Dictionary of Weaves

PART I.
A COLLECTION OF ALL WEAVES FROM FOUR TO NINE HARNESS

By E. A. POSSELT
Editor of Possett's Textile Journal

Two Thousand Weaves Conveniently Arranged for Handy Use

Lexicon der Gewebemuster
Band I.

Manuel des Dessins du Tissage
Première Partie
Une collection de Tous Genres des Dessins du Tissage de Quatre à Neuf Lisses. Deux Mille Dessins Classés à Convenance.

TEXTILE PUBLISHING COMPANY
2154 North 21st Street, Philadelphia
London, Eng.: Sampson Low, Marston & Co., Ltd.
PREFACE

The purpose of these Hand Books is to bring the Various Branches of the Textile Industry conveniently arranged before the reader so that he may consult whatever subject of the Industry he is more particularly interested in.

The present Volume of this Series of Hand Books, the

Dictionary of Weaves, Part 1,

covers a collection of all the Weaves for Four, Five, Six, Seven, Eight and Nine Harness, and which will be followed by successively issued parts, covering all the weaves possible to be made up to Twenty-four Harness. One of these parts will be issued regularly every year, the next part to deal with Ten, Eleven and Twelve Harness Weaves, etc.

In designing these weaves, stress has been laid on selecting such weaves as will be of practical value.

The various repeats of this collection of weaves have been kept separate as much as possible; the repeat of the warp-threads, i.e., number of harnesses necessary for each weave is indicated on top of each page, whereas the numerals on the bottom of each page indicate a summary of the repeats of all weaves given, both warp and filling ways. The numeral in front of the multiplication sign indicates the repeat for the warp-threads, the numeral after the multiplication sign that for the filling.

The grouping of the various repeats of weaves on each plate are such that the eye can readily grasp the repeat filling ways of any one of the collection of weaves given, by consulting the sets of numerals at the bottom of the page, and which, provided more than one set of numerals are used, are indicated corresponding side by side to that of the arrangement of the weaves in the collection above it.

Wherever possible to do so four repeats of the weave are given in order to convey a good idea of its general effect in the fabric. To simplify subject to the designer, in most all instances complete repeats of a weave are given, whereas with such weaves where more than one repeat is shown in order to bring such weaves within compass of the plate (referring to large pronounced effects) by consulting the proper set of numerals on the bottom line the eye will readily grasp the repeat of the pattern.

With reference to other Branches of the Textile Industry and which will be taken up in successively issued volumes of these Hand Books, besides the serial continuation of the Dictionary referred to, Books on the following subjects are now in course of preparation: Designing and Weaving of Narrow Ware Fabrics; The Finishing of Ribbons and Trimmings; The Analysis of Textile Fabrics; Silk from Cocoon to Loom, etc.
VORWORT

Der Zweck dieses Werkchens

Lexicon der Gewebemuster, Band 1,

Jedes Jahr wird ein neuer Band erscheinen; der nächste wird die Gewebemuster für Zehn, Elf und Zwölf Schüfte bringen.

INTRODUCTION

Le present volume d'une serie de manuels couvre une

Collection d'Armures, Première partie

toutes les armures pour quatre, cinq, six, sept, huit et neuf lisses.

D'autres volumes vont suivre, couvrant toutes les armures possibles jusqu'à vingt-quatre lisses.

Un volume va paraître chaque année, le prochain contiendra les armures à dix, onze et douze lisses.
FIVE HARNESS
SIX HARNESS
SIX HARNESS
SEVEN HARNESS

7 x 8 7 x 14 7 x 28
SEVEN HARNESS
EIGHT HARNESS

8 x 8

8 x 16
EIGHT HARNESS

8 × 8

8 × 16
EIGHT HARNESS
NINE HARNESS
NORTHROP LOOMS

TRADE MARK REGISTERED

EARN MORE WAGES FOR THE WEAVER
LARGER DIVIDENDS FOR THE MILL

DRAPER COMPANY
HOPEDEALE MASS.

J. D. Cloudman, Southern Agent, 40 So. Forsyth St.,
Atlanta, Ga.
CROMPTON & KNOWLES

LOOM WORKS

Builders of LOOMS for every known woven fabric

WORCESTER, MASS.

