sectional Elevation showing Gearing at Pulley End.

Scale 1/10th
1st. Traverse of Lever at A—
\[105'' : (12 \frac{3}{4} \times 10 \frac{3}{4}) : 5'' : 11'' \text{ at A.} \]

2nd. Traverse of Lever at B—
\[6 \frac{1}{16}'' : 2 \frac{5}{8}'' : 11'' : 3.9514—\text{say 4''}. \]

3rd. With pulley 10'' diameter, traverse at B—
\[5 \frac{7}{16}'' : 2 \frac{6}{8}'' : 11'' : 4.9—\text{say 5''}. \]
BOBBIN.

4" Traverse (Full Size)—Showing Shape of Bobbin when Full.
AUTOMATIC MOTION FOR DRAWING ROLLERS.

AUTOMATIC MOTION FOR DRAWING ROLLERS OF DRY SPINNING FRAMES.

(Fairbairn).

Scale 3" to One Foot.

Note.—The movement of drawing roller end ways is 1/4" in each direction.
ARRANGEMENT OF SPRING FOR PRESSING ROLLER SPINNING FRAME.

Scale 1\(\frac{1}{2}\) to One Foot.

ARRANGEMENT OF LEVER AND WEIGHT FOR PRESSING ROLLER OF SPINNING FRAME.

Scale 1\(\frac{1}{2}\) to One Foot.

For pressure on pressing roller. Proportion of levers—
Arm of pressing roller = 1\(\frac{1}{2}\)". Arm of weight = 10".

\[
\frac{1\frac{1}{2}}{1} = \frac{1}{10} \text{ and if weight is 12 lbs. then—}
\]

\[
\frac{12}{6.6} = 1.8 \text{ lbs. = pressure upon two balls.}
\]
ELEVATION OF SPINNING FRAME BEND.

Showing Drawing Roller and Pressing Roller with Lever and Spiral Spring

Scale 1\(\frac{1}{4}\)" to One Foot

For pressure on pressing roller. Proportion of levers—

Arm of pressing roller = 1\(\frac{1}{2}\)". Arm of spring = 8\(\frac{1}{2}\)".

\[
\frac{1\frac{1}{2}}{1} = \frac{1\frac{1}{2}}{8\frac{1}{2}} = \frac{8\frac{1}{2}}{5.6}
\]

12 \times 5.6 = 62.2 lbs. = pressure upon two balls.

ELEVATION OF SPINNING FRAME BEND.

Showing Retaining Roller and Slip Roller with Lever and Weight.

Scale 1\(\frac{1}{4}\)" to One Foot.

For pressure on slip roller. Proportion of levers—

Arm of slip roller = 1\(\frac{1}{8}\)". Arm of weight = 7\(\frac{1}{2}\)".

\[
\frac{1\frac{1}{8}}{1} = \frac{1\frac{1}{8}}{6.6} = \frac{6.6}{6.6}
\]

6 \times 6.6 = 39.6 lbs. = pressure upon two balls.
AUTOMATIC MOTION FOR SPINNING FRAME DRAWING ROLLERS.

Scale 3" to One Foot.

(Messrs Thomson, Son, & Co.)
ROVE PLATE ARRANGEMENT.

Scale 3" to One Foot.

(Fairbairn)

A = Drawing Roller.
B = Pressing "
C = Retaining "
D = Slip "

ROVE CONDUCTOR.
Full Size.

For explanation of the working of Rove Plate see page 192.
SPINNING FRAME.

4" TRAVERSE—(Low, Monifieth)

ELEVATION PASS END SHOWING GRIST GEARING.

SCALE 1/15TH.

Diameter of Drawing Roller, 4"
" Retaining Roller, 2 1/2"
Pinion on Drawing Roller, 30 teeth.
Wheel on Retaining Roller, 80 teeth.
Double Intermediate, 70/35 teeth.
SPINNING FRAME.

4" Traverse—(Low, Monifieth).

Elevation Pass End showing Heart Motion Arrangement for Traverse of Bobbin.

Scale 1/16th.
SPINNING FRAME.

4" Traverse—(Low, Monisteth).

Elevation Driving End showing Twist Gearing.*

Scale 1/5th.

A = Cylinder Pinion.
B = Diameter of Cylinder.
C = Wheel of double intermediate.
D = Twist Pinion.
E = Drawing Roller Wheel.
F = Diameter of Drawing Roller.

*See page 220.
SPINNING FRAME.

Scale 3" to One Foot.

AUTOMATIC MOTION FOR DRAWING ROLLER.

(Low, Monifeth.)
SPINNING FRAMES.

The following particulars show the general practice as to gearing, &c., followed by Messrs Low, Monifieth, in the construction of their Spinning Frames:

For 4" traverse frames they have to vary some of the parts considerably, to meet different requirements, and they have gable patterns 5' 3"—5' 6" and 5' 8" wide.

Then for Twist—The Spindle Werve is 1½" and sometimes 1¾" diameter.
Cylinder, 9" or 10" diameter.
Cylinder Pinions, 24—28—30 teeth.
Intermediate Stud Wheel, 150 or 156 teeth.
Twist Wheel, 80 teeth.
Changes, from 25 to 50 teeth.
Drawing Roller Wheel, 114 teeth.
Drawing Roller Boss, 4" diameter.

The above is their ordinary practice, and the drawings are made to it—but they sometimes make the Twist Wheel 90 teeth, and Drawing Roller Wheel 120 teeth, which increases the size of the Cylinder Pinion somewhat, and this is on the right side.

For the Draft—Drawing Roller Boss, 4".
Changes at pass end, 25 to 50 teeth.
Stud Wheel, 70 teeth.
Changes on nave of do., 25 to 50 teeth.
Retaining Roller Wheel, 80 teeth.
Retaining Roller Boss, 2½" diameter.

The above is for a 10" Reach Bend, but when 9" reach is used, they generally put in the Stud Wheel 60 teeth instead of 70, as the latter fills up the shorter space rather too much.

For the Heart or Lifter Motion—Pinion of 11 teeth on Retaining Roller, with 128 or 132 teeth on nave of Heart.

The Chain Pulley on Lifter Shaft is 11¾" diameter, and the Bosses on this Shaft are 3½" to 4" diameter.
DRAFT ARRANGEMENT.

Spinning Frame, 4" pitch, 4" Traverse. Low, Monifith.
Frame, 10" reach.
Diameter of drawing roller, 4".
" retaining " 2½".
Pinion on drawing " change.
Wheel on retaining " 80 teeth.
Double intermediate " 5/6 or 7/8.

\[
\begin{array}{ccc}
A & C & E \\
- & - & - = \text{draft.}
\end{array}
\]

\[
\begin{array}{ccc}
B & D & F \\
\end{array}
\]

A = Diameter of Drawing Roller.
B = Grist or Change Pinion.
C = Double Intermediate.
D = Wheel on Retaining Roller.

\[
\frac{4}{30} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 6.68 \text{ draft.}
\]

\[
\frac{4}{30} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 199.1 \text{ constant number for draft.}
\]

\[
\frac{3 \frac{1}{2}}{45} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 196 \quad " \quad " \quad "
\]

\[
\frac{3 \frac{1}{2}}{45} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 192.88 \quad " \quad " \quad "
\]

\[
\frac{3 \frac{1}{2}}{45} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 189.77 \quad " \quad " \quad "
\]

\[
\frac{3 \frac{1}{2}}{45} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 186.6 \quad " \quad " \quad "
\]

\[
\frac{3 \frac{1}{2}}{45} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 183.55 \quad " \quad " \quad "
\]

\[
\frac{3 \frac{1}{2}}{45} \times \frac{70}{45} \times \frac{80}{2 \frac{1}{2}} = 180.44 \quad " \quad " \quad "
\]
220 SPINNING FRAMES.

\[
\begin{align*}
3_{\frac{1}{8}} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 177.83 \text{ constant number for draft.} \\
C & 45 \quad 2\frac{1}{2} \\
3\frac{1}{2} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 174.22 \quad " \quad " \quad " \\
C & 45 \quad 2\frac{1}{2} \\
\text{Double intermediate, } \frac{5}{8} & \\
4 & 70 \quad 80 \\
\times & \quad \times \quad = \quad 256 \text{ constant number for draft.} \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{3}{8} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 252 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{1}{8} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 248 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{1}{16} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 244 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{1}{8} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 240 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{1}{16} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 236 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{3}{8} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 232 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{1}{16} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 228 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
3\frac{1}{8} & 70 \quad 80 \\
\times & \quad \times \quad = \quad 224 \quad " \quad " \quad " \\
C & 35 \quad 2\frac{1}{2} \\
\end{align*}
\]

TWIST ARRANGEMENTS.

Spinning Frame, 4" pitch, 4" traverse. Low, Monifith.
Cylinder, 10" diameter.
Spindle Werve, 1\frac{3}{4}".
Cylinder Pinions, 24—28—30 teeth.
Twist Wheel, 80 teeth, or Double Intermediate.
Drawing Roller Wheel, 114 teeth.
Diameter of Drawing Roller, 4".
A \times \frac{C}{D} \times \frac{E}{F} = \text{Twists per inch.}

A = \text{Diameter of Cylinder}
B = \text{Spindle Werve.}
C = \text{Twist Wheel.}
D = \text{Cylinder Pinion.}
E = \text{Drawing Roller Wheel.}
F = \text{Twist Pinion.}
G = \text{Circumference of Drawing Roller.}

Diameter of Drawing Roller.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Twists per inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{50 \times 12\frac{56}{6}} = 3.45</td>
</tr>
<tr>
<td>3\frac{1}{2}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{12\times 12-37} = 175-54</td>
</tr>
<tr>
<td>3\frac{7}{8}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{12\times 12-17} = 178-42</td>
</tr>
<tr>
<td>3\frac{1}{2}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{11\times 11-97} = 181-40</td>
</tr>
<tr>
<td>2\frac{3}{4}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{11\times 11-79} = 184-17</td>
</tr>
<tr>
<td>3\frac{1}{2}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{11\times 11-58} = 187-51</td>
</tr>
<tr>
<td>3\frac{3}{8}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{11\times 11-38} = 190-81</td>
</tr>
<tr>
<td>3\frac{1}{2}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{11\times 11-19} = 194-04</td>
</tr>
<tr>
<td>3\frac{1}{2}"</td>
<td>10 \times \frac{80}{24} \times \frac{1+4}{10\times 10-99} = 195-76</td>
</tr>
</tbody>
</table>
Twist Arrangement—Cylinder Pinion, 28 teeth.

Diameter of Drawing Roller.

\[
\begin{array}{ccc}
4^\circ & 10 & 80 \quad 114 \\
\times & \times & \times \\
1\frac{3}{4} & 28 & \text{Twist pinion} \times 12 \cdot 56 \\
\end{array}
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{3}{16}^\circ
\]

\[
\frac{1}{4} \quad 28 \quad \times 12 \cdot 97
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{3}{8}^\circ
\]

\[
\frac{1}{4} \quad 28 \quad \times 11 \cdot 79
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{1}{4}^\circ
\]

\[
\frac{1}{4} \quad 28 \quad \times 11 \cdot 58
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{1}{8}^\circ
\]

\[
\frac{1}{4} \quad 28 \quad \times 11 \cdot 38
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{1}{8}^\circ
\]

\[
\frac{1}{4} \quad 28 \quad \times 11 \cdot 19
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{1}{8}^\circ
\]

\[
\frac{1}{4} \quad 28 \quad \times 10 \cdot 99
\]

Twist Arrangement—Cylinder Pinion, 30 teeth.

Diameter of Drawing Roller.

\[
\begin{array}{ccc}
4^\circ & 10 & 80 \quad 114 \\
\times & \times & \times \\
1\frac{3}{4} & 30 & \times 12 \cdot 56 \\
\end{array}
\]

\[
10 \quad 80 \quad 114
\]

\[
3\frac{3}{16}^\circ
\]

\[
\frac{1}{4} \quad 30 \quad \times 12 \cdot 97
\]

\[
0 \quad 80 \quad 114
\]

\[
3\frac{3}{8}^\circ
\]

\[
\frac{1}{4} \quad 30 \quad \times 12 \cdot 17
\]
SPINNING FRAMES.

Diameter of Drawing Roller.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>10</th>
<th>80</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(\frac{1}{8})</td>
<td>(\frac{1}{4})</td>
<td>30</td>
<td>(11\cdot97)</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>(\frac{1}{4})</td>
<td>30</td>
<td>(11\cdot79)</td>
</tr>
<tr>
<td>3(\frac{1}{8})</td>
<td>(\frac{1}{4})</td>
<td>30</td>
<td>(11\cdot58)</td>
</tr>
<tr>
<td>3(\frac{5}{8})</td>
<td>(\frac{1}{4})</td>
<td>30</td>
<td>(11\cdot38)</td>
</tr>
<tr>
<td>3(\frac{1}{8})</td>
<td>(\frac{1}{4})</td>
<td>30</td>
<td>(11\cdot19)</td>
</tr>
<tr>
<td>3(\frac{3}{8})</td>
<td>(\frac{1}{4})</td>
<td>30</td>
<td>(10\cdot99)</td>
</tr>
</tbody>
</table>

= 145.12 Constant No. for Twist.

= 147.34 " "

= 150.01 " "

= 151.77 " "

= 155.24 " "

= 158.06 " "

TWIST ARRANGEMENT.

Spinning Frame, 4" pitch, 4" traverse. Low, Monifith.

Cylinder, 10" diameter.

Spindle Werve, 1\(\frac{1}{4}\)" diameter.

Cylinder Pinions, 28—30 teeth.

Twist Wheel, 90 teeth.

Drawing Roller Wheel, 120 teeth.

Diameter of Drawing Roller, 4"

<table>
<thead>
<tr>
<th>Diameter</th>
<th>10</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>(\frac{1}{4})</td>
<td>28</td>
<td>(12\cdot56)</td>
</tr>
<tr>
<td>3(\frac{1}{8})</td>
<td>(\frac{1}{4})</td>
<td>28</td>
<td>(12\cdot37)</td>
</tr>
<tr>
<td>3(\frac{5}{8})</td>
<td>(\frac{1}{4})</td>
<td>28</td>
<td>(12\cdot17)</td>
</tr>
<tr>
<td>3(\frac{3}{8})</td>
<td>(\frac{1}{4})</td>
<td>28</td>
<td>(11\cdot97)</td>
</tr>
</tbody>
</table>

= 175.48 Constant No. for Twist.

= 178.17 " "

= 181.10 " "

= 184.13 " "
Diameter of Drawing Roller

<table>
<thead>
<tr>
<th>Diameter</th>
<th>10</th>
<th>90</th>
<th>120</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(\frac{3}{4})"</td>
<td>1 (\frac{3}{4}) \times \frac{90}{28} \times \frac{120}{11.79} = 187.10 \text{ Constant No. for Twist.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{4})"</td>
<td>1 (\frac{1}{4}) \times \frac{90}{28} \times \frac{120}{11.58} = 190.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{8})"</td>
<td>1 (\frac{1}{8}) \times \frac{90}{28} \times \frac{120}{11.38} = 193.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{3}{8})"</td>
<td>1 (\frac{3}{8}) \times \frac{90}{28} \times \frac{120}{11.19} = 196.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{8})"</td>
<td>1 (\frac{1}{8}) \times \frac{90}{28} \times \frac{120}{10.99} = 200.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Twist Arrangement — Cylinder Pinion, 30 teeth.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>10</th>
<th>90</th>
<th>120</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>1 (\frac{3}{4}) \times \frac{90}{30} \times 12.56 = 163.78 \text{ Constant No. for Twist.}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{8})"</td>
<td>1 (\frac{1}{8}) \times \frac{90}{30} \times 12.37 = 166.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{3}{8})"</td>
<td>1 (\frac{3}{8}) \times \frac{90}{30} \times 12.17 = 169.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{2})"</td>
<td>1 (\frac{1}{2}) \times \frac{90}{30} \times 11.97 = 171.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{3}{4})"</td>
<td>1 (\frac{3}{4}) \times \frac{90}{30} \times 11.79 = 174.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{1}{8})"</td>
<td>1 (\frac{1}{8}) \times \frac{90}{30} \times 11.58 = 177.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(\frac{3}{8})"</td>
<td>1 (\frac{3}{8}) \times \frac{90}{30} \times 11.38 = 180.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diameter of Drawing Roller.

\[
\begin{align*}
3\frac{7}{16}'' & \times \frac{10}{30} \times \frac{90}{119} = 183.83 \text{ Constant No. for Twist.} \\
3\frac{1}{2}'' & \times \frac{10}{30} \times \frac{120}{1099} = 187.18 \text{ } \\
\end{align*}
\]

Twist Arrangement—Cylinder Pinion, 24—28—30 teeth.

Cylinder, 9'' diameter.

Spindle Werve, 1\frac{3}{8}'' diameter.

Cylinder Pinions, 24—28—30 teeth.

Twist Wheel, 80 teeth.

Drawing Roller Wheel, 114 teeth.

Diameter of Drawing Roller, 4''.