FISCHER & BOND,
(INCORPORATED)
Jacquard Card Cutters Reed and Harness Makers
General Mill Supplies

Main Office and Factory: RAILROAD AVENUE and WARD STREET
Opposite Erie R. R. Depot Telephone 2790
Annex: (Reed and Harness Shop) 48 REDWOOD AVENUE, Telephone 3370

PATerson, N. J.

Jacquard Card Cutting and Repeating, for Fine Scale, Standard Scale and French Scale.
Card Lacing and Mill Banding.
Jacquard and Dobby Cards, in ton or carload quantities.
Ribbon Harness (Single and Double), Plain Harness.
Broad Silk Wire Harness, Jacquard Harness, Mail Harness, Lingoos, Bobbins and Quilts.
Warp Rods.
Lug Straps, Leather Pickers.
Loom Pickers, Loom Cords.
Twill, Yarns and Cordage.
Cable Laid Flax, Warp Cord and Harness Thread.
Lubricating Oils and Grease.
Alexander Belting it cannot be excelled.
Water, Steam and Oil Proof Belting, Special Spindle Belt.
Round Belt, Belt Lacing, Leather Slabs.
Belt Oil.
Quick Set Belt Cement.

“To Your Interest”

You will buy Jacquard Cards right, if you buy from a Jacquard Card Cutter.

We have been making this a study and a specialty for years, and know what is required of a Jacquard Card.

We are headquarters in this specialty, and carry the largest stock in the following grades:

CHIPBOARD
NEWSBOARD
DOUBLE MANILA LINED
NEWS and CHIP BOARD
BROWN JUTE FIBRE
DOUBLE MANILA LINED-JUTE
SOLID MANILA
AIR DRIED GRANITE-BOARD
THE ROSSENDALE-REDDAWAY
BELTING & HOSE CO.
NEWARK, N. J., U. S. A.

Beware of Imitations!
Look out for our Trade Mark!

“Camel” Belting, “Camel Hair” Belting

This belt is remarkable for its great strength (almost twice that of the leather belting), long life, small slippage, minimum stretching, straight true running, and for the fact that it is less affected by dampness or acid fumes than any other kind of belting. This belting is also sold under a guarantee that it will give longer, better service than any other style of belting running under the same conditions. Made in four thicknesses as follows:

SINGLE “CAMEL” which corresponds to single leather or to 4-ply canvas and rubber.
MEDIUM “CAMEL” which corresponds to heavy single leather or to 5-ply canvas and rubber.
DOUBLE “CAMEL” which corresponds to double, and heavy double leather or to 6- to 8-ply rubber and canvas.
Extra heavy “Camel” to correspond to triple leather and all extra heavy types of belting.

“BLACK-BIRD” WOVEN COTTON BELTING
FOR TRANSMISSION AND CONVEYOR WORK

An improved woven belt manufactured under high tension from the finest quality of long-staple cotton. Impregnated with a special composition which protects the fibre, keeps the belt pliable, and prevents it from becoming hard and dry. Will run well in steamy or wet places and on drives exposed to the weather.

We also manufacture Stitched Canvas Belting in all plies and various weights

Incorporated 1890 Capital $150,000
SHAMBOW SHUTTLES

1. Weave fewer seconds
2. Preserve bobbins
3. Wear longest

"Weave better fabric at less expense"

SEND FOR SAMPLE AND PRICES OF OUR LATEST DESIGN "EFFICIENCY" SHUTTLE

WRITE

Shambow Shuttle Co.
Woonsocket - R. I.

THIS IS THE FIRM of new ideas. We are constantly originating improvements that enable you to do better work at less cost, hence it pays to find out what we are doing before you buy machinery. Just now, we are doing important work in Winders. Better write us for details.

THE SIPP MACHINE CO.
Keen & Warren Sts. & Erie R. R.
Paterson - New Jersey
Reeds, Heddles
Heddle Frames, Etc.

Reeds for Cotton, Woolen, Duck and Carpet Weaving
Soldered Reeds for Plush Weaving

Iron & Wood End Frames for all Classes of Weaving

Gauze & Doupe Reeds for Doupe Weaving
Iron & Twin Steel Wire Heddles

Slasher Combs Doupe Heddles
Liece Reeds Canvas Pickers
Raithes Canvas Lug Straps
Liece Rods

We have helped a number of mills with reed troubles. Perhaps we can help you.

Write Us for Prices, Etc.

WALKER MFG. CO.
Kensington Ave. and Ontario Sts.
PHILADELPHIA, PA.
Technology of Textile Design
A Practical Treatise on the Construction and Application of Weaves for all Kinds of Textile Fabrics, Giving Also Full Particulars as to the Analysis of Cloth
By E. A. POSSELT
Editor of Posselt's Textile Journal

ABSTRACT OF CONTENTS:
DIVISION OF TEXTILE FABRICS ACCORDING TO THEIR CONSTRUCTION. SQUARED DESIGNING PAPER.
FOUNDATION WEAVES: PLAIN. TWILLS. SATINS.
DRAWING-IN DRAFTS.
DERIVATIVE WEAVES: RIB WEAVES. BASKET WEAVES. BROKEN TWILLS. STEEP TWILLS. RECLINING TWILLS. CURVED TWILLS. COMBINATION TWILLS. CORKSCREWS. ENTWINING TWILLS. DOUBLE TWILLS. CHECKERBOARD TWILLS. FANCY TWILLS. POINTE TWILLS. DOUBLE SATINS. GRANITES. COMBINATION WEAVES. COLOR EFFECTS.
PILE FABRICS: VELVETEENS. FUSTIANS. CORDUROY. CHINCHILLAS. CHENILLES. FRINGES. VELVETS. PLUSHES. TAPESTRY CARPET. BRUSSELS CARPET. DOUBLE FACED CARPET. DOUBLE PILE FABRICS. TERRY PILE FABRICS. SMOCK CARPET. AND RUGS. IMITATION TURKEY CARPET.
TWO PLY INGRAIN CARPET. GAUZE FABRICS. THE JACQUARD MACHINE. GOBELIN TAPESTRY. ANALYSIS OF TEXTILE FABRICS.

NOVELTIES IN DESIGNING: DESIGNING WEAVES BY FOURS CHANGES. SHADED FABRICS. SOLEIL WEAVES. CHECK PATTERNS. CRAPE WEAVES. HUCK PATTERNS. WOVEN TUCKS. CHIMPISTRIPE. BEDFORD CORDS. CROCODILE CLOTH. LARGE DIAGONALS. TO INCREASE THE THICKNESS OF A FABRIC WITHOUT SPECIAL BACKING THREADS. BRACKET WEAVES. FRINGES. PEARL EDGES.

THIS IS THE MOST IMPORTANT BOOK ON TEXTILE DESIGNING EVER PUBLISHED

Complete Circulars mailed upon application.

Textile Publishing Company
Specimen Page of "Technology of Textile Design."

261

The case in the fabric are shown at the places indicated by a and f. Letter e indicates the place where the first warp-thread and the first pick meet—the point for commencing to "pick out."

Every time a warp-thread is found situated above the filling, put a corresponding indication on the respective square of the designing paper (with pencil marks or prick holes with the needle), whenever you find the filling covering (floating over) one, two or more successive warp-threads, leave correspondingly one, two or more successive squares empty in the lateral line of small squares upon the designing paper.

Fig. 1001

After the intersecting of number 1 pick has been clearly ascertained liberate this pick out of the fringed warp edge and duplicate the procedure with pick number 2, to be followed by picks 3, 4, 5, etc., until the repeat is obtained. If dealing with a soft-up filling yarn be careful in raising it, to avoid breaking the thread; also be careful that after the intersecting of the pick has been ascertained, it is entirely removed so that no small pieces of the thread remain in the fringed part of the warp; for if such should be the case it might lead to mistake in examining the next adjoining pick.

III. Ascertaining Raw Materials Used in the Construction of a Fabric.

In most cases an examination of the threads liberated during "picking-out" with the naked eye will be sufficient to distinguish the material used in the construction of the fabric yet sometimes it is found necessary to use the microscope or a chemical test for their detection. For examples: Tests might be required to show whether a certain thread is all wool or whether a certain thread is all silk, etc. For solving such questions, the following methods are given:

A common and ready method for ascertaining the difference between animal and vegetable fibres is to burn some of the threads of yarn in a flame. The vegetable fibre is composed of carbon, hydrogen and oxygen, while the animal fibre, in addition to these, contains nitrogen. By burning, the threads used in testing the first mentioned fibre will result in carbonic acid and water, while those of the latter, or of animal fibre, result in combinations containing nitrogen which element readily makes itself known by its peculiar smell or disagreeable odor similar to burnt feathers. Another point which it is well to note is the rapidity with which the thread composed of vegetable origin burns as compared with the burning of the thread having an animal substance for its basis. In the latter case, only a little bunch of porous carbon forms itself at the end submitted to the flame, and it does not form a flame as in the case of the former. As in some instances these two tests will be found unreliable, a more exact analysis may be required. If so, proceed after one or the other of the following formulas:

To Extract Cotton or other Vegetable Fibre in Woolen or Silk Fabrics.