Diameter of Drawing Roller.

\[
\begin{align*}
4'' & \times \frac{9}{24} \times \frac{80}{12.56} = 167.56 \text{ Constant No. for Twist.} \\
3\frac{11}{16}'' & \times \frac{9}{24} \times \frac{80}{12.37} = 170.13 \text{ } \\
3\frac{5}{8}'' & \times \frac{9}{24} \times \frac{80}{12.17} = 172.93 \text{ } \\
3\frac{5}{8}'' & \times \frac{9}{24} \times \frac{80}{11.97} = 175.82 \text{ } \\
3\frac{13}{16}'' & \times \frac{9}{24} \times \frac{80}{11.79} = 178.50 \text{ } \\
3\frac{3}{8}'' & \times \frac{9}{24} \times \frac{80}{11.58} = 181.74 \text{ } \\
3\frac{1}{16}'' & \times \frac{9}{24} \times \frac{80}{11.38} = 184.93 \text{ } \\
3\frac{1}{16}'' & \times \frac{9}{24} \times \frac{80}{11.19} = 187.07 \text{ } \\
\end{align*}
\]
Diameter of Drawing Roller.

\[
3\frac{1}{2} \times \frac{9}{1} \times \frac{80}{24} = 191.50 \text{ Constant No. for Twist.}
\]

Twist Pinion—Cylinder Pinion, 28 teeth.

Diameter of Drawing Roller.

\[
4^\circ \times \frac{9}{1} \times \frac{80}{28} = 143.62 \text{ Constant No. for Twist.}
\]

\[
3\frac{1}{6} \times \frac{9}{1} \times \frac{80}{28} = 145.83
\]

\[
3\frac{3}{8} \times \frac{9}{1} \times \frac{80}{28} = 148.22
\]

\[
3\frac{1}{6} \times \frac{9}{1} \times \frac{80}{28} = 150.70
\]

Twist Pinion—Cylinder Pinion, 30 teeth.

Diameter of Drawing Roller.

\[
4^\circ \times \frac{9}{1} \times \frac{80}{30} = 134.46
\]

\[
3\frac{1}{6} \times \frac{9}{1} \times \frac{80}{28} = 153.00
\]

\[
3\frac{3}{8} \times \frac{9}{1} \times \frac{80}{28} = 155.78
\]
Diameter of Drawing Roller.

<table>
<thead>
<tr>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3\frac{1}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{2}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{3}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{1}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{2}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{1}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{2}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{3}{8}^\circ)</td>
</tr>
<tr>
<td>(3\frac{1}{8}^\circ)</td>
</tr>
</tbody>
</table>

COTTON BELT JOINT.

Showing Method adopted for fixing—Rivets used $\frac{3}{8}$", No. 6.
THE DRIVING OF THE SPINNING FRAME.

The steadiness of the drive to the Spinning Frame Spindles is of much importance, and it will always be observed that when a pair of engines are working together driving a mill, the driving will be much steadier than when working with a single engine. A 72 Spindle Frame, 4 inch pitch, 4 inch traverse, will require a belt 4 inches broad and 80 feet long, according to the plan of mill given in this book. At one time all the belts used in jute mills were made of leather, but this is not now the case. Many mills work cotton belting. This belt has many advantages over leather for driving jute mill machinery; not only is it cheaper, but it runs much smoother, owing to the absence of joints. There is only one joint in the belt. This joint is made very easily, and in a much shorter time than you can make a sewed joint. The cost of the six copper rivets and washers is trifling compared with the price of belt laces. This is a diagram showing the form of joint used largely for Spinning Frame Belts made of cotton solid woven (see diagram page 228).

These belts will drive the Frame, and not require to be kept so tight as leather belts. They do not require nearly so much attention and upkeep as leather belts do, the laces for which are a serious matter, as the average life of a belt lace of good quality is only about 21/3 months. A cotton belt will run for about 6/8 months without anything being done to the joint, and it will run from 4/5 years with very little trouble and without much expense. At the end of that time there will not be more than two or three joints in the belt. During that period a leather belt will have cost something, if it is still running, in the shape of laces, and there will be rather more than two or three joints in it. It should be always borne in mind whether the belt is made of leather or cotton, that the guide pulleys should be properly set to the driving drum and to the driving pulleys of frame. On this depends in a great measure the life of a belt. Much destruction is caused to belts by the guides being improperly set, throwing an unnecessary strain and consequent wear upon the edges. This, of course, ruins the belt whether of leather or cotton. If the guide pulleys are correctly set to the driving pulley the "belt fork" will never touch the belt except when required to shift it from one pulley to another. When the belt is running on either pulley it should be quite free, and should not press against the side of belt fork. This can be easily accomplished if the guide is set as described.
INSTRUCTIONS FOR SETTING GUIDE PULLEYS FOR SPINNING FRAME BELTS.

(See Diagram page 231).

In this diagram the arrow at A shows the direction the belt is running on the drum D. This is called the “leading side” of the belt. The edges of the guide pulley from which the belt is running on the drum should be set in line with the edge of the drum. If the guide is 4 inches broad and the drum six inches broad, the edge of pulley should be set to throw belt one inch from edge of drum, and when the belt is running on drum, it will be one inch within each side of it. Second—the guide pulley should be set so that a plumb line from the circumference of guide pulley should fall between the two pulleys at P as dotted line. This insures that the fork will have the same pressure on the belt edge when putting on as when you put it off. Third—a line from the edge of each guide pulley to a point at a distance equal to half the width of guide pulley from the circumference of cylinder pulley will set the guide pulley to the angle required to keep the belt running fair. If attention be given to these three points and the guide pulley frame is set parallel to the driving shaft, there is no fear but the belt will run without damage to its edges. Belt forks are often made of round iron \(\frac{3}{4} \) inches or \(\frac{3}{4} \) inches diameter. This is not a good thing for any kind of belt. This diagram shows a fork which will be found very easy upon the belts and is supplied by Fairbairn to all their Spinning Frames.

DIAGRAM OF BELT FORK FOR SPINNING FRAME.

Scale 3” to One Foot.
COP WINDING.

If the weft which has been spun upon the frames is to be made into cops, it is taken to the cop-winding department. Here it is wound upon the cop machines into cops, according to the size of the shuttles in which the weft is to be used in the process of weaving. Usually, hessian cops are made 9 inches long, and 1 ½ inches in diameter. Sometimes they are made 9 inches by 1 ½ inches; but if the looms are being driven fast, I think a 9 inch by 1 ½ inch cop is preferable, as there is less tendency to make waste. Illustrations of three different types of cop machines are given—the original machine of Combe, Barbour, & Company; Messrs Lee, Croill, & Company; and Messrs Charles Parker, Son, & Company. The last two mentioned are very much of the same construction. The cop cone in these two machines is in an inverted position from the former machine. This will be readily understood from a reference to the diagrams given. All the machines do their work equally well. My experience has, however, been confined to the machine of Messrs Combe, Barbour, & Company. It is sometimes said of this machine that it is difficult to keep up—that is to say, that it is difficult to keep in mechanical order. I cannot, however, say I have found it very much trouble; that, however, is a matter of opinion. I am inclined to think that Messrs Combe, Barbour, & Company's machine can be driven at a greater speed than the others mentioned. In a mill, the workers get accustomed to either of them; and, of course, both employers and employees make use of what they have been accustomed to. Particulars, arrangement of speeds, &c., are given. The cops when taken of the spindles are either put into pans or bags. If they are to be used at once in a factory, they are very often put into pans; if they are to be sent a distance, they are always put into bags. It is of importance that the pan or bag be made the exact breadth of the length of cop. This is not to allow the cops to shift about and get broken; as, if they are in any way knocked about, they are apt to become soft, and this will always lead to unnecessary waste in the weaving department. The cop pan is usually made 16 inches long, 11 inches deep, and 9 ½ inches broad. The bag—to hold about 56 to 60 pounds weight—is made 22 inches broad, 10 inches wide, and 22 inches deep. The
waste in this department is a matter which requires continual attention. My experience is, that for ordinary hessian wefts the waste will average about 4 per cent., the cop machine of 54 spindles will require three winders, and they will wind into cops, on an average, 60 spindles of 8 or 9 lbs. in 10 hours. When the size is from 10 to 12 pounds, it will depend to some extent upon the ability of the winder as to whether she will be able to wind the production of a 72 spindle frame. This, of course, is a matter for arrangement when it happens in the department.

PARTICULARS OF COP MACHINE GEARING.

(Parker, Son, & Co.)

Spindle driving wheel (a) 46 teeth.

" " pinion (b) 16 teeth.

Travelling cloth pulley (c and d) each 7½" dia.

Worm, single thread, right hand (e).

Worm Wheel 24 teeth, right hand (f).

Cloth roller 4½" dia. (g).

Driving Pulleys (P) generally 15" dia. x 3½", and run 260 revolutions for ordinary jute hessian cops.
COP MACHINE.
Scale 1\(\frac{1}{2}\)" to One Foot.
(Charles Parker, Son, & Co.)
COP MACHINE.

Scale 1\(\frac{1}{2}\)" to One Foot.

(Charles Parker, Son, & Co.)
COP MACHINE.

Scale 1\(\frac{1}{8}\)" to One Foot.

(Charles Parker, Son, & Co.)
COP MACHINE.

Scale 1/4" to One Foot

(Thomson, Son, & Co.)

Speed pulleys 528 revolutions per minute.
COP MACHINE.
Scale 1" to One Foot.
(Coombe, Barbour, & Coombe.)
COP MACHINE.

Scale 3" to one foot.

(Lee, Croll, & Co.)

COP MACHINE.

Spindle Pinion 16 teeth.
Wheel on Driving Shaft 46 teeth.
Pulleys usually about 16" diameter.
Speed of Spindles from 800 to 1000 revolutions per minute.
SPINDLE AND COP WITH CONE FOR COP WINDING MACHINE.

(Coombes, Barbour, & Coombes.) Scale Half Size. Usual Size of Cop 9" x 1 1/2".
Here the yarn which has been spun, either warp or weft, which is to be delivered in the bundle, is brought to be reeled—that is, that the yarn is reeled round the barrel, or swift, as it is more usually termed. Upon this barrel or swift a certain number of threads are tied up into cuts, heers, hanks, and spyndles (see yarn table). When the yarn is taken of the reels, it is taken and weighed, or sized is the term generally in use. So many spyndles are put into a bundle, according to the size of the yarn. In this department much care and attention is necessary by the workers and by those in charge. It is of much importance that the tell of the yarn should be correct. By the term “tell” is meant the number of threads and yards in a “cut.” 120 threads are in each “cut,” the tell wheel for 7 to 9 lbs. will have 125 teeth; and for 10 to 20 lbs., 123 teeth. This enables the reeler, with ordinary care, to put in the correct number—120 threads into each cut. By care and attention in the reeling department, very much can be done to keep the yarn regular upon the weight. After the yarn is reeled and sized, it is handed over to the bundlers, who lay first one hank and then another upon a bundling stool (see illustration), so many bands being put round it. The bands are tied round, and knotted up with a “bundling pin,” and the yarn is then laid in the yarn warehouse to wait such time as required to deliver it. It is essential to the look of the yarn, while is is being bundled, that the bundlers display taste and some degree of pride in the making up of the bundles. No matter how well the yarn may have been spun and reeled, if it is carelessly and slovenly bundled, this will tend to detract from its appearance; and I almost venture to say, from the market value of the yarn.
POWER REEL

End Elevation showing Driving End—Scale 1/8th.

90° Circumference.
POWER REEL

END ELEVATION SHOWING DOPPING END—SCALE \(\frac{3}{4} \)TH.

90° Circumference.
INSTRUCTIONS AND PARTICULARS AS TO THE REELING
OF THE YARNS.

The reel is 12 ft. 4 in. long, and 90 in. in circumference; and the
rails upon which the yarns are reeled are attached to spokes. In a
Fairbairn reel there are 12 spokes in the swift, as the reel is
sometimes called. By a reference to the illustration, it will be seen
that these spokes make the yarn, when on the reel, in the form of a
12-sided figure. This is to allow the yarn to come off without
trouble. And when the reel or swift has been filled, an arrangement
is provided to make part of the swift or barrel collapse; and the reeler
has then to draw the yarn all to the one end, and by turning the
wheel provided for the purpose, she can lift off the yarn and hang it
on the hook at the end of her reel. From thence it is taken to the
bundling department, when it is made into the size of bundles
required. These bundles are commonly made a certain size for a
certain weight of yarn (see table); but sometimes special sizes of
bundles are made, according to the order in hands.

7/12 lbs. yarn is reeled in hands of 6 cuts each.
13/24 " " " 4 "
23/32 " " " 3 "

| Table showing the number of spindles in a bundle
| of the different sizes of yarn. |
|---|---|---|
| Lbs. | Spls. | Weight of Bdl. |
| 7 | 8 | 56 lbs. Bundles are made up in hanks of half a spl. |
| 8 | 7 | 56 " " " |
| 9 | 6 | 54 " " " |
| 9½ | 6 | 57 " " " |
| 10 | 6 | 60 " " " |
| 11 | 5 | 55 " " " |
| 12 | 5 | 60 " " " |
| 13 | 4 | 52 " " " |
| 14 | 4 | 56 " " " |
| 15 | 4 | 60 " " " |
| 15½ | 3½ | 58½ " Bdl. are made up in 11 hanks and 4 cuts. |
| 16 | 3½ | 56 " | 10 hanks and 8 cuts. |
| 19 | 3½ | 59½ " |

...
REELING AND BUNDLING.

Lbs. Spits. Weight of Bdl.
18 3 54 lbs. Bdl's are made up in 9 hanks of a third of a spl, each.
19 3 57 " " 18 hanks of a 1/6 of a spl. each.
20 3 60 " " 16 hanks of a 1/3 of a spl. and 4 cuts.
21 2 1/4 57 1/4 " " 15 hanks of a 1/6 of a spl.
22 2 1/4 55 " " 24 " "
24 2 1/4 60 " " 15 " "
28 2 56 " " 12 " "
29 2 58 " " 12 " "
30 2 60 " " 12 " "
32 1 1/4 56 " " 14 " of an 1/2 of a spl.

The "bands" of the bundles are included in the quantity given in above particulars of hanks. The bands are usually reeled to a size that will make them manageable for the tying up of the bundle. In 7 lbs. yarn the bands are reeled in 6 cuts; and for 20 lbs., are reeled in 2 cuts. This is a matter of convenience to some extent.

An illustration of an ordinary bundling stool and also a small bundling press is given. This press is used for making small bundles, generally twisted yarns—that is, yarn in the ply.

Every attention should be given by the reelers, and by those in charge of the reeling department, to see that the proper knot is made on the yarn. This knot is usually termed a "weaver's knot." This is a representation of it—

![Scottish Yarn Table](image)

SCOTTISH YARN TABLE.

\[
\begin{align*}
2\frac{1}{2} & \text{ yards} = 1 \text{ thread.} \\
120 & \text{ threads} = 1 \text{ cut.} \\
300 & = 1 \text{ cut or lea.} \\
600 & = 1 \text{ heer.} \\
3,600 & = 1 \text{ hank.} \\
7,200 & = 1 \text{ hesp.} \\
14,400 & = 1 \text{ spyndle.}
\end{align*}
\]

ENGLISH YARN TABLE.

\[
\begin{align*}
2\frac{1}{2} & \text{ yards} = 1 \text{ thread.} \\
300 & = 1 \text{ lea.} \\
3,000 & = 1 \text{ hank.} \\
60,000 & = 1 \text{ bundle.}
\end{align*}
\]
The grist or fineness of the heavy linen and jute yarns is estimated by the weight of a spindly per lb. avoirdupois—the finer qualities by less, of which the following is the table and the rule for finding the same:

TABLE.

<table>
<thead>
<tr>
<th>Leas per lb.</th>
<th>Weight per spindle.</th>
<th>Leas per lb.</th>
<th>Weight per spindle.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs.</td>
<td>oz.</td>
<td>dr.</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>9</td>
<td>½</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>13</td>
<td>1½</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>6</td>
<td>13½</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>10</td>
<td>10½</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>6</td>
<td>6½</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>2</td>
<td>14½</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>14</td>
<td>11½</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>11</td>
<td>6½</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>9</td>
<td>9½</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Rule.—Divide the less in a spindly by the number of the lea yarn. Thus, for 16 lea yarn—

$$16 \div 48 = 0.375$$

3 lb. yarn.

48
WARPING MILL

SCALE 1\(\frac{1}{2}\)" TO ONE FOOT. Circumference = 13 yards.

ELEVATION SHOWING DRIVING WHEEL, HAKES, GUIDES, AND TRAVERSE MOTION.

Worm, single thread, \(\frac{5}{8}\)" pitch, 3\(\frac{1}{2}\)" diameter.
Worm wheel 46 teeth, \(\frac{5}{8}\)" pitch. Chain Wheel 25" diameter.
Revs. of Chain wheel for one rev. of Warp Mill = \(\frac{1}{10} \times 1 = \frac{1}{10}\) of a rev.
Traversal of Hake per rev. of Warp Mill = \(\frac{3}{4} \times 25 \times 3.1416 = 1.707\)"

* For Description of the process of Warping see "Art of Weaving."
BUNDLING PRESS.

Scale \(\frac{2}{3} \) to One Foot.

Hand Wheel 36" diameter. Pinion 13 teeth.
Wheel 32 teeth. Pinion 10 teeth.
Break Wheel 60 teeth.

* This Press is used for making small bundles—say from 8/16 lbs. each
BUNDLING STOOL.

SCALE 1" TO ONE FOOT.

WARP WINDING.

If the warp yarn which has been spun is to be sent into the factory, it is taken to the warp-winding department. Here the spinning bobbins are wound upon a large bobbin—usually 8 inch by 5 inch—preparatory to being sent to the dressing machines. The machine illustrated is made by Messrs Thomson, Son, & Co. Three winders are usually employed upon each side; and one machine of the description illustrated will wind about 2,000 spindles per week. The particulars of speed, &c., of this machine are also given. Here I may say that the yarns, both weft and warp, being wound from the spinning frames, should be carefully sampled three times each day, to ensure that the yarn is being kept to the weight required.

In the Cop and Warp Winding departments the cops and warp bobbins are weighed when taken from the winders—this should always be done with care and attention, as the winders in these departments are paid according to the weight of yarns wound by them.
BOBBIN WARP WINDING MACHINE.

8" Traverse.

Scale 2" to One Foot.

(Messrs Thomson, Son & Co.)

\[220 \times \frac{1}{4} = 267 \text{ speed pulleys} \]

\[267 \times \frac{4}{6} = 267 \text{ revs. of bobbin drum per minute.} \]

Traverse Arrangement—Heart 6" lift.

\[267 \times \frac{4}{5} \times \frac{3}{10} \times \frac{3}{8} \times \frac{1}{10} = \text{speed of heart for traverse.} \]
CONCLUDING REMARKS.

WASTE—These pages would not be complete and would not fulfil their purpose if the author said nothing as to the question of the quantity of waste made, or that may be expected to be made, in the different departments during the various operations from batching to reeling, etc. Waste and dirt always tend to make more waste and dirt, hence the necessity to do all that can be done to make as little dirt and waste as possible. It is the attention that is bestowed upon the seemingly small details that go to make the whole arrangement and organization complete, and in reference to this question of waste too much attention can hardly be given to it until you have been able to impress every one in charge with the importance of the matter. When the making of waste is tolerated you may be sure the tendency to make waste will always be on the increase, followed in every case by indifference and neglect. The waste in the batching, that is the dirt and root as it falls through the softener rollers to the floor, will be found to be about 3052 ‰, but it is waste you want to get rid of, and you can only minimize this by as much care and attention as possible to the selection of the jute suitable for the yarn required.

The waste or droppings from the breakers and finishers to a certain extent is also what you wish to be rid of, but if there is inattention to the staves, if they are not kept sharp and regularly set in their proper relation to one another, you will make for a certainty more waste than is necessary, and the more waste you make here than is absolutely necessary, you are, of course, always adding to the cost of the batch you have laid down at the commencement. If the drawings and rovings are thoroughly swept out every day this will keep steadily before your eye what is being done in the matter of waste—from this the following is about the proportion of waste that will be made: 1st. From breaker about 136 ‰, from finishers about 696 ‰. Of course the droppings from breaker and finishers will require to be shaken in a waste cleaner, and there will be 125 ‰ of dust and 5 ‰ of pickings, the latter of which may be used for some of the coarser qualities of yarn. The waste from the Drawing and Rovings will be about 435 ‰ of the quantity of rove made.

The waste from the spinning department, taking the average size at 9 lbs. per spindles, two-thirds of which will be weft and one-third
warp, will be about 210% on the yarn produced, and the reader will bear in mind that on this question of waste I am referring to the class of jute described in the chapter upon batching as necessary for the production of Hessian cloth of good standard quality, the jute for which has been carefully selected for the purpose intended.

To speak in a general way as to the total waste made during the manipulation of jute into yarn would not have much value. A statement, therefore, as to the quantity of jute put over the machinery involved in the process, showing at the same time the per cent. of waste made at each class of machinery, is necessary:—

BATCHING.

60 bales of jute (400 lbs. each), to which is added 3%/ of oil and 15%/ damp, was put over the softener in ten hours—a fair day's work, based upon the speed of the machine given in the chapter on batching.

<table>
<thead>
<tr>
<th>items</th>
<th>cwt</th>
<th>1</th>
<th>4</th>
<th>6</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 bales, 400 lbs. each =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 3% of oil</td>
<td></td>
<td>6</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>---Ropes taken from bales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>217</td>
<td>3</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

From this was got 62½ lbs dry and 35 lbs. wet refuse—say altogether 74½ lbs. dry—equivalent to 3052%/.

PREPARING.

The following is based on the results of two working days, or 20 hours, producing 140 cwt rove and 3 cwt. 2 qs. 10 lbs. waste:—

1 Double Doffer Breaker—

- Dollop 22 lbs., 2 deliveries of 22 lbs each for one round of clock.
- Cylinder making 185 revolutions per minute.
- Cylinder Pinion, 44 teeth.
- Worker " 33 "
- Draft " 34 "

3½ tons can be put over this breaker in 10 hours, supplying

2 Single Doffer Finishers—

- Cylinder making 193 revolutions per minute.
- Cylinder Pinion, 60 teeth.
- Worker " 58 "
- Draft " 31 "

Each finisher supplies 1 push bar drawing.
CONCLUDING REMARKS.

2 Push Bar Drawings of 2 heads each—
 Speed of Pulleys, 145 revolutions per minute
 Pulley Pinion, 32 teeth.
 Draft „ 54 „
 Each push bar drawing supplies 1 spiral 2nd drawing.

2 Spiral 2nd Drawings of 2 heads each—
 Speed of Pulleys, 170 revolutions per minute.
 Pulley Pinion, 28 teeth.
 Draft „ 43 „
 Each 2nd drawing supplies 1 roving of 56 spindles.

2 Roving of 56 spindles, 10” x 5” bobbin, make 35 cwt. of rove,
72½/75 lbs. per spindle each, in 10 hours—say 140 cwt. in 20
hours—
 Speed of Pulleys, 220 revolutions per minute.
 Twist Pinion, 35 teeth.
 Grist „ 36 „
 Traverse „ 28 „
 Rack „ 15 „
 The waste made ... cwt. 3 2 10
 The rove made ... ” 140 0 0
 ” 143 2 10

The waste made at each class of machine was as follows:—

1 Breaker—
 Dust ... 210 lbs.
 Pickings 10 „
 220 „ = 1.3680 %

2 Finishers—
 Dust ... 28 „
 Pickings 84 „
 112 „ = .6964 %

4 Drawings and 2 Revings—
 Dust ... 30 lbs.
 Pickings 40 „
 70 „ = .4352 %

Total Dust ... 268 „ = 1.6664 %
 ” Pickings 134 „ = .8332 „ 2.4996 %
CONCLUDING REMARKS.

SPINNING.

The yarn spun from this rove was \(\frac{3}{5} \) weft and \(\frac{1}{5} \) warp, and the average weight per spindle 9 lbs.; waste = 2:1069 \(\% \) in the spinning process.

REELING AND COPPING.

The percentage of waste made in the reeling and cupping departments are 5853 and 3809 \(\% \), respectively; and if the production of the mill is to be two-thirds reeled and one-third cupped, the overhead rate would be 5172

\[
\frac{\frac{3}{5} \cdot 5853}{\frac{1}{5} \cdot 3809} = \frac{3902}{1270} = 5172 \%
\]

SUMMARY OF WASTE PERCENTAGE.

<table>
<thead>
<tr>
<th>Process</th>
<th>Waste (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batching and Softening</td>
<td>3052</td>
</tr>
<tr>
<td>Preparing, Breakers, and Finishers</td>
<td>2064</td>
</tr>
<tr>
<td>Drawings and Rovings</td>
<td>4352</td>
</tr>
<tr>
<td>Spinning</td>
<td>21069</td>
</tr>
<tr>
<td>Reeling and Copping</td>
<td>5172</td>
</tr>
<tr>
<td>Total</td>
<td>54289</td>
</tr>
</tbody>
</table>

These results are borne out by experience over a whole year, and can therefore be relied on.

The value of the different kinds of waste made in relation to the value of the raw material will be found to be as follows:

The value of dust is equal to 4:1 \(\% \) of the original cost of the raw material.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickings</td>
<td>25:0</td>
</tr>
<tr>
<td>Spinners' waste</td>
<td>29:1</td>
</tr>
<tr>
<td>Reeler's waste</td>
<td>58.3</td>
</tr>
<tr>
<td>Copping</td>
<td>58.3</td>
</tr>
</tbody>
</table>

SPEED TO BE PUT UPON THE MACHINERY.—I have in the chapter upon preparing machinery alluded to this as a question upon which there is much difference of opinion. While this is so, as to the surface speed of Card Cylinders, the speed of a breaker or finisher or any other of the machines in the various processes, is in a great measure a question of production. If a large production is wanted, the speed must be put upon the machines to bring it off; it is sometimes said that too much speed upon the machines will destroy the material, but if the speed put upon the machinery is
CONCLUDING REMARKS.

beyond the possible limit, you will destroy the machines long before
you spoil the material. In the case of the preparing machinery it is
not the speed put upon the machines that will make rove to produce
bad yarn, it is the overloading of the different machines, that is—the
putting on the Breaker in one round of the clock more weight of jute
than the length of the Cylinder or other Roller pins will come up
through, and also the overloading of the other machines in the same
direction. If a moderate quantity is put on the machines the speed,
although on the fast side, will do no harm to the material; and to the
machinery, the speed if on the quick side, of course means more
mechanical expense and attention on the part of those in charge of
it, and the same remarks apply to the other machines in the
preparing department. The question of speed is, therefore, in a
great measure, to be determined by the amount of mechanical atten-
tion and expense you are prepared to give for the utmost production
that can be taken out of the machine. Of course, the reader will see
at a glance that if the machinery is being kept on the fast side, more
expense in the shape of oil and all other furnishings will be incurred.
Against this, of course, you have the larger production than if you
drive the machinery on the slow side. It is a question that need not
be pursued further here. I merely wish to bring to the notice of the
reader that increased speed of the preparing machinery is done at the
expense of the machine and not at the expense of the material, as is
often supposed. Experience will often prove that where the machinery
is being driven slow it is no guarantee that it is being kept in better
order than when it is being driven on the fast side. Rather the
opposite will, as a rule, be found to be the case. If the limit of speed
is being attained on the machinery experience will also prove that the
machinery is being kept in good order, in fact, it must be so, if you
are to keep it going.

The above remarks will only apply, to a limited extent, to the
spinning frame. Here the spindles and flyers will only stand a cer-
tain speed, and they determine the speed of the other parts of the
frame. If the flyers are driven beyond this speed by the centri-
fugal force, the legs of the flyer will fly out, and break one another;
but all the same, there may be a good speed upon the spindle without
going to the extreme alluded to in the above remarks. Here again it
is a question of up-keep. More oil, spindle bands, &c., will be neces-
sary. To put it shortly, instead of oiling the spindle necks twice a
day, you will require to oil them three times a day. To oil 6,000
necks twice a day will require about three-quarters of a gallon of oil,
and a half more of this quantity means an extra cost of about 4d per
10 hours day—not a large item if you are taking the production out
of the machine.

Up keep of Jute Preparing and Spinning Machinery.—Jute
Preparing and Spinning Machinery, owing to the sandy and gritty
nature of the jute fibre, is liable to much wear. The dirt and
sand finds its way in every direction through the machinery; the
consequence is that the mechanical attention required to keep the
machinery in good order is considerable, and on the mechanical energy
displayed in the mill will greatly depend the general production and
the working conditions of the different machines. All the details of
the machinery must be kept as near as possible the same as when the
machine was new. When a wheel or pinion is broken it should be
replaced by a new one, and the new one should be a casting from the
maker of the machine, if not from the maker at least of the same
pattern. In the case of wheels and pinions this is of great impor-
tance. To repair wheels and pinions by putting pins in them for
teeth or to repair brackets and other parts of the machines by patches
of plates is perfect folly, and nothing will in the end lead so much to
the total deterioration of a mill than to pursue a course such as described.
To give force, spirit, and éclat to the whole mill is to keep the
machinery in the very best order, and you thereby will have at your
command effective tools for the work to be done. The same remarks
apply to all the smaller details, furnishings, as they are generally
called, belts, spindle bands, and many other small things which we
need not specify further.

Bobbins.—Bobbins in large quantities should always be kept in
hand; if this is done you will have them well seasoned and in
good working order. A very important point in the preparing
and spinning departments—sometimes the full bobbins accumu-
late in the cop, reeling, and winding departments, and this will
happen occasionally no matter how well you try to avoid it
but while this is so there should always be enough bobbins at
hand to cop with the emergency. There should on no account
be a stoppage of the flow of full bobbins either from the
preparing or spinning departments. In a mill, owing to the number of
people employed, any stoppage of the flow of production very quickly
increases the cost, hence the absolute necessity of removing every
obstacle that will in any way impede the steady run of the work in
CONCLUDING REMARKS.

Every department. Each department should be conducted on such lines as will make those who are responsible feel they themselves have the making of the production in their own hands. But while saying all this as to the general benefits to be derived from keeping everything in good mechanical order, and also the details up to the mark in every way, there is no necessity for extravagance, and no countenance should be given to it. Experience will prove that when those in charge know that it is necessary to keep everything in effective condition ready for immediate use, the result is always to strive to keep everything in order without unnecessary waste or extravagance. Nothing will sooner utterly destroy the production of a jute mill more thoroughly than the knowledge creeping into the minds of those in authority that the necessary repairs will not be allowed to be made upon the machinery for the making of good work—paralysis sure and certain will take possession of the spirit and working energy of the people.

Accidents to the Machinery.—Accidents to the machinery do happen, and will continue to happen, no matter how much care and attention has been taken to avoid them, but you can expect no spirit nor heart in those who are responsible if the machinery is allowed to run until it stops through sheer mechanical neglect. Inferior production, inferior everything in fact, can only be the result.

When the machinery is in want of repairs get the trained mechanic to do it, and on no account let others who have neither the mechanical knowledge nor the training necessary for this class of work attempt it. The "handy" man amongst machinery is very often the "expensive" man in the end. He should be kept strictly at the work which he has been engaged to perform. As a rule, he will have enough to do, and sometimes more than enough, if he tries to do it well.

Temperature of the Mill.—This is a matter that should engage the attention of those in charge. For a mill, as shown on the plan, four lines of heating pipes will be necessary—one line of pipes in batching house, one line in front of finisher cards, one line between first and second line of spinning, and the fourth line of pipes between the end of third line of spinning and the cop and warp winding machinery. These pipes should all be run into a receiver at the north side of mill, and as near the centre of that side as possible, and the waste water or condensed steam, should then be returned to the boilers.
It is of great importance that the mill be made comfortable for the workers in the cold mornings. If the temperature be below 70', the material will not work well, neither will the workers be able to work with freedom the different machines at which they are engaged; but the temperature should not be over 70', and there should always be care taken to provide fresh air and plenty of ventilation.

When the mill is built on the shed principle, the temperature varies very much, and if attention is not given to this question of heating arrangement, much loss of production and waste will ensue.

Sampling the Yarn.—This is a matter of great importance. The yarn that is to be wound into cops or upon warp bobbins for Dressing or Beaming Machines should be sampled three times a day. This is done by reeling 12 cuts upon a 90' reel, with 120 teeth "tell" wheel—that is a quarter spindle. If a number of frames are spinning the same size of yarn, more than one sample should be taken—no allowance for loss of weight should be made on the yarn when sampled. The correct weight of yarn as it comes from the frame should be written into the book kept for the purpose. If the making of an allowance upon the yarn when sampled is encouraged, it only leads to the yarn being spun above the weight. The yarn should be spun and should weigh the size it is, namely—if you are spinning 8 lbs. yarn it should weigh 8 lbs. in the sample, neither more nor less—to make it so it should be the aim of all interested. It will help very much to keep the yarn upon the weight if the same frames are always supplied from the same rovings. This will sometimes require a little attention and arrangement to enable this to be carried out, but the result will be worth any trouble that may be taken to ensure this being done.

Note—That the reel upon which the samples are reeled should be kept for sample purposes.

Finishing the Work for the Day.—When the work for the day is finished, the mill should be left clean and tidy, and everything in perfect order. When this is done, it will be found of great service to the making of a good start in the morning. The floor should be cleaned up thoroughly, no roves nor rove bobbins, boxes, or anything of the kind left lying about—in short, the cleaner and smarter you leave everything, the better able are you to cope with the work at the start; and these remarks apply with equal force all through the works—boiler shed, engine-room, &c., &c.
CONCLUDING REMARKS.