Roll the sample to be tested in a concentrated solution of caustic soda or potash, and the wool or silk fibre will rapidly dissolve, producing a soapy liquid. The cotton or other vegetable
Posselt's Textile Journal
E. A. POSSELT, Editor and Publisher

From the standpoint of the practical information which it contains it is of value to every manufacturer, superintendent, overseer and operative, among whom it is widely circulated. It is the leading and by far the most valuable of all textile trade publications.

Special features in every issue: Discussions on Designing and Fabric Structure; Cotton, Woolen and Worsted Spinning; Silk from the Raw Fibre to the Finished Fabric; Cloth Analysis and Calculations; Dyeing and Finishing Processes; Reviews of the Market and Suggestions as to the Creation of New Styles, Color Combinations, etc.; as well as a general report on the News of the Textile Mills.

Another interesting subject this Journal contains is the serial issue of the "Dictionary of Technical Terms Relating to the Textile Industry" as appearing regularly every month, nothing of its kind being published in any language.

Subscription, $2.00 per year. Canada, $2.50. Foreign, $3.00
Sample copies mailed upon application.

The John F. Trainor Company
COTTON YARNS
AMERICAN, EGYPTIAN, SEA ISLAND
NATURAL AND MERCERIZED
291 Broadway New York City

THOMAS H. BALL
WORSTED YARNS} ENGLISH & FRENCH SYSTEM
PHILADELPHIA, 15 So. 3rd Street - BOSTON, 683 Atlantic Ave.
CLEVELAND, 2304 E. 45th Street - PROVIDENCE, 309 Industrial Trust Bldg.
NEW YORK, Knitting Yarns Office, 251 Fourth Ave. - MILWAUKEE, 277½ 20th St.

HOFMANN & ELLRODT, Inc.
109-111 Spring Street New York City
Organ and Tram Silks
We are interested in buying Odd Lots of Raw, Thrown and Dyed Silks in skeins, on spools, warps or warp ends.
Cotton, Wool, Schappe, Spun Silk, Colored and Raw Silk Waste of every description.

F. ROLKER
RAW SILK IMPORTER
Specialty High Grade Italians for Single Weaving
23 EAST 28TH ST. NEW YORK CITY

DAVIDSON & WEYAND
Designing—Card Stamping—Repeating
For All Textile Fabrics
2525 North 2nd Street PHILADELPHIA, PA.
D. & J. RUSHTON
Textile Designers
Correspondence Invited
PATERSON, N. J.

WILLIAM S. BUTZ
Jacquard Designer and Sketcher
SMITH BUILDING
175 MARKET STREET
PATERSON, N. J.
Telephone Connection

Widmer Bros.,
Looms and Battons
106-114 North 7th St.,
Paterson, N. J.

H. RIGBY & SONS
JACQUARD HARNESS BUILDERS
Shaft Harness, Reeds, Shuttles and
General Mill Supplies
32 VINE STREET
PATERSON, N. J.

WM. COCHRAN CO.
JACQUARD CARD CUTTERS
For All Textile Fabrics
Repeating 51 and 52 Rows, French Scale.
Also Fine Index, 1304 Hooks
181-185 Ellison St.
PATERSON, N. J.
Telephone Connections
Thousand Spindle Creel

1000 SPOOLS
(2½" diam. 4½" long)

Each row of spools has a comb reed to separate the ends before going over the porcelain roll at top of row.

A comb reed—used in front of the glass bars—having the same number of dents as there are pins on the creel, is furnished with each.

These creels are made for any size spool from 1½ to 4½ inches diameter, 3 to 7 inches long.

Occupies a minimum of floor space. Reed space but 50 inches. No excessive angularity. Tension reduced. One thousand ends under operator’s vision in less space than any other creel.