ARRANGEMENTS FOR EXTINGUISHING FIRE.—All the tools in connection with the apparatus kept for the extinguishing of fire should be seen to every night when the works are stopped. The fire-cocks should have bends and keys fitted on, and everything left so that in an emergency it can be used without fuss or trouble, and when those in charge arrive at the works, everything will be found in readiness to cope with whatever may happen. It is the unexpected that always happens, and everything that can be done to provide against accident should always be attended to as fully as the resources of the works will allow.

I have now described the various machines, and the operations that are gone through during the conversion of jute in the bale into yarn; and we have followed it to each of the departments, to be made into cops, wound in warp bobbin for dressing machine, and also reeled in the bundle. While this may have been done somewhat imperfectly, enough has been said to enable the student to follow the different processes. The author of these pages has found the writing and preparation of them congenial work; and now that the work is done, he can only hope that they will supply what he believes to be a want in connection with the jute trade; and also that they will prove of interest, stimulate and encourage the young men to learn their business with thoroughness and with some degree of interest in the working of the machinery in whatever department of the mill they may be employed. In this book the writer does not for one moment pretend to have told everything; he has, however, explained many things which, from his own experience while learning his business, he is sure will be very helpful to those anxious to know something of their work, and the proper way to set about the doing of it. The reader by this time will fully understand my motive in publishing these pages; and in offering them to the general public, however imperfectly they have been written, they will, I trust, be of service, and fulfil the purpose for which they were intended.
APPENDIX.

JUTE SNIPPER.

This machine, which we have illustrated by a plan and elevation, is not so much used now as it was some years ago. It is used to snip or comb off the root ends of the jute, and it did this, without doubt, very well, but the cost was too great. It not only took off the roots, but also made a great amount of tow. The very least taken off the streak of jute after it came through the machine, being about 15%, this tow was very inferior, and, of course, when you deducted the value of the 15% lost (or nearly so, comparatively speaking) this increased the cost of the jute left, and the machine is now not much used. It is found by the trade to be much better to cut the roots off with a knife or blade of steel, about 36" long × 6" broad, fixed to a wood frame. This is often done when a yarn is wanted of fine quality and free from root. When the roots are taken off this way there is not nearly the same loss as with the snipper, and the roots can always be used without making the loss that was done by the snipper, the tow from which it was impossible to use up profitably without damage to the yarn it was put in. The following is an illustration of steel blade showing attachment to wood frame (Scale 1/4" to One Foot).

Sheath for Knife.
SNIPPING MACHINE FOR JUTE.

Scale $\frac{1}{16}$th.

(For Diagram see Page 262).

AA Driving Pulleys, 20" dia.
BB Pulleys for driving top cylinder, 18" dia.
C Pulley for driving chain wheel, 6" dia.
D Pulley carrying spur pinion, 18" dia.
E Spur Pinion. 35 teeth.
F Spur wheel on driving shaft, 144 teeth.
G Bevel pinion on driving shaft, 18 teeth.
H Bevel wheel on intermediate shaft, 64 teeth.
I Bevil pinion on intermediate shaft, 18 teeth.
J Bevel wheel on chain wheel shaft, 64 teeth.
K Pulley on driving shaft, 18" dia.
L Pulley on sheet roller shaft, 5" dia.
MM Endless chains for holding the jute.
JUTE SNIPPER.

Scale 1/2" to One Foot.

Chain Wheel.
JUTE SNIPPER.

Scale 1/2" to One Foot.

For particulars of Staves for Snipper Cylinder see page 111.
Lathe Attachment for
Grinding Spinning Spindles.

Scale 1\(\frac{1}{4}\)" to One Foot.

Elevation of Driving Gear for Emery Wheel, showing Spring for tightening rope.
WASTE CLEANER.

This machine is used for cleaning the waste made at Breaker and Finisher Cards.* The waste is laid upon the feed cloth A and a quantity fed into the machine—this is allowed to remain in from a minute to a minute and a half, the dust falling through a circular grating below cylinder. The waste fibre is allowed to pass out of the machine by the lifting of a flap cover at B, the dust drops into a bag at C, and the waste into a bag at D. The machine cleans the waste thoroughly, and the fibre or pickings, as previously explained in the chapter on Waste, can be utilised for the coarser qualities of yarn.

Scale $\frac{3}{8}$ to One Foot.

Section of Cylinders.

* The Waste made at Drawings and Rovings may also be cleaned in this Machine.
WASTE CLEANER

Scale 1" to one foot.

End Elevation.
WASTE CLEANER.

Scale \(\frac{7}{8} \) to One Foot.

Pulleys 240 revolutions per minute.

Sectional Elevation.
THE ADJUSTMENT OF THE BREAKER SHELL.

This illustration is given to show how the shell is hung from the feed roller arbor, it being often necessary to move the shell either closer to, or farther away from the cylinder according to the jute being used. This can be done in a few minutes when required if the fixing of the shell is properly understood.

A radial bracket A is hung from feed roller arbor B, a set screw C is provided for adjusting the distance of front of shell D from cylinder pins, two bolts E and F fix the shell to the radial bracket. In a breaker the shell is usually set ½" from feed roller, and is seldom moved from that position. The position of front of shell to cylinder pins is usually about ⅜", but may be varied and often is so from a ¼" to a ½", according to the quality and weight of material being put over a breaker in one round of breaker clock.

In illustration the fixing of one end only of the shell is shown both ends being alike.

DETAIL OF RADIAL BRACKET CARRYING SHELL.

Scale 3" to One Foot.
ARRANGEMENT OF RADIAL BRACKET FOR ADJUSTING SHELL TO CYLINDER.

Scale 1\(\frac{1}{2}\)" to One Foot.

Cross Section.

End Elevation.
ADDENDA.

See Pages 181 to 186.

Single Doffer Breaker Worker Pinion, 60 teeth.
Double " " " " " 32 ".
Single " " " Finisher " 46 ".
Single Doffer Breaker Change Pinion for Draft between
Doffer and Drawing Roller, 26 ".
Ditto for Double Doffer Breaker, 28 ".
 Single " " Finisher 28 ".

Page 194.

To find the speed of Spinning Frame Spindles:—

 Driving Shaft, ... 220 revolutions per minute.
 Drum on Shaft, ... 32" diameter.
 Pulleys on Cylinder, 15" ".
 Cylinder, 10" ".
 Spindle Werve, ... 1\frac{3}{4}" ".

\[
\frac{220 \times 32 \times 10}{15 \times 1\frac{3}{4}} = 2681.9 \text{ revolutions of spindles per minute.}
\]

Page 201.

If the grist pinion on end of drawing roller is 36 teeth, and is producing
9 lbs. yarn, what pinion will be required to produce 10 lbs or 12 lbs.1

Then—9 : 10 : : 36 : 40 the pinion required; or
9 : 12 : : 36 : 48 " ".
SAMPLING WEIGHT OF ROVE.

The rove should be sampled once every week to insure that the weight of rove wanted is being produced. This may be done as follows:—

Take one rove of each head of roving, reel 30 threads off each rove (90” reel)—$8 \times 30 = 240$ threads in sample, weigh this, and, for example, say it weighs 3 lbs. (that is 48 ounces)—then 48×3 and $\div 2$ will equal the weight of rove in lbs. per spindle.

Note.—You take 8 roves and 30 threads off each, multiply the weight of sample in ounces by 3, and divide by 2, and the answer will always be weight of rove being produced in lbs. per spindle of 14,440 yards.

To prove this—5760 threads in one spindle of 14,400 yards—

<table>
<thead>
<tr>
<th>Threads</th>
<th>Threads</th>
<th>Ozs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 :</td>
<td>5760 :</td>
<td>48</td>
</tr>
<tr>
<td>1 :</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16)1152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

72 lbs. per spindle = weight of rove; or

$16 : 24 : : 48$
$2 : 3 : : 48$
3

2)144

72 lbs. per spindle = weight of rove.

If the rove weighs 70 lbs. per spindle, and you wish to spin 10 lbs. yarn this means a draft of 7 will be required on the Spinning Frame.
A Table Containing
The Circumferences and Areas of Circles.

Circumferences and Areas of Circles from \(\frac{1}{16} \) of an inch to 10 inches, advancing by \(\frac{1}{16} \) of an inch; and by an \(\frac{1}{16} \) of an inch, from 10 inches to 100 inches Diameter.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{16})</td>
<td>1963</td>
<td>0030</td>
<td>(\frac{2}{16})</td>
<td>2 in</td>
<td>62832</td>
</tr>
<tr>
<td>(\frac{3}{16})</td>
<td>3927</td>
<td>0122</td>
<td>(\frac{3}{16})</td>
<td>1(\frac{5}{16})</td>
<td>64795</td>
</tr>
<tr>
<td>(\frac{4}{16})</td>
<td>5890</td>
<td>0276</td>
<td>(\frac{4}{16})</td>
<td>1(\frac{4}{16})</td>
<td>66759</td>
</tr>
<tr>
<td>(\frac{5}{16})</td>
<td>7854</td>
<td>0480</td>
<td>(\frac{5}{16})</td>
<td>1(\frac{3}{16})</td>
<td>68722</td>
</tr>
<tr>
<td>(\frac{6}{16})</td>
<td>9817</td>
<td>0767</td>
<td>(\frac{6}{16})</td>
<td>1(\frac{2}{16})</td>
<td>70686</td>
</tr>
<tr>
<td>(\frac{7}{16})</td>
<td>11781</td>
<td>1104</td>
<td>(\frac{7}{16})</td>
<td>1(\frac{1}{16})</td>
<td>72650</td>
</tr>
<tr>
<td>(\frac{8}{16})</td>
<td>13744</td>
<td>1503</td>
<td>(\frac{8}{16})</td>
<td>1</td>
<td>74613</td>
</tr>
<tr>
<td>(\frac{9}{16})</td>
<td>15708</td>
<td>1963</td>
<td>(\frac{9}{16})</td>
<td>(\frac{1}{16})</td>
<td>76576</td>
</tr>
<tr>
<td>(\frac{10}{16})</td>
<td>17671</td>
<td>2485</td>
<td>(\frac{10}{16})</td>
<td>(\frac{2}{16})</td>
<td>78540</td>
</tr>
<tr>
<td>(\frac{11}{16})</td>
<td>19635</td>
<td>3068</td>
<td>(\frac{11}{16})</td>
<td>(\frac{3}{16})</td>
<td>80503</td>
</tr>
<tr>
<td>(\frac{12}{16})</td>
<td>21598</td>
<td>3712</td>
<td>(\frac{12}{16})</td>
<td>(\frac{4}{16})</td>
<td>82467</td>
</tr>
<tr>
<td>1 in</td>
<td>23562</td>
<td>4417</td>
<td>(\frac{13}{16})</td>
<td>(\frac{5}{16})</td>
<td>84430</td>
</tr>
<tr>
<td>(\frac{14}{16})</td>
<td>25525</td>
<td>5185</td>
<td>(\frac{14}{16})</td>
<td>(\frac{6}{16})</td>
<td>86394</td>
</tr>
<tr>
<td>(\frac{15}{16})</td>
<td>27489</td>
<td>6013</td>
<td>(\frac{15}{16})</td>
<td>(\frac{7}{16})</td>
<td>88357</td>
</tr>
<tr>
<td>(\frac{16}{16})</td>
<td>29452</td>
<td>6903</td>
<td>(\frac{16}{16})</td>
<td>(\frac{8}{16})</td>
<td>90321</td>
</tr>
<tr>
<td>1 in</td>
<td>31416</td>
<td>7854</td>
<td>(\frac{17}{16})</td>
<td>(\frac{9}{16})</td>
<td>92284</td>
</tr>
<tr>
<td>(\frac{18}{16})</td>
<td>33379</td>
<td>8861</td>
<td>(\frac{18}{16})</td>
<td>(\frac{10}{16})</td>
<td>94248</td>
</tr>
<tr>
<td>(\frac{19}{16})</td>
<td>35343</td>
<td>9940</td>
<td>(\frac{19}{16})</td>
<td>(\frac{11}{16})</td>
<td>96211</td>
</tr>
<tr>
<td>(\frac{20}{16})</td>
<td>37306</td>
<td>1065</td>
<td>(\frac{20}{16})</td>
<td>(\frac{12}{16})</td>
<td>98175</td>
</tr>
<tr>
<td>(\frac{21}{16})</td>
<td>39270</td>
<td>1175</td>
<td>(\frac{21}{16})</td>
<td>(\frac{13}{16})</td>
<td>100138</td>
</tr>
<tr>
<td>(\frac{22}{16})</td>
<td>41233</td>
<td>1288</td>
<td>(\frac{22}{16})</td>
<td>(\frac{14}{16})</td>
<td>102102</td>
</tr>
<tr>
<td>(\frac{23}{16})</td>
<td>43197</td>
<td>1503</td>
<td>(\frac{23}{16})</td>
<td>(\frac{15}{16})</td>
<td>104065</td>
</tr>
<tr>
<td>(\frac{24}{16})</td>
<td>45160</td>
<td>1622</td>
<td>(\frac{24}{16})</td>
<td>(\frac{16}{16})</td>
<td>106029</td>
</tr>
<tr>
<td>(\frac{25}{16})</td>
<td>47124</td>
<td>1741</td>
<td>(\frac{25}{16})</td>
<td>(\frac{25}{16})</td>
<td>107992</td>
</tr>
<tr>
<td>(\frac{26}{16})</td>
<td>49087</td>
<td>1861</td>
<td>(\frac{26}{16})</td>
<td>(\frac{26}{16})</td>
<td>109956</td>
</tr>
<tr>
<td>(\frac{27}{16})</td>
<td>51051</td>
<td>1982</td>
<td>(\frac{27}{16})</td>
<td>(\frac{27}{16})</td>
<td>111919</td>
</tr>
<tr>
<td>(\frac{28}{16})</td>
<td>53014</td>
<td>2103</td>
<td>(\frac{28}{16})</td>
<td>(\frac{28}{16})</td>
<td>113883</td>
</tr>
<tr>
<td>(\frac{29}{16})</td>
<td>54978</td>
<td>2225</td>
<td>(\frac{29}{16})</td>
<td>(\frac{29}{16})</td>
<td>115846</td>
</tr>
<tr>
<td>(\frac{30}{16})</td>
<td>56941</td>
<td>2347</td>
<td>(\frac{30}{16})</td>
<td>(\frac{30}{16})</td>
<td>117810</td>
</tr>
<tr>
<td>(\frac{31}{16})</td>
<td>58905</td>
<td>2468</td>
<td>(\frac{31}{16})</td>
<td>(\frac{31}{16})</td>
<td>119773</td>
</tr>
<tr>
<td>(\frac{32}{16})</td>
<td>60868</td>
<td>2591</td>
<td>(\frac{32}{16})</td>
<td>(\frac{32}{16})</td>
<td>121737</td>
</tr>
<tr>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1/8</td>
<td>12-3700</td>
<td>12-1768</td>
<td>1/8</td>
<td>20-4204</td>
<td>33-1831</td>
</tr>
<tr>
<td>4 in.</td>
<td>12-5664</td>
<td>12-5664</td>
<td>1/8</td>
<td>20-6167</td>
<td>38-8244</td>
</tr>
<tr>
<td>1/8</td>
<td>12-7627</td>
<td>12-9622</td>
<td>1/8</td>
<td>20-8131</td>
<td>34-4717</td>
</tr>
<tr>
<td>3/8</td>
<td>12-9391</td>
<td>13-3640</td>
<td>1/8</td>
<td>21-0924</td>
<td>35-7847</td>
</tr>
<tr>
<td>1/8</td>
<td>13-1564</td>
<td>13-7721</td>
<td>1/8</td>
<td>21-3638</td>
<td>36-4505</td>
</tr>
<tr>
<td>3/8</td>
<td>13-3518</td>
<td>14-1862</td>
<td>1/8</td>
<td>21-6355</td>
<td>37-1224</td>
</tr>
<tr>
<td>1/8</td>
<td>13-5481</td>
<td>14-6066</td>
<td>1/8</td>
<td>21-9188</td>
<td>37-8605</td>
</tr>
<tr>
<td>5 in.</td>
<td>13-7445</td>
<td>15-0331</td>
<td>7 in.</td>
<td>21-9912</td>
<td>38-4846</td>
</tr>
<tr>
<td>1/8</td>
<td>13-9408</td>
<td>15-4657</td>
<td>1/8</td>
<td>22-1675</td>
<td>39-7409</td>
</tr>
<tr>
<td>3/8</td>
<td>14-1372</td>
<td>15-9043</td>
<td>1/8</td>
<td>22-3339</td>
<td>39-8713</td>
</tr>
<tr>
<td>1/8</td>
<td>14-3335</td>
<td>16-3492</td>
<td>1/8</td>
<td>22-5802</td>
<td>40-5469</td>
</tr>
<tr>
<td>3/8</td>
<td>14-5299</td>
<td>16-8001</td>
<td>1/8</td>
<td>22-7766</td>
<td>41-2825</td>
</tr>
<tr>
<td>1/8</td>
<td>14-7262</td>
<td>17-2573</td>
<td>1/8</td>
<td>22-9729</td>
<td>41-9974</td>
</tr>
<tr>
<td>3/8</td>
<td>14-9226</td>
<td>17-7205</td>
<td>1/8</td>
<td>23-1693</td>
<td>42-7184</td>
</tr>
<tr>
<td>1/8</td>
<td>15-1189</td>
<td>18-1900</td>
<td>1/8</td>
<td>23-3656</td>
<td>43-4455</td>
</tr>
<tr>
<td>3/8</td>
<td>15-3153</td>
<td>18-6655</td>
<td>1/8</td>
<td>23-5620</td>
<td>44-1787</td>
</tr>
<tr>
<td>1/8</td>
<td>15-5116</td>
<td>19-1472</td>
<td>1/8</td>
<td>23-7583</td>
<td>44-9181</td>
</tr>
<tr>
<td>5 in.</td>
<td>15-7080</td>
<td>19-6350</td>
<td>1/8</td>
<td>23-9547</td>
<td>45-6636</td>
</tr>
<tr>
<td>1/8</td>
<td>15-9043</td>
<td>20-1290</td>
<td>1/8</td>
<td>24-1510</td>
<td>46-4153</td>
</tr>
<tr>
<td>3/8</td>
<td>16-1007</td>
<td>20-6290</td>
<td>1/8</td>
<td>24-3474</td>
<td>47-1730</td>
</tr>
<tr>
<td>1/8</td>
<td>16-2970</td>
<td>21-1252</td>
<td>1/8</td>
<td>24-5437</td>
<td>47-9370</td>
</tr>
<tr>
<td>3/8</td>
<td>16-4934</td>
<td>21-6475</td>
<td>1/8</td>
<td>24-7401</td>
<td>48-7070</td>
</tr>
<tr>
<td>1/8</td>
<td>16-6897</td>
<td>22-1661</td>
<td>1/8</td>
<td>24-9364</td>
<td>49-4833</td>
</tr>
<tr>
<td>3/8</td>
<td>16-8861</td>
<td>22-6807</td>
<td>1/8</td>
<td>25-1328</td>
<td>50-2656</td>
</tr>
<tr>
<td>1/8</td>
<td>17-0824</td>
<td>23-215</td>
<td>8 in.</td>
<td>25-3291</td>
<td>51-0541</td>
</tr>
<tr>
<td>3/8</td>
<td>17-2788</td>
<td>23-7583</td>
<td>1/8</td>
<td>25-5255</td>
<td>51-8486</td>
</tr>
<tr>
<td>1/8</td>
<td>17-4751</td>
<td>24-3014</td>
<td>1/8</td>
<td>25-7218</td>
<td>52-6994</td>
</tr>
<tr>
<td>3/8</td>
<td>17-6715</td>
<td>24-8505</td>
<td>1/8</td>
<td>25-9182</td>
<td>53-5452</td>
</tr>
<tr>
<td>1/8</td>
<td>17-8678</td>
<td>25-4058</td>
<td>1/8</td>
<td>26-1145</td>
<td>54-2748</td>
</tr>
<tr>
<td>3/8</td>
<td>18-0642</td>
<td>25-9672</td>
<td>1/8</td>
<td>26-3109</td>
<td>55-0885</td>
</tr>
<tr>
<td>1/8</td>
<td>18-2605</td>
<td>26-5348</td>
<td>1/8</td>
<td>26-5072</td>
<td>55-9138</td>
</tr>
<tr>
<td>3/8</td>
<td>18-4569</td>
<td>27-1085</td>
<td>1/8</td>
<td>26-7036</td>
<td>56-7451</td>
</tr>
<tr>
<td>1/8</td>
<td>18-6532</td>
<td>27-6884</td>
<td>1/8</td>
<td>26-8999</td>
<td>57-5887</td>
</tr>
<tr>
<td>6 in.</td>
<td>18-8496</td>
<td>28-2744</td>
<td>1/8</td>
<td>27-0863</td>
<td>58-4264</td>
</tr>
<tr>
<td>1/8</td>
<td>19-0459</td>
<td>28-8665</td>
<td>1/8</td>
<td>27-2826</td>
<td>59-7762</td>
</tr>
<tr>
<td>3/8</td>
<td>19-2423</td>
<td>29-4647</td>
<td>1/8</td>
<td>27-4789</td>
<td>60-1291</td>
</tr>
<tr>
<td>1/8</td>
<td>19-4386</td>
<td>30-0798</td>
<td>1/8</td>
<td>27-6753</td>
<td>60-9943</td>
</tr>
<tr>
<td>3/8</td>
<td>19-6350</td>
<td>30-6796</td>
<td>1/8</td>
<td>27-8717</td>
<td>61-8625</td>
</tr>
<tr>
<td>1/8</td>
<td>19-8313</td>
<td>31-2964</td>
<td>1/8</td>
<td>27-9780</td>
<td>62-7369</td>
</tr>
<tr>
<td>1/8</td>
<td>20-0277</td>
<td>31-9192</td>
<td>9 in.</td>
<td>28-2744</td>
<td>63-6174</td>
</tr>
</tbody>
</table>
Circumferences and Areas of Circles