Full Particulars and Description upon request

Chas. H. Knapp
Wait and Rye Streets PATerson, N. J.
The Whitin Machine Works
WHITINSVILLE, MASS.
— Builders of —
Cotton Mill Machinery

DOBBy LOOM WITH LENO MOTION
Looms for weaving all varieties of Cotton Goods
Looms for Worsted and Silk Goods

Southern Agent, Stuart W. Cramer, Charlotte, N. C.
Of Iron Wire or Tempered Steel Twin Wire Soldered

OUR Heddle equipment is the largest in the Country and capable of producing 200,000 heddles per day. Sizes range from No. 18 wire, for heavy cotton duck weaving, etc., to No. 35 wire, for fine yarns, silk, etc. We make all sizes of wire in any length, and any size or shape of eye. All regular sizes are in stock for immediate shipment, and can fill orders promptly for special sizes to sample. Samples mailed anywhere upon application.

HOWARD BROS. MFG. CO., 44 and 46 Vine St., WORCESTER, MASS.

LOOM REEDS of uniform spacing with a smooth face

MATERIALLY AID IN THE PROPER EXECUTION OF A GOOD DESIGN

These qualities you are assured when you send your orders to

Bradley Stencil Cutting Machines
and Shipping Dept. Supplies

Geo. C. Decker
15 & 17 South 3rd St., Phila., Pa.

ULRICH COMPANY
GENERAL MILL SUPPLIES
Tel. : Sub. 6 N. Y. & N. J., 285

Ulrich Mill, __________ PATerson, N. J.

Reeds, Harnesses, Lingoes, Shuttles.
Mails, Quills and Ribbon Blocks.
Wire and Red Eye Heddles and Baked Harnesses.
Wire Heddle Frames. We make a specialty of Fancy and all kind of Doup Harnesses.
Wool, Cotton, Silk
From Fibre to Finished Fabric

By E. A. POSSELT
Editor of Posselt's Textile Journal

In One Vol., Quarto. Bound in Cloth, 473 pages,
Thousands of Illustrations. Price Five Dollars,
Postage prepaid, Delivery guaranteed.

This book contains detail information as to the
various machines and processes used in the
manufacture of either Wool, Cotton or Silk,
from the Raw Material to the Finished Fabric, in-
cluding Weaving and Knitting.

The various chapters cover information as to the

Raw Materials: Wool, Cotton, Silk,
Flax, Hemp, Jute and Ramie.

Preparatory Processes: Carding, Drawing,
Spinning and Twisting.
Winding, Warping and Weaving.
Knitting.
Dyeing, Bleaching, Mercerizing.
Finishing Woolen and Worsted Cloth.
Heat, Power, Speeds and Transmission.

The information contained in the chapters on Fibres,
the various Finishing Processes and its Machinery used in
a most complete treatise on the subject and will be found
of incalculable value by any Manufacturer or Finisher of
Cotton, Woolen or Worsted Fabrics.

Complete Circulars mailed upon application.

Textile Publishing Company
large, white, coarse, long wool, and the breed has become practically extinct in this country. The structure of the fibers is shown in Fig. 18. In the Cotswold, we find the hairs following the edge of the fibers are arranged in the natural state with the microscopic, we find extending through the scale a small amount of matter much more opaque than the matter surrounding it.

The fibers of this breed are given in the illustration of Cotswold wool. It appears to be of irregular thickness and to allow more light to pass through at certain places than at others.

The Cushendown Sheep is also of English origin. The wool is of the Cotswold race, and the Hereford Down wool. The wool produced by the Cushendown is finer and finer than that of the Cotswold, and is of from 6 to 7 inches in length, the average weight of the fleece being 4 pounds. It is a favorite sheep among the farmers of the south, and is highly esteemed. The wool of this sheep, as well as that from the Doreen, the Leicester, and the Lincoln, are the most important classes of what we term long staple wool, viz. the Mora and the southdown sheep, which are the most important in point of quantity and quality.

We find that a larger proportion of the fibers in the former are more white and opaque than the others, and that the whole bunch has very much less of moisture than the Lincoln wool. When these Cotswold heads of sheep, producing what we term short staple, even or milking wool.

The Mora Sheep. The original home of this animal is Spain, from there they have been spread.
The Jacquard Machine
ANALYZED AND EXPLAINED:
The Preparation of Jacquard Cards and Hints to Learners of Jacquard Designing
By E. A. POSSELT
Editor of Posselt's Textile Journal.

ABSTRACT OF THE CONTENTS:

History of the Jacquard Machine.
The Jacquard Machine — General Arrangement and Application.
Illustration of the different parts of the Jacquard Machine — Method of Operation, etc.
The Jacquard Harness — The Camden boards.
Tying-up of Jacquard Harness.
I. — Straight-through Tie-up.
II. — Straight through Tie-up for Repeated Effects.
III. — Straight-through Tie-up using Front Harness.
IV. — Centre Tie-up.
V. — Straight-through and Point Tie-ups Combined.
VI. — Straight-through Tie-up in Two Sections.
VII. — Tying-up for Figuring with an Extra Warp.

APPENDIX:
Preparing and Stamping of Jacquard Cards.
Dobby Card-Punching Machines.
Piano Card-Stamping Machines.
Stamping, Repeating and Lacing.

HINTS TO LEARNERS OF JACQUARD DESIGNING:
Paint Paper to Use, etc.
Sketching of Designs for Fabrics to be executed on the Jacquard Machine.
Enlarging and Reducing Figures for Sketches.
Transferring of the Sketch to the Squared Paper.
Outlining in Squares.
The Shading of Textile Fabrics by the Weave.

Complete Circulars mailed upon application.

Textile Publishing Company
2154 North 21st Street
ALFRED SUTER Textile Engineer
200 Fifth Avenue - - NEW YORK

Importer of
Baer's Yarn & Cloth Testing Apparatus.
Yarn Scales. Reels
Twist Testers
Evenness Testers
Conditioning Ovens
Strength & Elasticity Tester for Cloth & for Yarns

Ask for Prospectus on
Suter's Universal Yarn & Cloth Analysing Set

LAVIGNE & SUTER

French Twisted Wire Heddles
German Soldered Wire Heddles
French Reed Wires
French Tricolore Cotton Heddles
Reed Making Machine
Reed Cleaning Machine
Arcade Yarn Twisted & Braided
Raw Hide Pickers.

WRITE for Samples and Prices
WALTER W. HODGSON
CARD STAMPING
AND REPEATING
FOR ALL TEXTILE FABRICS

ALSO REPEATING FOR THROW OVERS FOR
FINE AND FRENCH INDEX

315 West Lehigh Avenue Philadelphia

DIXON'S
FLAKE GRAPHITE—the perfect
natural lubricant.
GRAPHITE BRUSHES— for motors
and generators.
BELT DRESSINGS—solid and paste,
for belts of all kinds.
PIPE JOINT COMPOUND— for all
screwed or flanged joints.
SILICA-GRAPHITE PAINT—a perfect
protection for all metal work.
BOILER GRAPHITE—to clean boilers
and keep them clean.

SEND FOR CATALOG NO. 61
Made in Jersey City, N. J., by the
Joseph Dixon Crucible Company
SAUQUOIT SILK MFG. CO.
INSULATING AND BRAIDING SILKS

Organzine, Tram and Hosiery Silks

Fast Dye Organzines for Woolen Manufacturers
a Specialty

New York Representative, Wm. Ryle & Co., 225 Fourth Ave.
Philadelphia Office, 4015 Clarissa St., Nicetown
Chicago Office, 206 So. Market St.
Boston Agents, Messrs. Stelle & Sherman, 78 Chauncy St.

For Cotton, Silk, Artificial Silk, Worsted and Woolen Fabrics
there is a hebble made by the

STEEL HEDDLE MFG. CO.

World's leading Manufacturers of the Flat Steel Heddle, Universal and Ideal Frame

*ever W-ear O-ut Doup Heddle, Reed Wire
Silk and Cotton Reeds
Textile Calculations

A Complete Guide to Calculations Relating to the Construction of all Kinds of Yarns and Fabrics, the Analysis of Cloth, Speed, Power and Belt Calculations.

BY

E. A. POSSELT

Editor of Possett's Textile Journal

ABSTRACT OF THE CONTENTS

YARN AND CLOTH CALCULATIONS

Grading of the Various Yarns Used in the Manufacture of Textile Fabrics According to Size or Counts. To Find the Equivalent Counts of a Given Thread in Another System. To Ascertain the Counts of Twisted Threads Composed of Different Materials. To Ascertain the Counts for a Minor Thread to Produce, with Other Given Minor Threads, Two, Three or More Ply Yarn of a Given Count. To Ascertain the Amount of Material Required for Each Minor Thread in Laying out Lots for Two, Three or More Ply Yarn. To Ascertain the Cost of Two, Three or More Ply Yarn. To Find the Mean or Average Value of Yarn of Mixed Stocks. Red Calculations. Warp Calculations. Filling Calculations. To Ascertain the Amount and Cost of the Materials Used in the Construction of All Kinds of Plain and Fancy Cotton and Woolen Fabrics.