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>28.4707</td>
<td>64.5041</td>
<td>1/16</td>
<td>41.2338</td>
<td>135.2974</td>
</tr>
<tr>
<td>1/8</td>
<td>28.6671</td>
<td>65.8968</td>
<td>1/8</td>
<td>41.6262</td>
<td>137.8867</td>
</tr>
<tr>
<td>1/4</td>
<td>29.0598</td>
<td>66.9557</td>
<td>1/4</td>
<td>42.0189</td>
<td>140.5007</td>
</tr>
<tr>
<td>1/2</td>
<td>29.2561</td>
<td>68.1120</td>
<td>1/2</td>
<td>42.4116</td>
<td>143.1391</td>
</tr>
<tr>
<td>3/4</td>
<td>29.4525</td>
<td>69.0293</td>
<td>3/4</td>
<td>42.8043</td>
<td>145.8021</td>
</tr>
<tr>
<td>1</td>
<td>29.8452</td>
<td>70.8823</td>
<td>1</td>
<td>43.5897</td>
<td>151.2071</td>
</tr>
<tr>
<td>30 1/4</td>
<td>30.0415</td>
<td>71.8181</td>
<td>14 in.</td>
<td>43.9824</td>
<td>153.9384</td>
</tr>
<tr>
<td>30 1/2</td>
<td>30.2379</td>
<td>72.7599</td>
<td>14 in.</td>
<td>44.3751</td>
<td>156.6395</td>
</tr>
<tr>
<td>30 1</td>
<td>30.4342</td>
<td>73.7079</td>
<td>14 in.</td>
<td>44.7676</td>
<td>159.4852</td>
</tr>
<tr>
<td>30 1 1/4</td>
<td>30.6306</td>
<td>74.6620</td>
<td>14 in.</td>
<td>45.1605</td>
<td>162.3256</td>
</tr>
<tr>
<td>30 1 1/2</td>
<td>30.8269</td>
<td>75.6223</td>
<td>14 in.</td>
<td>45.5532</td>
<td>165.1303</td>
</tr>
<tr>
<td>30 1 3/4</td>
<td>31.0233</td>
<td>76.5887</td>
<td>14 in.</td>
<td>45.9459</td>
<td>167.9896</td>
</tr>
<tr>
<td>30 1</td>
<td>31.2196</td>
<td>77.5613</td>
<td>14 in.</td>
<td>46.3386</td>
<td>170.8785</td>
</tr>
<tr>
<td>30 1 1/8</td>
<td>31.4160</td>
<td>78.5400</td>
<td>14 in.</td>
<td>46.7313</td>
<td>173.7820</td>
</tr>
<tr>
<td>10 in.</td>
<td>31.8087</td>
<td>80.5157</td>
<td>15 in.</td>
<td>47.1240</td>
<td>176.7150</td>
</tr>
<tr>
<td>11 in.</td>
<td>32.2014</td>
<td>82.5160</td>
<td>15 in.</td>
<td>47.5167</td>
<td>179.7625</td>
</tr>
<tr>
<td>33 1/8</td>
<td>32.5941</td>
<td>84.5099</td>
<td>15 in.</td>
<td>47.9094</td>
<td>182.8545</td>
</tr>
<tr>
<td>33 1/4</td>
<td>32.9868</td>
<td>86.5063</td>
<td>15 in.</td>
<td>48.3021</td>
<td>185.9612</td>
</tr>
<tr>
<td>33 1/2</td>
<td>33.3795</td>
<td>88.5643</td>
<td>15 in.</td>
<td>48.6948</td>
<td>188.0225</td>
</tr>
<tr>
<td>33 7/8</td>
<td>33.7722</td>
<td>90.7627</td>
<td>15 in.</td>
<td>49.0875</td>
<td>191.1480</td>
</tr>
<tr>
<td>34 1/8</td>
<td>34.1649</td>
<td>92.8868</td>
<td>15 in.</td>
<td>49.4802</td>
<td>194.2828</td>
</tr>
<tr>
<td>34 1/4</td>
<td>34.5576</td>
<td>95.0334</td>
<td>15 in.</td>
<td>49.8729</td>
<td>197.3330</td>
</tr>
<tr>
<td>12 in.</td>
<td>34.9503</td>
<td>97.2053</td>
<td>16 in.</td>
<td>50.2656</td>
<td>200.4624</td>
</tr>
<tr>
<td>35 1/8</td>
<td>35.3430</td>
<td>99.4021</td>
<td>16 in.</td>
<td>50.6588</td>
<td>203.6162</td>
</tr>
<tr>
<td>35 1/4</td>
<td>35.7357</td>
<td>101.6234</td>
<td>16 in.</td>
<td>51.0510</td>
<td>206.7946</td>
</tr>
<tr>
<td>35 3/8</td>
<td>36.1284</td>
<td>103.8391</td>
<td>16 in.</td>
<td>51.4437</td>
<td>210.0476</td>
</tr>
<tr>
<td>36 1/8</td>
<td>36.5211</td>
<td>106.1394</td>
<td>16 in.</td>
<td>51.8364</td>
<td>213.3251</td>
</tr>
<tr>
<td>36 5/8</td>
<td>36.9138</td>
<td>108.4342</td>
<td>16 in.</td>
<td>52.2291</td>
<td>216.6722</td>
</tr>
<tr>
<td>37 1/8</td>
<td>37.3065</td>
<td>110.7536</td>
<td>16 in.</td>
<td>52.6218</td>
<td>220.0537</td>
</tr>
<tr>
<td>37 3/8</td>
<td>37.6992</td>
<td>113.0976</td>
<td>17 in.</td>
<td>53.0145</td>
<td>223.5454</td>
</tr>
<tr>
<td>38 1/8</td>
<td>38.0919</td>
<td>115.4660</td>
<td>17 in.</td>
<td>53.4072</td>
<td>226.9806</td>
</tr>
<tr>
<td>38 5/8</td>
<td>38.4846</td>
<td>117.8590</td>
<td>17 in.</td>
<td>53.7999</td>
<td>230.3308</td>
</tr>
<tr>
<td>38 7/8</td>
<td>38.8773</td>
<td>120.2766</td>
<td>17 in.</td>
<td>54.1926</td>
<td>233.7055</td>
</tr>
<tr>
<td>39 1/8</td>
<td>39.2700</td>
<td>122.7187</td>
<td>17 in.</td>
<td>54.5853</td>
<td>237.1494</td>
</tr>
<tr>
<td>39 3/8</td>
<td>39.6627</td>
<td>125.1854</td>
<td>17 in.</td>
<td>54.9780</td>
<td>240.5937</td>
</tr>
<tr>
<td>40 1/8</td>
<td>40.0554</td>
<td>127.6765</td>
<td>17 in.</td>
<td>55.3707</td>
<td>244.0711</td>
</tr>
<tr>
<td>40 5/8</td>
<td>40.4481</td>
<td>130.1923</td>
<td>17 in.</td>
<td>55.7634</td>
<td>247.5450</td>
</tr>
<tr>
<td>40 7/8</td>
<td>40.8408</td>
<td>132.7326</td>
<td>17 in.</td>
<td>56.1561</td>
<td>250.9475</td>
</tr>
<tr>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>18 in.</td>
<td>56.5488</td>
<td>254.4696</td>
<td>22 in.</td>
<td>69.1152</td>
<td>380.1336</td>
</tr>
<tr>
<td></td>
<td>56.9415</td>
<td>258.0161</td>
<td></td>
<td>69.5079</td>
<td>384.4655</td>
</tr>
<tr>
<td></td>
<td>57.8842</td>
<td>261.5872</td>
<td></td>
<td>70.2933</td>
<td>388.8220</td>
</tr>
<tr>
<td></td>
<td>57.7259</td>
<td>265.1829</td>
<td></td>
<td>70.6860</td>
<td>392.0301</td>
</tr>
<tr>
<td></td>
<td>58.1196</td>
<td>268.8081</td>
<td></td>
<td>71.0787</td>
<td>396.0878</td>
</tr>
<tr>
<td></td>
<td>58.5129</td>
<td>272.4479</td>
<td></td>
<td>71.4714</td>
<td>400.4935</td>
</tr>
<tr>
<td></td>
<td>58.9056</td>
<td>276.1171</td>
<td></td>
<td>71.8641</td>
<td>404.9728</td>
</tr>
<tr>
<td></td>
<td>59.2977</td>
<td>279.8110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 in.</td>
<td>59.6904</td>
<td>283.5294</td>
<td>23 in.</td>
<td>72.5685</td>
<td>341.5466</td>
</tr>
<tr>
<td></td>
<td>60.0831</td>
<td>287.2723</td>
<td></td>
<td>72.6495</td>
<td>346.0049</td>
</tr>
<tr>
<td></td>
<td>60.4758</td>
<td>291.0397</td>
<td></td>
<td>72.8012</td>
<td>349.5757</td>
</tr>
<tr>
<td></td>
<td>60.8685</td>
<td>294.8312</td>
<td></td>
<td>73.4349</td>
<td>353.1452</td>
</tr>
<tr>
<td></td>
<td>61.2612</td>
<td>298.6483</td>
<td></td>
<td>73.8276</td>
<td>356.7371</td>
</tr>
<tr>
<td></td>
<td>61.6539</td>
<td>302.4894</td>
<td></td>
<td>74.2203</td>
<td>360.3636</td>
</tr>
<tr>
<td></td>
<td>62.0466</td>
<td>306.3550</td>
<td></td>
<td>74.6130</td>
<td>363.9046</td>
</tr>
<tr>
<td></td>
<td>62.4398</td>
<td>310.2452</td>
<td></td>
<td>75.0057</td>
<td>367.4992</td>
</tr>
<tr>
<td></td>
<td>62.8320</td>
<td>314.1600</td>
<td></td>
<td>75.3984</td>
<td>371.0904</td>
</tr>
<tr>
<td></td>
<td>63.2247</td>
<td>318.0992</td>
<td></td>
<td>75.7911</td>
<td>374.6950</td>
</tr>
<tr>
<td></td>
<td>63.6174</td>
<td>322.0680</td>
<td></td>
<td>76.1838</td>
<td>378.3150</td>
</tr>
<tr>
<td></td>
<td>64.0101</td>
<td>326.0514</td>
<td></td>
<td>76.5765</td>
<td>381.9580</td>
</tr>
<tr>
<td></td>
<td>64.4028</td>
<td>330.0643</td>
<td></td>
<td>76.9692</td>
<td>385.6133</td>
</tr>
<tr>
<td></td>
<td>64.7955</td>
<td>334.1018</td>
<td></td>
<td>77.3619</td>
<td>389.2892</td>
</tr>
<tr>
<td></td>
<td>65.1882</td>
<td>338.1637</td>
<td></td>
<td>77.7548</td>
<td>392.9892</td>
</tr>
<tr>
<td></td>
<td>65.5809</td>
<td>342.2503</td>
<td></td>
<td>78.1478</td>
<td>396.6853</td>
</tr>
<tr>
<td></td>
<td>66.0736</td>
<td>346.3614</td>
<td></td>
<td>78.5400</td>
<td>399.7850</td>
</tr>
<tr>
<td></td>
<td>66.5663</td>
<td>350.4970</td>
<td></td>
<td>78.9327</td>
<td>402.8960</td>
</tr>
<tr>
<td></td>
<td>67.0590</td>
<td>354.6571</td>
<td></td>
<td>79.3254</td>
<td>405.9175</td>
</tr>
<tr>
<td></td>
<td>67.5517</td>
<td>358.8419</td>
<td></td>
<td>79.7181</td>
<td>409.9505</td>
</tr>
<tr>
<td></td>
<td>67.9444</td>
<td>363.0511</td>
<td></td>
<td>80.1108</td>
<td>413.0045</td>
</tr>
<tr>
<td></td>
<td>68.3371</td>
<td>367.2849</td>
<td></td>
<td>80.5035</td>
<td>416.0785</td>
</tr>
<tr>
<td></td>
<td>68.7398</td>
<td>371.5432</td>
<td></td>
<td>80.8962</td>
<td>419.1735</td>
</tr>
<tr>
<td></td>
<td>69.1325</td>
<td>375.8261</td>
<td></td>
<td>81.2889</td>
<td>422.2907</td>
</tr>
<tr>
<td></td>
<td>69.5252</td>
<td>380.1336</td>
<td></td>
<td>81.6816</td>
<td>425.4304</td>
</tr>
<tr>
<td></td>
<td>69.9180</td>
<td>384.4655</td>
<td></td>
<td>82.0743</td>
<td>428.5917</td>
</tr>
<tr>
<td></td>
<td>70.3107</td>
<td>388.8220</td>
<td></td>
<td>82.4670</td>
<td>431.7646</td>
</tr>
<tr>
<td></td>
<td>70.7033</td>
<td>393.2031</td>
<td></td>
<td>82.8597</td>
<td>434.9511</td>
</tr>
<tr>
<td></td>
<td>71.0960</td>
<td>397.6087</td>
<td></td>
<td>83.2524</td>
<td>438.1571</td>
</tr>
<tr>
<td></td>
<td>71.4887</td>
<td>402.0388</td>
<td></td>
<td>83.6451</td>
<td>441.3867</td>
</tr>
<tr>
<td></td>
<td>71.8814</td>
<td>406.4935</td>
<td></td>
<td>84.0378</td>
<td>444.6392</td>
</tr>
<tr>
<td></td>
<td>72.2741</td>
<td>410.9728</td>
<td></td>
<td>84.4305</td>
<td>447.9153</td>
</tr>
</tbody>
</table>
CIRCUMFERENCE AND AREAS OF CIRCLES

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 in.</td>
<td>87.9648</td>
<td>615.7536</td>
<td>33 in.</td>
<td>108.6728</td>
<td>855.3006</td>
</tr>
<tr>
<td>88.5375</td>
<td>631.2695</td>
<td></td>
<td>104.0655</td>
<td>861.7924</td>
<td></td>
</tr>
<tr>
<td>88.7502</td>
<td>626.7982</td>
<td></td>
<td>104.4582</td>
<td>868.3087</td>
<td></td>
</tr>
<tr>
<td>89.1429</td>
<td>632.5574</td>
<td></td>
<td>104.8509</td>
<td>874.8497</td>
<td></td>
</tr>
<tr>
<td>89.5566</td>
<td>637.9411</td>
<td></td>
<td>105.2486</td>
<td>881.4151</td>
<td></td>
</tr>
<tr>
<td>89.9283</td>
<td>643.5494</td>
<td></td>
<td>105.6363</td>
<td>888.0051</td>
<td></td>
</tr>
<tr>
<td>90.3210</td>
<td>649.1821</td>
<td></td>
<td>106.0290</td>
<td>894.6196</td>
<td></td>
</tr>
<tr>
<td>90.7137</td>
<td>654.8395</td>
<td></td>
<td>106.4217</td>
<td>901.2687</td>
<td></td>
</tr>
<tr>
<td>29 in.</td>
<td>91.1064</td>
<td>660.5214</td>
<td>34 in.</td>
<td>106.8144</td>
<td>907.9224</td>
</tr>
<tr>
<td>91.4991</td>
<td>666.2788</td>
<td></td>
<td>107.2071</td>
<td>914.6105</td>
<td></td>
</tr>
<tr>
<td>91.8918</td>
<td>671.9587</td>
<td></td>
<td>107.5998</td>
<td>921.3232</td>
<td></td>
</tr>
<tr>
<td>92.2845</td>
<td>677.7143</td>
<td></td>
<td>107.9925</td>
<td>928.0605</td>
<td></td>
</tr>
<tr>
<td>92.6772</td>
<td>683.4943</td>
<td></td>
<td>108.3852</td>
<td>934.8223</td>
<td></td>
</tr>
<tr>
<td>93.0699</td>
<td>689.2989</td>
<td></td>
<td>108.7779</td>
<td>941.6086</td>
<td></td>
</tr>
<tr>
<td>93.4626</td>
<td>695.1280</td>
<td></td>
<td>109.1706</td>
<td>948.4195</td>
<td></td>
</tr>
<tr>
<td>93.8553</td>
<td>700.9817</td>
<td></td>
<td>109.5638</td>
<td>955.2550</td>
<td></td>
</tr>
<tr>
<td>30 in.</td>
<td>94.2480</td>
<td>706.8600</td>
<td>35 in.</td>
<td>109.9560</td>
<td>962.1550</td>
</tr>
<tr>
<td>94.6407</td>
<td>712.7627</td>
<td></td>
<td>110.3487</td>
<td>968.9995</td>
<td></td>
</tr>
<tr>
<td>95.0324</td>
<td>718.6900</td>
<td></td>
<td>110.7414</td>
<td>975.9085</td>
<td></td>
</tr>
<tr>
<td>95.4261</td>
<td>724.6419</td>
<td></td>
<td>111.1341</td>
<td>982.8422</td>
<td></td>
</tr>
<tr>
<td>95.8188</td>
<td>730.6183</td>
<td></td>
<td>111.5285</td>
<td>989.8003</td>
<td></td>
</tr>
<tr>
<td>96.2115</td>
<td>736.6183</td>
<td></td>
<td>111.9215</td>
<td>996.7830</td>
<td></td>
</tr>
<tr>
<td>96.6042</td>
<td>742.6447</td>
<td></td>
<td>112.3122</td>
<td>1003.7902</td>
<td></td>
</tr>
<tr>
<td>96.9969</td>
<td>748.6948</td>
<td></td>
<td>112.7049</td>
<td>1010.8220</td>
<td></td>
</tr>
<tr>
<td>31 in.</td>
<td>97.3896</td>
<td>754.7694</td>
<td>36 in.</td>
<td>113.0976</td>
<td>1017.8784</td>
</tr>
<tr>
<td>97.7823</td>
<td>760.8655</td>
<td></td>
<td>113.4903</td>
<td>1024.9592</td>
<td></td>
</tr>
<tr>
<td>98.1750</td>
<td>766.9921</td>
<td></td>
<td>113.8830</td>
<td>1032.0646</td>
<td></td>
</tr>
<tr>
<td>98.5677</td>
<td>773.1404</td>
<td></td>
<td>114.2757</td>
<td>1039.1946</td>
<td></td>
</tr>
<tr>
<td>98.9604</td>
<td>779.3181</td>
<td></td>
<td>114.6684</td>
<td>1046.3941</td>
<td></td>
</tr>
<tr>
<td>99.3551</td>
<td>785.5104</td>
<td></td>
<td>115.0611</td>
<td>1053.5821</td>
<td></td>
</tr>
<tr>
<td>99.7488</td>
<td>791.7322</td>
<td></td>
<td>115.4538</td>
<td>1060.7317</td>
<td></td>
</tr>
<tr>
<td>100.1385</td>
<td>797.9786</td>
<td></td>
<td>115.8465</td>
<td>1067.8999</td>
<td></td>
</tr>
<tr>
<td>32 in.</td>
<td>100.5312</td>
<td>804.2496</td>
<td>37 in.</td>
<td>116.2392</td>
<td>1075.2126</td>
</tr>
<tr>
<td>100.9240</td>
<td>810.5450</td>
<td></td>
<td>116.6319</td>
<td>1082.4868</td>
<td></td>
</tr>
<tr>
<td>101.3166</td>
<td>816.8650</td>
<td></td>
<td>117.0246</td>
<td>1089.7915</td>
<td></td>
</tr>
<tr>
<td>101.7063</td>
<td>823.2096</td>
<td></td>
<td>117.4173</td>
<td>1097.1179</td>
<td></td>
</tr>
<tr>
<td>102.1090</td>
<td>829.5787</td>
<td></td>
<td>117.8100</td>
<td>1104.4657</td>
<td></td>
</tr>
<tr>
<td>102.4997</td>
<td>835.9724</td>
<td></td>
<td>118.2027</td>
<td>1111.8441</td>
<td></td>
</tr>
<tr>
<td>102.8874</td>
<td>842.3905</td>
<td></td>
<td>118.5954</td>
<td>1119.2440</td>
<td></td>
</tr>
<tr>
<td>103.2801</td>
<td>848.8333</td>
<td></td>
<td>118.9881</td>
<td>1126.6085</td>
<td></td>
</tr>
</tbody>
</table>
CIRCUMFERENCE AND AREAS OF CIRCLES

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>119.3808</td>
<td>1134.1176</td>
</tr>
<tr>
<td>43 in.</td>
<td>135.0888</td>
<td>1452.2046</td>
</tr>
<tr>
<td>39 in.</td>
<td>122.5234</td>
<td>1194.5934</td>
</tr>
<tr>
<td>45 in.</td>
<td>141.3720</td>
<td>1590.4350</td>
</tr>
<tr>
<td>41 in.</td>
<td>128.8056</td>
<td>1320.2574</td>
</tr>
<tr>
<td>47 in.</td>
<td>147.6552</td>
<td>1734.9486</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>119.735</td>
<td>1141.5911</td>
</tr>
<tr>
<td>43 in.</td>
<td>135.4815</td>
<td>1460.6599</td>
</tr>
<tr>
<td>39 in.</td>
<td>122.9151</td>
<td>1202.2633</td>
</tr>
<tr>
<td>45 in.</td>
<td>141.7647</td>
<td>1599.2830</td>
</tr>
<tr>
<td>41 in.</td>
<td>128.9303</td>
<td>1326.3194</td>
</tr>
<tr>
<td>47 in.</td>
<td>147.8072</td>
<td>1744.1893</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>120.162</td>
<td>1149.0892</td>
</tr>
<tr>
<td>43 in.</td>
<td>135.8742</td>
<td>1469.1397</td>
</tr>
<tr>
<td>39 in.</td>
<td>123.0705</td>
<td>1217.6768</td>
</tr>
<tr>
<td>45 in.</td>
<td>142.8571</td>
<td>1608.1555</td>
</tr>
<tr>
<td>41 in.</td>
<td>129.8827</td>
<td>1344.5139</td>
</tr>
<tr>
<td>47 in.</td>
<td>148.8333</td>
<td>1762.7344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>120.589</td>
<td>1156.6119</td>
</tr>
<tr>
<td>43 in.</td>
<td>136.2669</td>
<td>1477.6342</td>
</tr>
<tr>
<td>39 in.</td>
<td>123.5443</td>
<td>1217.7300</td>
</tr>
<tr>
<td>45 in.</td>
<td>142.5501</td>
<td>1617.0427</td>
</tr>
<tr>
<td>41 in.</td>
<td>129.9857</td>
<td>1344.9519</td>
</tr>
<tr>
<td>47 in.</td>
<td>148.8333</td>
<td>1762.7344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>120.9316</td>
<td>1164.5191</td>
</tr>
<tr>
<td>43 in.</td>
<td>136.6596</td>
<td>1486.1731</td>
</tr>
<tr>
<td>39 in.</td>
<td>123.7370</td>
<td>1217.8271</td>
</tr>
<tr>
<td>45 in.</td>
<td>143.3334</td>
<td>1634.9205</td>
</tr>
<tr>
<td>41 in.</td>
<td>130.3764</td>
<td>1352.6551</td>
</tr>
<tr>
<td>47 in.</td>
<td>150.0114</td>
<td>1800.1490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>121.2970</td>
<td>1173.9271</td>
</tr>
<tr>
<td>43 in.</td>
<td>137.4450</td>
<td>1503.9046</td>
</tr>
<tr>
<td>39 in.</td>
<td>124.9873</td>
<td>1240.9810</td>
</tr>
<tr>
<td>45 in.</td>
<td>143.7382</td>
<td>1643.8012</td>
</tr>
<tr>
<td>41 in.</td>
<td>131.0202</td>
<td>1304.2037</td>
</tr>
<tr>
<td>47 in.</td>
<td>150.9879</td>
<td>1800.1490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>121.5213</td>
<td>1186.9480</td>
</tr>
<tr>
<td>43 in.</td>
<td>137.8577</td>
<td>1511.9072</td>
</tr>
<tr>
<td>39 in.</td>
<td>125.2234</td>
<td>1219.4534</td>
</tr>
<tr>
<td>45 in.</td>
<td>144.9793</td>
<td>1658.1155</td>
</tr>
<tr>
<td>41 in.</td>
<td>131.4129</td>
<td>1312.2193</td>
</tr>
<tr>
<td>47 in.</td>
<td>152.8885</td>
<td>1862.8865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>121.7370</td>
<td>1173.0271</td>
</tr>
<tr>
<td>43 in.</td>
<td>137.4450</td>
<td>1503.9046</td>
</tr>
<tr>
<td>39 in.</td>
<td>124.9873</td>
<td>1240.9810</td>
</tr>
<tr>
<td>45 in.</td>
<td>143.7382</td>
<td>1643.8012</td>
</tr>
<tr>
<td>41 in.</td>
<td>131.0202</td>
<td>1304.2037</td>
</tr>
<tr>
<td>47 in.</td>
<td>150.9879</td>
<td>1800.1490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>121.9570</td>
<td>1174.3176</td>
</tr>
<tr>
<td>43 in.</td>
<td>137.8577</td>
<td>1511.9072</td>
</tr>
<tr>
<td>39 in.</td>
<td>125.2234</td>
<td>1219.4534</td>
</tr>
<tr>
<td>45 in.</td>
<td>144.9793</td>
<td>1658.1155</td>
</tr>
<tr>
<td>41 in.</td>
<td>131.4129</td>
<td>1312.2193</td>
</tr>
<tr>
<td>47 in.</td>
<td>152.8885</td>
<td>1862.8865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>122.162</td>
<td>1156.6119</td>
</tr>
<tr>
<td>43 in.</td>
<td>136.2669</td>
<td>1486.1731</td>
</tr>
<tr>
<td>39 in.</td>
<td>123.9316</td>
<td>1217.8271</td>
</tr>
<tr>
<td>45 in.</td>
<td>143.3334</td>
<td>1634.9205</td>
</tr>
<tr>
<td>41 in.</td>
<td>130.3764</td>
<td>1352.6551</td>
</tr>
<tr>
<td>47 in.</td>
<td>150.0114</td>
<td>1800.1490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 in.</td>
<td>122.5234</td>
<td>1194.5934</td>
</tr>
<tr>
<td>43 in.</td>
<td>138.2304</td>
<td>1520.5344</td>
</tr>
<tr>
<td>39 in.</td>
<td>125.2234</td>
<td>1219.4534</td>
</tr>
<tr>
<td>45 in.</td>
<td>144.9793</td>
<td>1658.1155</td>
</tr>
<tr>
<td>41 in.</td>
<td>131.4129</td>
<td>1312.2193</td>
</tr>
<tr>
<td>47 in.</td>
<td>152.8885</td>
<td>1862.8865</td>
</tr>
<tr>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>48 in.</td>
<td>150.7965</td>
<td>1809.5615</td>
</tr>
<tr>
<td>49 in.</td>
<td>158.9384</td>
<td>1885.7454</td>
</tr>
<tr>
<td>50 in.</td>
<td>157.0800</td>
<td>1963.8000</td>
</tr>
<tr>
<td>51 in.</td>
<td>160.2216</td>
<td>2042.8254</td>
</tr>
<tr>
<td>52 in.</td>
<td>163.3632</td>
<td>2123.7216</td>
</tr>
<tr>
<td></td>
<td>166.1121</td>
<td>2195.7943</td>
</tr>
<tr>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>58 in.</td>
<td>182.2128</td>
<td>2642.0856</td>
</tr>
<tr>
<td></td>
<td>182.6555</td>
<td>2653.4861</td>
</tr>
<tr>
<td></td>
<td>182.9982</td>
<td>2634.9112</td>
</tr>
<tr>
<td></td>
<td>183.3909</td>
<td>2676.3609</td>
</tr>
<tr>
<td></td>
<td>183.7826</td>
<td>2687.8351</td>
</tr>
<tr>
<td></td>
<td>184.1763</td>
<td>2699.3388</td>
</tr>
<tr>
<td></td>
<td>184.5690</td>
<td>2710.8571</td>
</tr>
<tr>
<td></td>
<td>184.9617</td>
<td>2722.4050</td>
</tr>
<tr>
<td>59 in.</td>
<td>185.3544</td>
<td>2733.9774</td>
</tr>
<tr>
<td></td>
<td>185.7471</td>
<td>2745.4748</td>
</tr>
<tr>
<td></td>
<td>186.1398</td>
<td>2757.1957</td>
</tr>
<tr>
<td></td>
<td>186.5325</td>
<td>2768.8418</td>
</tr>
<tr>
<td></td>
<td>186.9252</td>
<td>2780.5123</td>
</tr>
<tr>
<td></td>
<td>187.3179</td>
<td>2792.2074</td>
</tr>
<tr>
<td></td>
<td>187.7106</td>
<td>2803.9270</td>
</tr>
<tr>
<td></td>
<td>188.1033</td>
<td>2815.6712</td>
</tr>
<tr>
<td>60 in.</td>
<td>188.4960</td>
<td>2827.4400</td>
</tr>
<tr>
<td></td>
<td>188.8887</td>
<td>2839.2332</td>
</tr>
<tr>
<td></td>
<td>189.2814</td>
<td>2851.0510</td>
</tr>
<tr>
<td></td>
<td>189.6741</td>
<td>2862.8934</td>
</tr>
<tr>
<td></td>
<td>190.0668</td>
<td>2874.7603</td>
</tr>
<tr>
<td></td>
<td>190.4595</td>
<td>2886.6517</td>
</tr>
<tr>
<td></td>
<td>190.8522</td>
<td>2898.5677</td>
</tr>
<tr>
<td></td>
<td>191.2419</td>
<td>2910.5083</td>
</tr>
<tr>
<td>61 in.</td>
<td>191.6376</td>
<td>2922.4734</td>
</tr>
<tr>
<td></td>
<td>192.0303</td>
<td>2934.4630</td>
</tr>
<tr>
<td></td>
<td>192.4230</td>
<td>2946.4771</td>
</tr>
<tr>
<td></td>
<td>192.8187</td>
<td>2958.5189</td>
</tr>
<tr>
<td></td>
<td>193.2084</td>
<td>2970.5791</td>
</tr>
<tr>
<td></td>
<td>193.6011</td>
<td>2982.6669</td>
</tr>
<tr>
<td></td>
<td>193.9931</td>
<td>2994.7792</td>
</tr>
<tr>
<td></td>
<td>194.3865</td>
<td>3006.9161</td>
</tr>
<tr>
<td>62 in.</td>
<td>194.7792</td>
<td>3019.0776</td>
</tr>
<tr>
<td></td>
<td>195.1719</td>
<td>3031.2835</td>
</tr>
<tr>
<td></td>
<td>195.5646</td>
<td>3043.4740</td>
</tr>
<tr>
<td></td>
<td>195.9573</td>
<td>3055.7091</td>
</tr>
<tr>
<td></td>
<td>196.3500</td>
<td>3067.9687</td>
</tr>
<tr>
<td></td>
<td>196.7427</td>
<td>3080.2529</td>
</tr>
<tr>
<td></td>
<td>197.1354</td>
<td>3092.5615</td>
</tr>
<tr>
<td></td>
<td>197.5281</td>
<td>3104.8948</td>
</tr>
</tbody>
</table>
Circumferences and Areas of Circles