STRUCTURE OF TEXTILE FABRICS

The Nature of Raw Materials. Counts of Yarn Required to Produce a Perfect Structure of Cloth. To Find the Diameter of a Thread by Means of a Given Diameter of Another Count of Yarn. To Find the Counts of Yarn Required for a Given Warp Texture by Means of a Known Warp Texture with the Respective Counts of the Yarn Given. Influence of the Twist of Yarn upon the Texture of a Cloth. To Find the Amount of Twist Required for a Yarn if the Counts and Twists of a Yarn of the Same System, but of Different Counts, are Known. Influence of the Weave upon the Texture of a Fabric. To find the Texture of a Cloth. To Change the Texture for Given Counts of Yarn from one Weave to Another. To Change the Weight of a Fabric without Influencing its General Appearance. To Find Number of Ends Per Inch in Required Cloth. Weaves which will Work with the Same Texture as the three and three, four and four, etc., Twill. Selections of the Proper Texture for Fabrics Interlaced with Satin Weaves. Rib Weaves. Contrast Weaves. Two Systems Filling and One System Warp. Two Systems Warp and One System Filling. Two Systems Warp and Two Systems Filling.

ANALYSIS

SPEED, BELTING, POWER, Etc.

Complete Circulars mailed upon application.

Textile Publishing Company

2154 North 21st Street
Example.—Find the proper texture for warp and filling, and also ascertain the weight of funnel per yard fromloom (exclusive of selvage). Calculating: Warp 5-run, filling 3-run, backing 2-end. Warp, see Fig. 49 (8 warp threads and 12 picks in repeat). Take-up of warp, 10 per cent. Width of cloth in yard, 72 inches (exclusive of selvage), 6 oz. max., 6,000 yards per lb.

\[6 \times 60 = 360 \] yards of warp must be used per inch, and

\[72 \times 72 = 5,184 \] yards must be used in full warp.

5,184 \times 0.1 = 518.4 = 520 yards per inch, 6 oz. of warp yarn are wasted.

520 \times 72 = 37,440 \text{ yards of warp yarn are required per yard cloth woven.}

3-run yarns=500 yards per oz. 6 oz. \times 500 = 3,000 \text{ oz. of warp yarn are wasted.}

52 \text{ picks (50+2 extra) of face filling, 51=72=3,744 \text{ yards of face filling are wasted.}}

3,744 \times 0.1 = 374.4 = 375 \text{ oz. weight of face filling.}

26 \text{ picks (corresponding to face picks) of back filling, 26+2=28=1,872 \text{ yards of backing are required.}}

1,872 \times 72 = 134,880 \text{ yards of backing filling per yard.}

134,880 \times 0.1 = 13,488 \text{ oz. weight of backing.}

Warp, 6 oz. Face filling, 7.5 oz. Backing, 7.5 oz. 23 oz.

Answer.—Total weight of cloth per yard from loom (exclusive of selvage), 23 oz.

SELECTION OF THE PROPER TEXTURE FOR FABRICS BACKED WITH WARP; i.e., CONSTRUCTED WITH TWO SYSTEMS OF WARP AND ONE SYSTEM OF FILLING.

To ascertain the texture of the warp in these fabrics we must first consider the counts of the yarns as used for the face structure, and secondly the warp.

For ascertaining this texture (for the single cloth) we must consider the warp for the back warp, i.e., the setting of the same in the face cloth. If dealing with a warp of short repeat for the back warp (for example 1 to 1 twill) we must allow a corresponding heavier deduction from the thread as ascertained for the face cloth (about 30 per cent, for the 1 to 1 twill); whereas, if dealing with a facing warp for the back (for example the 8 to 8 satin) we will have to deduct less (about 10 per cent, for the 8 to 8 satin) from the previously ascertained texture of the face cloth. Since the 8 to 8 satin is about the most facing warp, as used for the backing, then, 10 per cent will be about the lowest deduction, and at the 1 to 1 twill is the most frequently interlacing warp, in use in the manufacture of these fabrics, thus 20 per cent deduction from the respective facing texture of the face cloth is the maximum deduction. To illustrate the subject more clearly to the student we will give both weaves as previously referred to with a practical example.