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 in.</td>
<td>213.6288</td>
<td>363.16896</td>
<td>73 in.</td>
<td>229.3368</td>
<td>418.53966</td>
</tr>
<tr>
<td>214.0215</td>
<td>364.45536</td>
<td>229.7296</td>
<td>419.7424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214.4143</td>
<td>365.84402</td>
<td>230.1222</td>
<td>421.4107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214.8069</td>
<td>367.18554</td>
<td>230.5149</td>
<td>422.5077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.1996</td>
<td>368.52931</td>
<td>230.9076</td>
<td>424.2971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.5923</td>
<td>369.87554</td>
<td>231.3003</td>
<td>425.7311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.9850</td>
<td>371.22421</td>
<td>231.6930</td>
<td>427.1836</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216.3777</td>
<td>372.57555</td>
<td>232.0857</td>
<td>428.6327</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

69 in.	216.7704	373.92894	74 in.	232.4784	480.8504
217.1631	375.26498	232.8711	431.3026		
217.5558	376.64327	233.2638	432.9572		
217.9485	378.00413	233.6565	434.5305		
218.3412	379.36783	234.0492	435.9163		
218.7339	380.73369	234.4419	437.3067		
219.1266	382.10000	234.8346	438.8475		
219.5193	383.47277	235.2273	440.3160		

70 in.	219.9120	384.84000	75 in.	235.6200	441.9750
220.3047	386.2167	236.0127	443.6135		
220.6974	387.5960	236.4054	444.7474		
221.0901	388.9039	236.7981	445.6642		
221.4828	390.3343	237.1908	447.1763		
221.8755	391.7498	237.5855	448.6130		
222.2682	393.1567	237.9762	450.6642		
222.6609	394.52728	238.3659	452.1560		

71 in.	223.0536	395.92014	76 in.	238.7616	453.64704
223.4463	397.31545	239.1543	455.1023		
223.8390	398.71801	239.5470	456.6636		
224.2317	400.1344	239.9397	458.1486		
224.6244	401.51611	240.3324	459.6351		
225.0171	402.92124	240.7251	461.1392		
225.4098	404.3882	241.1178	462.6477		
225.8025	405.8886	241.5105	464.1529		

<p>| 72 in. | 226.1952 | 407.5136 | 77 in. | 241.9032 | 465.6636 |
| 226.5879 | 408.5631 | 242.2959 | 467.1767 |
| 226.9806 | 409.6135 | 242.6866 | 468.6925 |
| 227.3733 | 410.6536 | 243.0813 | 470.2139 |
| 227.7660 | 412.62857 | 243.4740 | 471.7308 |
| 228.1587 | 414.6064 | 243.8667 | 473.2538 |
| 228.5514 | 415.6785 | 244.2594 | 474.7920 |
| 228.9441 | 417.1073 | 244.6521 | 476.3705 |</p>
<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>78 in.</td>
<td>245.0448</td>
<td>4778.3736</td>
<td>83 in.</td>
<td>260.7528</td>
<td>5410.6206</td>
</tr>
<tr>
<td>79 in.</td>
<td>248.1864</td>
<td>4901.6814</td>
<td>84 in.</td>
<td>263.8944</td>
<td>5541.7824</td>
</tr>
<tr>
<td>80 in.</td>
<td>251.3280</td>
<td>5026.5600</td>
<td>85 in.</td>
<td>267.0360</td>
<td>5674.1500</td>
</tr>
<tr>
<td>81 in.</td>
<td>254.4696</td>
<td>5153.0094</td>
<td>86 in.</td>
<td>270.1766</td>
<td>5808.8184</td>
</tr>
<tr>
<td>82 in.</td>
<td>257.6112</td>
<td>5281.0296</td>
<td>87 in.</td>
<td>273.3192</td>
<td>5955.6926</td>
</tr>
<tr>
<td>238.8059</td>
<td>527.1426</td>
<td></td>
<td></td>
<td>274.7119</td>
<td>5961.7873</td>
</tr>
<tr>
<td>238.3966</td>
<td>530.8378</td>
<td></td>
<td></td>
<td>275.2827</td>
<td>6030.4108</td>
</tr>
<tr>
<td>238.1820</td>
<td>534.6287</td>
<td></td>
<td></td>
<td>275.6754</td>
<td>6047.6290</td>
</tr>
<tr>
<td>239.547</td>
<td>538.3951</td>
<td></td>
<td></td>
<td>276.0681</td>
<td>6064.8710</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>88 in.</td>
<td>276.4608</td>
<td>6082.1376</td>
<td>93 in.</td>
<td>292.1688</td>
<td>6792.9248</td>
</tr>
<tr>
<td>276.8345</td>
<td>6099.4287</td>
<td>292.5101</td>
<td>6811.1974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277.2442</td>
<td>6116.7422</td>
<td>292.9542</td>
<td>6829.4927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277.6389</td>
<td>6134.0444</td>
<td>293.3469</td>
<td>6847.8167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278.0316</td>
<td>6151.4491</td>
<td>293.7396</td>
<td>6866.1631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278.4243</td>
<td>6169.8376</td>
<td>294.1323</td>
<td>6884.5338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278.8170</td>
<td>6186.2591</td>
<td>294.5350</td>
<td>6902.9296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.2097</td>
<td>6203.6905</td>
<td>294.9177</td>
<td>6921.3497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 in.</td>
<td>279.6024</td>
<td>6221.1534</td>
<td>94 in.</td>
<td>295.3104</td>
<td>6939.7946</td>
</tr>
<tr>
<td>279.9951</td>
<td>6238.6408</td>
<td>295.7031</td>
<td>6958.2636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.3878</td>
<td>6256.1507</td>
<td>296.0958</td>
<td>6976.7532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.7805</td>
<td>6273.6893</td>
<td>296.4885</td>
<td>6995.2555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.1732</td>
<td>6291.2503</td>
<td>296.8812</td>
<td>7013.8183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.5659</td>
<td>6308.8351</td>
<td>297.2739</td>
<td>7032.3853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.9586</td>
<td>6326.4460</td>
<td>297.6666</td>
<td>7050.9775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>282.3513</td>
<td>6344.0807</td>
<td>298.0593</td>
<td>7069.5940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 in.</td>
<td>282.7440</td>
<td>6361.7400</td>
<td>95 in.</td>
<td>298.4520</td>
<td>7088.2852</td>
</tr>
<tr>
<td>283.1367</td>
<td>6379.4238</td>
<td>298.8447</td>
<td>7106.9005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283.5294</td>
<td>6397.1300</td>
<td>299.2374</td>
<td>7125.5885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283.9221</td>
<td>6414.8449</td>
<td>299.6301</td>
<td>7144.3093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284.3148</td>
<td>6432.5628</td>
<td>300.0228</td>
<td>7163.0443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284.7075</td>
<td>6450.4039</td>
<td>300.4155</td>
<td>7181.8077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.1002</td>
<td>6468.2107</td>
<td>300.8082</td>
<td>7200.5962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.4929</td>
<td>6486.0418</td>
<td>301.2009</td>
<td>7219.4090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 in.</td>
<td>285.8856</td>
<td>6503.8974</td>
<td>96 in.</td>
<td>301.5936</td>
<td>7238.2466</td>
</tr>
<tr>
<td>286.2783</td>
<td>6521.7772</td>
<td>301.9863</td>
<td>7257.1083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.6710</td>
<td>6539.6801</td>
<td>302.3790</td>
<td>7275.9926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287.0637</td>
<td>6557.6144</td>
<td>302.7717</td>
<td>7294.9056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287.4564</td>
<td>6575.5651</td>
<td>303.1644</td>
<td>7313.8411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287.8491</td>
<td>6593.5431</td>
<td>303.5571</td>
<td>7331.8008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.2418</td>
<td>6611.5412</td>
<td>303.9490</td>
<td>7349.7837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.6345</td>
<td>6629.5736</td>
<td>304.3425</td>
<td>7367.7949</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 in.</td>
<td>289.0272</td>
<td>6647.6258</td>
<td>97 in.</td>
<td>304.7352</td>
<td>7385.8288</td>
</tr>
<tr>
<td>289.4199</td>
<td>6665.7021</td>
<td>305.1279</td>
<td>7405.8888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.8126</td>
<td>6683.8010</td>
<td>305.5206</td>
<td>7427.9675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290.2053</td>
<td>6701.9286</td>
<td>305.9133</td>
<td>7447.0769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290.5980</td>
<td>6719.0787</td>
<td>306.3060</td>
<td>7466.2087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290.9907</td>
<td>6738.2530</td>
<td>306.6987</td>
<td>7485.3648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291.3834</td>
<td>6756.4520</td>
<td>307.0914</td>
<td>7504.5400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291.7861</td>
<td>6774.6763</td>
<td>309.4841</td>
<td>7523.7515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>Circum.</td>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98 in.</td>
<td>307.8768</td>
<td>7542.9818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308.6622</td>
<td>7581.5122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309.4476</td>
<td>7600.8189</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.2330</td>
<td>7658.8771</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.6257</td>
<td>7678.2790</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99 in.</td>
<td>311.0184</td>
<td>7697.7056</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Circum.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14111</td>
<td>7.27795</td>
</tr>
<tr>
<td>311.8638</td>
<td>7736.8297</td>
<td></td>
</tr>
<tr>
<td>312.5892</td>
<td>7775.6563</td>
<td></td>
</tr>
<tr>
<td>313.2149</td>
<td>7814.7790</td>
<td></td>
</tr>
<tr>
<td>313.7673</td>
<td>7834.3772</td>
<td></td>
</tr>
<tr>
<td>314.1600</td>
<td>7854.0000</td>
<td></td>
</tr>
</tbody>
</table>
ORR'S PATENT ROOT OPENER.

A Machine specially designed to Open and Clean Jute and other fibrous roots, generally known in the Jute Trade as cuttings. The Machine consists of four strongly built cylinders all revolving in the same direction. These cylinders carry heavy steel pins, which intersect stationary pins fixed into breast plates. The rubbing action opens and cleans the roots, and the dirt and sand fall out through gratings underneath the cylinders. The cuttings or roots are fed evenly on to the feed table, and are carried up to a pair of fluted rollers, which pass them into the hopper, and then into the Machine. The Root Opener should be placed in such a position to deliver direct on to the feed table of the Softening Machine, thus saving labour, and this arrangement insures an even feed for the Softener, which in turn is most important for uniform batching.

This Machine is capable of opening and cleaning sufficient material for a Softening Machine, making the working a continuous process. If, however, the Softener is required to work long Jute, the delivery table of the Root Opener can be instantly raised to allow the operators to feed long Jute.

Cuttings can be opened and cleaned rapidly, and at a minimum cost. They are prepared and delivered on to the Softener table in a condition most suitable to receive the batching mixture. The roots having been opened, and the fibre loosened, the oil and water are rapidly absorbed and remain in the fibre during the process of carding. This is not the case when cuttings have not been previously cleaned and prepared, and it will be found that much of the batching mixture is carded out along with the dirt and sand and is lost.

In treating cuttings with an opener and getting rid of the dirt and sand, there is a great saving in card covering, and much less tear and wear to the Cards and other Machines that follow.

A number of these Root Openers are at work in Indian Jute Mills, and they are giving every satisfaction.

Sole Makers:
JAMES F. LOW & CO., Ltd.,
MONIFIETH.
Advertisements.

THOMAS C. KEAY,
ENGINEER AND MACHINE MERCHANT,
MACHINERY AUCTIONEER AND VALUATOR,
Northern Machine Works, Ogilvie Street, Dundee.

NEW AND SECOND HAND

Jute,

Flax,

Hemp, &

Tow Machinery

Sack Printing Machines,

Engines,

Boilers,

Lathes,

Machine Tools,

MAKER OF
Evaporative Steam Condensers.
Sack Cutting Machines.
Sack Printing Machines.
Yarn Power Reels.
Drawing Rollers for Drawings, Rovings, Spinning Frames, &c.
Arbors for Spinning Frame Wood Pressing Rollers.
Loom and Sack Sewing Machines Spare Parts, etc.

PLANS AND ESTIMATES
GIVEN FOR
MILLS AND FACTORIES.

CATALOGUES
ON APPLICATION.

Loom Beams and Flanges.

Sack Cutting Machines.
Advertisements.

THOMAS C. KEAY,
MILL FURNISHER, SHUTTLE, PICKER, and BOBIN MAKER,
Engineer, Machine Merchant, Machinery Auctioneer & Valuator,
17 BALTIC STREET, DUNDEE.

SPECIALTIES—
Bobbins, Shuttles, Buffalow and Leather Pickers, Planetree
Rollers, Bobbin Ends, Picking Arms, Bank Pins, Reel Spokes,
Buffalo Skips, Belting—all kinds, Bolts and Nuts, Oils, Picking
Bands, Cotton Banding, Belt Laces, Martingale Strapping, and
every requisite in Furnishings for Jute and Flax Mills.

Bobbins all sizes.

Beech and Persimmon Wood Shuttles.

Union Bag Sewing Machine.

Buffalo Pickers.

Government Waterproof Belt Dressing.
Advertisements.

GEORGE H. LORD & SON
(ESTABLISHED 35 YEARS),
ENGINEERS & MACHINE MERCHANTS,
MILL AND FACTORY FURNISHERS.
PARK MACHINE WORKS, DUNDEE.

LICENSED AUCTIONEERS & VALUERS,
Mill, Factory, and Rope Work Property and Plant Valued (for
Insurance, Partnership, and other Purposes),
also arranged for disposal either by Public or Private Sale.

FIRE ASSESSORS,
Fire Claims prepared and adjusted on behalf of the assured or others.

A LARGE STOCK ALWAYS ON HAND OF SECOND HAND
Preparing, Spinning, Winding, Weaving, and Finishing
MACHINERY.
Suitable for Hemp, Flax, and Jute, also for Manilla, Russian,
Italian, and other Hempt for Binder Twines, Ropes, Cords, &c.

DEALERS IN ENGINEERS’ TOOLS.

Estimates given for Machinery Overhauled and put into Good Working Order.

Postal Address: CHAMBERS—13a Ward Road, Dundee, Scotland.
2 Colour Printer.

D. J. MACDONALD,
C.E., M.I.Mech.E.
ENGINEER & MACHINE MAKER,
SOUTH ST. ROQUE'S WORKS, DUNDEE.

Telegram—‘‘Medalist, Dundee.”

MAKER OF
Sack Cutting, Hemming, Sewing, and Printing
Machines; Tarring, Dyeing, Bleaching, Pitching,
and Proofing Machines; Rubber Mills; Vulcanising
Presses; Spreading Machines; Engines: Air
Pumps; Shafting, &c.,

SOLE MAKER OF
Hill's Patent Yarn Tester
Sturrock's Patent Furnace Bridge.