Example—Find warp texture for the following fabric: Fancy worsted twill weaving.

<table>
<thead>
<tr>
<th>Warp yarn</th>
<th>23 oz. wasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back warp</td>
<td>10 oz. wasted</td>
</tr>
</tbody>
</table>

Formula: 23\% of 4 oz. = 0.9 oz. threads (side by side per inch).

90 \times 4 = 360 \text{ yards of warp, proper warp texture for the single structure.}

40 \text{ yards (20 per cent, deduction caused by the back warp 1 to 1 twill in the face structure).}
Textile Machinery
Relating to Weaving

By E. A. POSSELT
Editor of Posselt's Textile Journal.

A treatise giving Descriptive Illustrations of the
Construction and Operation of Various Looms, Jac-
quards, Warpers, Beamers, Slashers, Spoolers; also
Illustrating and Explaining Different makes of Shut-
tles, Temples, Pickers, Reeds, Heddles, Harnesses,
etc.,

FOR THE USE OF
Manufacturers, Mill Managers, Designers, Boss
Weavers, Loom Fixers, Students and Inventors.

Published in Two Parts, each treating Different
Machinery, Classified in Separate Chapters as follows:

Shedding Mechanisms. Shuttles.
Box Motions and Shuttle Boxes. Temples.
Let-off Mechanisms. Reeds and Reed Motions.
Take-up Mechanisms. Heddles and Harnesses.
Stop Motions. Spoolers, Winders and Reels.
Picking Mechanisms. Warpers and Beamers.

Miscellaneous Machinery.

Both Parts, with Over 1200 Illustrations, describe
nearly 500 items of different Machinery, Devices and
Supplies, Relating Directly to the Weave Room.

Each Volume Bound in Cloth, Price $1.50, Postage prepaid.
Delivery guaranteed.
Price of Both Volumes if ordered at one time $2.50, Postage
prepaid, Delivery guaranteed.

Complete Circulars of both books mailed upon application.

Textile Publishing Company
SHEDDING MECHANISMS.

THE BROOKFIELD SHEDDING MECHANISM.

The mechanism is shown in the accompanying plate, and Fig. 1 shows the complete shedding mechanism. Fig. 2 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 3 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 4 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 5 shows the right-hand mechanism for operating the shedding mechanism. Fig. 6 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 7 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 8 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 9 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 10 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 11 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 12 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 13 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 14 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 15 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 16 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 17 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 18 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 19 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 20 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 21 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 22 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 23 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 24 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 25 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 26 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 27 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 28 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 29 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 30 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 31 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 32 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 33 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 34 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 35 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 36 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 37 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 38 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 39 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 40 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 41 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 42 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 43 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 44 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 45 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 46 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 47 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 48 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 49 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 50 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 51 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 52 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 53 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 54 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 55 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 56 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 57 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 58 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 59 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 60 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 61 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 62 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 63 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 64 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 65 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 66 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 67 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 68 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 69 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 70 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 71 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 72 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 73 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 74 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 75 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 76 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 77 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 78 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 79 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 80 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 81 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 82 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 83 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 84 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 85 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 86 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 87 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 88 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 89 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 90 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 91 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 92 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 93 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 94 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 95 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 96 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 97 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 98 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 99 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 100 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 101 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 102 shows the top and bottom cylinders, with the weaver and jack attachments. Fig. 103 shows the left-hand mechanism for raising and lowering the middle bar. Fig. 104 shows the lift and the bar, the lift frame, the cylinder, and the roller for operating the shedding mechanism. Fig. 105 shows the top and bottom cylinders, with the weaver and jack attachments.
JACQUARDS All Types & Sizes
8 to 32 Harness Single & Double Index DOBBIES
THOS. HALTON'S SONS - Philadelphia

BETTER FACILITIES

for preparing Jacquard cards — The Royle Card-Cutting Machines. Automatic movements; dependable action throughout.

Write for catalog

John Royle & Sons
PATERSON, N. J., U. S. A.
PIANO MACHINES, LACERS, REPEATERS