Overhead Sack Sewing Machine.
D. J. MACDONALD,
C.E., M.I.Mech.E.,
CONSULTING ENGINEER,
13 Constable Street, Dundee

Plans Specifications and
Estimates prepared.

Engines & Machines Inspected
Tested and reported upon.

Special Machines designed
for Inventors and others.

Chilton & Macdonald Patent High Speed Engine.

D. J. MACDONALD,
MILL, FACTORY, & ENGINEERS'
FURNISHER, & EXPORTER,
WARD ROAD & LINDSAY ST.
DUNDEE.

SOLE AGENT FOR
SCOTLAND AND BRITISH INDIA
FOR
Indestructible Fibre Sliver Cans, etc.

AGENT FOR
Union Special Sewing Machines, etc.

Engineers' Tools and all classes of
Machinery supplied, and spare parts and
accessories for same.
Machinery and goods Inspected by
Experts before being despatched.

"Union" Special Sewing Machine.
BOBBIN MAKING MACHINERY
FOR
JUTE BOBBINS, THREAD BOBBINS, SPINNING BOBBINS; also
General Woodworking Machinery.

THOMAS WHITE & SONS,
LAIGH PARK WORKS,
PAYSLEY

WRITE US FOR FULL PARTICULARS.

THE DUNDEE PATENT OFFICE.
GEO. C. DOUGLAS & CO., Consulting Engineers and Patent Agents,
41 REFORM STREET, DUNDEE.

PATENTS, DESIGNS, and TRADE MARKS Obtained for the United Kingdom,
the Colonies, and all Foreign Countries. Advice as to the Patent Laws, Cases of Infringement, and
every assistance offered to Patentees and Inventors. Specifications drawn and revised. Searches

Particulars of Cost on Application

THE STURROCK PATENT
Smoke Consuming Furnace Bridge Coy.

Head Office—41 Reform Street, Dundee.

These Patent Bridges have been giving unqualified satisfaction in land
and marine boilers, and enquiries are solicited for fitting these to boilers
working with either natural or forced draught.
EDWARD LUCAS & SON,
DRONFIELD FOUNDRY, near SHEFFIELD.

M A K E R S O F
Spinning Spindles and Flyers,
For Flax, Jute, Worsted, Cotton, &c.; also
Roving Spindles and Flyers.

A L S O M A K E R S O F
WARP, LOOM, & SILK SPINDLES.

I N Q U I R I E S S O L I C I T E D.

SAML. LUCAS’S PATENT SPINDLE has a collar hardened and fixed under the
screw, which can be replaced; and Spindles worked down at the shoulder can have this Patent Collar
put on at a small cost. The advantage of this Collar is that it prevents the shoulder at the bottom of
screw becoming untrue by the flyer coming down on shoulder when working, the collar being equal in
temper to the flyer. Many thousands of these Patent Spindles are now running, and are much
approved.

Malleable Iron Castings of Superior Quality for all Purposes.

T e l e g r a p h i c A d d r e s s—“LUCAS, Dronfield.”

A G E N T S—
Messrs RICHARD L. BAXTER & CO., 81 Murraygate, Dundee.
Advertisements.

Telegraphic Address—“TURBINE,” Dundee. Telephone No. 402.

THOMSON, SON, & CO., LIMITED.

Engineers, Millwrights, & Machine Makers,
Iron and Brass Founders,
DOUGLAS FOUNDRY, DUNDEE.

JOHN STRACHAN,
SECRETARY

JOHN M. MALLOCH,
GENERAL MANAGER.

MACHINE MOULDED
WHEELS,
Spur and Bevel,
either Plain or with
Helical Teeth.

Makers of Spinning and Weaving Machinery, for Flax and Jute; Machinery for Washing, Bleaching, and Finishing Yarns and Cloth; Calenders, Mangles and Hydraulic Presses; Steam Engines, Water Wheels, and Turbines; Pumping Machinery; Fire-proof Beams, Pillars, and Castings of all kinds; Wrought Iron Work; Belt and Rope Gearing of every description; Millwright and general Engineering Work.

Plans and Specifications for Mills and Factories furnished in connection with the above.
JAMES F. LOW & CO.,
LIMITED.
MAKERS OF FLAX, HEMP, & JUTE MACHINERY,
IRON & BRASS FOUNDERS,
MONIFIETH FOUNDRY,
MONIFIETH,
SCOTLAND.

Telegrams—"LOW, MONIFIETH."
Telephone, No 1, MONIFIETH.
FAIRBAIRN LAWSON COMBE BARBOUR, LIMITED.

LAWSON BRANCH,
Hope Foundry, LEEDS, England.

Makers of MACHINERY for
Preparing and Spinning Flax, Tow, Hemp and Jute,
AND OF
Special Machinery for the Manufacture of Twines.
ALSO OF
GOOD'S COMBINED HACKLING & SPREADING MACHINE,
LONG-REACH SCREW-GILL DRAWING FRAMES,
CHAIN-GILL DRAWING FRAMES with apron head.
Patent High-Speed Horizontal and Automatic Spinning Frames for MANILLA,
AND
Other Special Machinery for the manufacture of Rope Yarns & Binder Twine

IMPROVED LAYING MACHINES,
HASKELL-DAWES TUBING TWISTERS,
Brownell's Patent Twisting and Laying Machines for Twines.

COMPLETE PLANS & ESTIMATES FOR FLAX, TOW, HEMP & JUTE MILLS
TRAWL TWINE FACTORIES & STEAM ROPEWORKS.
Advertisements.

Telegraphic Address—"FOUNDERS," Dundee. Telephone No. 398.

ROBERTSON & ORCHAR, LIMITED,

WALLACE FOUNDRY, DUNDEE.

Engineers, Millwrights, Machine Makers, and Founders.

Makers of
Preparing, Weaving, and Finishing Machinery for all Classes of Linen, Hemp, Tow, and Jute Fabrics.

PATEENTEE AND MAKERS OF THE FOLLOWING MACHINES:

Warp Winding Machines.
Weft Winding Machines.
Weft Softening Machines.
Patent Yarn Dressing Machines with two to eight Cylinders
Dry Yarn Beaming Machines.
Power Looms.
Double and Single Cloth Damping Machines.
Cloth Starching Machines.
Cloth Measuring Machines.

Patent Hydraulic and Lever Pressure Roller Mangles of all widths.
Patent Hydraulic and Lever Pressure Five Roller Calenders from 90 to 180 inches in width.
Improved Calenders of three, four, and five Rollers, with special Lever Pressure.
Cloth Crisping Machines.
Candros for Rolling Cloth.
Patent Overhead Sack Sewing Machines, &c.

EVERY DESCRIPTION OF MILLWRIGHT AND GENERAL ENGINEERING WORK CAREFULLY EXECUTED.

SPECIALTY.

Founders and Makers of all kinds of Machine Moulded Wheels, including Double and Single Helical Toothed Wheels, Spur and Bevel combined, Worm Wheels, &c., &c.
Advertisements.

EDWARD SIMPSON & CO.,

Glasgow Spindle and Tool Works,
RUTHERGLEN, near GLASGOW.

Manufacturers of

SPINNING SPINDLES AND FLYERS,
ALSO
BRASS NECKS AND STEPS
FOR
JUTE & FLAX MACHINERY.

CAREFUL ATTENTION DEVOTED TO THE

REPAIRING OF SPINDLES AND DRY SPINNING FLYERS.

MANUFACTURERS ALSO OF

Improved SCOTCH SCREW AUGERS and BRACE SCREW
BITS for the Hardest Timbers known.
Advertisement.

R. C. STIVEN & CO.,
OIL MERCHANTS, MILL & FACTORY FURNISHERS,
3 MEADOW PLACE, MEADOWSIDE
(OPPOSITE LADYWELL CALENDR)
DUNDEE.

JOHN M. INCHES,
Boiler and Steam Pipe Coverer,

44 FOUNDRY LANE, DUNDEE.

Now amalgamated with the
DUNDEE BOILER COVERING COMPANY, Tay Street, DUNDEE.
EDWARD PARKER,
CURRIER AND LEATHER MERCHANT,

MERCHANT AND MANUFACTURER OF
BELTING, HOSEPIPES, ROLLER COVERS, LACES, STRAPS, TEMPER BANDS,
MARTINGALE BUCKLES, PICKING STRAPS, PICKERS,
ENGLISH AND FOREIGN BUTTS, BELT BUTTS, BUFFALO HIDE SKIPS, AND
GENERAL LEATHER FURNISHINGS.
SEAMLESS FLAX AND INDIARUBBER HOSE, BELTING WHOLESALE AND FOR
EXPORT, HOSEPIPE FOR MILL AND SHIP USE, FIRE APPLIANCES.

BELTING OF ALL GENERAL WIDTHS ALWAYS IN STOCK AT

SOUTH TAY STREET LEATHER WORKS,
38 SOUTH TAY STREET, DUNDEE.

WILLIAM R. STEWART,
MANUFACTURER OF ALL KINDS OF
HACKLES, GILLS, AND WOOD CARD COVERING.

STEELFACED
CARD
COVERING
A
SPECIALITY.

HILLBANK HACKLE WORKS, 30 Dens Road, DUNDEE.
Robert Ferguson & Sons,

OIL MERCHANTS, &c.,

MILL FACTORY, & ENGINEERS' FURNISHERS,

All kinds of Oils for Lubricating and Batch Wheel Purposes, Belting (all kinds), Laces, Picking Bands, (Green, Chrome, or Oak Tanned), Shuttle, Buffalo Pickers, Bobbins, Plane Tree Rollers, Roller Cloth Dressers Flannel, India Rubber Goods, Spindles and Springs of every kind, Bolts and Nuts, Set Screws, Brass Goods, &c.

SPECIALTIES (WOOD SPLIT PULLEYS (Thousands in use) "BUFFALO" AUTOMATIC INJECTOR, "GLOBUS" BELTING, (Canvas, Gutta Percha, and Balata —Kirkcaldy's tests prove this to be the strongest Belt in existence).

FOREIGN INDENTS SPECIALLY ATTENDED TO

11 to 15 Royal Exchange Lane, Dundee.

Fairmuir, Tinplate, Plumber, and Sheet Metal Works.

John Galloway,

IRONMONGER, TINSMITH, PLUMBER, & GASFITTER.

Every description of Mill and Factory work done.

Manufacturer of the Special Machine made Silver Cans and Spinning Conductors, &c. Cop Pans, Pinn Trays, Shuttle Grooves. These Cans are made (with Special Machines) of the best P. C. and Black Sheet Steel, Corrugated in Mouth, and specially Stamped Bottom, firmly riveted with 6 in. base piece, and extra strong Hoop to body of Can. Delivery from 600 to 1200 per week, as may be arranged for.

Picker Grooves or Channels—to Lengths as ordered. Stamped Figures and Letters in Iron, Steel, or Sheet Brass—various sizes.

Maker of the New Improved Machine-made Spinning Conductor.

Silver Cans, Cylinders, and Cord Conductors Repaired or Altered.

Special Van sent for Broken Cylinders (on receipt of Telephone message), and immediately returned when repaired.

SHOP & STORE—309 & 311 HILLTOWN, DUNDEE.

Workshops—FAIRMUIR and FAIRFIELD STREETS.

Telephone No. 434.
Advertisements.

THOS. FERGUSON & CO.,
TEXTILE ENGINEERS,
MILL, FACTORY, AND ENGINEERS' FURNISHERS,
35 COWGATE, DUNDEE.

SOLE AGENTS FOR—
GEORGE ANGUS & CO., Ltd., St John's Leather Works, Newcastle on-Tyne.
Victoria Gas Engine, and "Gilbert" Wood Split Pulleys.
J. J. SAVILLE & CO., Steel and File Manufacturers, Sheffield.
WALKER, MITCHELL & CO., Gas Engineers, and Faller Makers.

LIST OF GOODS.

LEATHER—Belting, Single and Double; Butts, Picking Bands, Laces—Brown, White, Helvetia, and Raw Hide, Buffalo Pickers and Skips.

ASBESTOS—Patent Pipe and Boiler Covering Composition, Packing Yarn Joints, &c., Silicate Cotton Pipe Coverings.

RUBBER—Valves, Hose, Washers, Belting Mats, &c.

STEEL AND FILES—Triumph Self-hardening Steel, Diamon Steel, Special Magnet Steel, Mining Steel, Steel for Granite, Files, Engineers' and Sledge Hammers, Loom Springs and Spindles, Milled Steel Fallers or Gill Bars for Flax and Jute Trades, Special Fallers without Gill Stocks, Pinned through the Bar.

SUNDRIES.

Oils—Batching and Lubricating; Wheel, Rope and Belt Dressing; Roves, Bobbins, Spools, Electric Lamps; Soft and Bar Soaps; Tallow, Rosin, Glue, &c.

PHONE 1081.
Advertisements.

Silver Medal, Paris, 1865.

Chas. Parker, Sons, & Co.,

VICTORIA FOUNDRY, DUNDEE,
ENGINEERS, MACHINE MAKERS & IRONFOUNDERS

Makers of all kinds of
Preparing, Weaving, and Finishing Machinery
(From Latest and most Improved Models),
For JUTE, FLAX, and HEMP TEXTILES.

Warp and Weft (Cop) Winding Machines with all Latest Improvements
Special Power Looms for Hessians, Sackings, Tarpaulings, etc.
Special Power Looms for Jute Carpetings, Mattings, etc.
Special Power Looms, with 2, 3, and 4 Shuttles.
Special Power Looms for all kinds of Sailecloth, to the Heaviest Nos.
Improved Dressing and Cropping Machines, Calenders, Mangles, Sackcutters, Hydraulic Pumps and Presses, etc.; also Jute Opening and Softening Machines.

PLANS, SPECIFICATIONS AND ESTIMATES FURNISHED.
Urquhart, Lindsay & Co., Limited,
BLACKNESS FOUNDRY, DUNDEE.
ENGINEERS, MILLWRIGHTS, & IRONFOUNDERS.

MACHINE-MOULDED & MACHINE-CUT WHEELS OF ALL DESCRIPTIONS
JUTE OPENERS & SOFTENERS
Warp Winding, Patent Travelling Spindle Cop Winding, Dressing and Beaming Machines
POWER LOOMS AND ALL WEAVING MACHINERY.
PATENT CROPPING MACHINES.
CLOTH FINISHING MACHINERY, and all Descriptions of General Engineering Work.
BLINSHALL STREET, DUNDEE.

SAMUEL WORRALL (Late George Worrall),

MERCHANT AND MANUFACTURER OF
HACKLES & GILLS, HACKLE & CILL PINS, CARD CLOTHING IN LEATHER OR WOOD
AND CAST STEEL WIRE DRAWER.
BRASS CASTINGS OF ALL SORTS.
TELEPHONE 916.

STUDENTS' EDITION,
With Diagrams. Price, 3s Nett.

The Theory and Practice of the Art of Weaving Linen and Jute Manufactures by Power Loom.

By WILLIAM LEGGATT.

Price, 6d; Post Free, 6½d.

The Warping Overseer's Assistant,

Or a Short and Simple Method of Finding the Length, Breadth, Weight, and Quality of Yarn in any Chain, with Table and Practical Remarks.

By JOHN FLEMING.

WAGES TABLES for FACTORIES and WORKSHOPS.
Calculated for Fifty-one Hours, 6d; for Fifty-five Hours, 6d; for Fifty-six Hours, 6d.
Post Free, 6½d each.

WILLIAM KIDD, Whitehall Street, Dundee
There is no time to be lost nowadays!

You often want a few hundred copies (more or less) of a Circular, Price List, Post Card, Notices, Letters, Quotations, Agenda, Specifications, Maps, Drawings, etc., etc.

What you want is the

Optimus Duplicator!

Prices

No. 1—4 x 6 in., complete with ink, **12/6**

For Post Cards.

No. 2—8 ½ x 13 in., do., **27/6**

Quarto & F. Cap.

No. 3—14 x 19 in., do., **50/-**

Double Folio.

No. 4—15 ½ x 19 ½ in., do., **70/-**

Extra.

No. 5—20 ½ x 24 in., do., **90/-**

Extra.

You merely write, draw, or type your original—place it on the 'Optimus' and you then have a negative from which you can take as many copies as you like.

It takes and reproduces inks of any colour at one and the same time.

It needs no blacking or inking and is the cleanest Duplicator on the market.

When one plate is finished with, you merely roll it away and thus expose another for use.

The plates being self absorbing can be used over and over again.

Optimus Refills.

No. 1—About 3 yards, **3/6.**

No. 2—About 5 ½ yards, **6/6.**

No. 3—About 5 ½ yards, **9/-**

No. 4—About 5 ½ yards, **15/-**

No. 5—About 5 ½ yards, **17/-**

Optimus Inks.

Black, **1/2** per bottle; Blue Black, Blue, Yellow, Green, Red, Pink, and Violet, **1/-** per bottle.

William Kidd, Manufacturing Stationer,

Whitehall Street, Dundee.

Foldout reduced to 67% and rotated 90° to fit on page.