Metals or substances which will produce metal, on being heated, should not be fused in a platinum crucible, because the metal will alloy with the platinum and destroy it. Sodium carbonate may be fused in a platinum crucible, but strong alkalis like caustic soda and potash should not be fused in it if a silver or nickel crucible is at hand. Platinum crucibles are so expensive that a few rules will be given, to protect them from injury when using.

Platinum crucibles should not be used when free chlorine and bromine are present. Free sulphur, phosphorous, arsenic and iodine attack platinum, so that these substances when in a free state should not be fused in a platinum crucible, nor should sulphides, sulphates or phosphates, be fused with a reducing agent, in a platinum crucible, because with a reducing agent, sulphur and phosphorous are set free. The blue flame of the gas flame should not touch the platinum crucible.

Since we have mentioned the gas flame, it is best to explain the nature of it. A flame can only be produced by a gas. The carbon compounds, wood, bituminous coal, and tallow are indeed not gases, but burn with a flame because under the influence of heat, they develop combustible gases. The ordinary gas flame is made up of three parts or zones.

1. The inner zone, that part of the flame directly above the outlet of the burner; this part of the flame consists of the gas which is not burning, it is the black portion of the flame. If the lower end of a thin glass tube is inserted here the gas will rise in it and can be lit at the other end.

2. Immediately surrounding the inner flame, is middle flame; here the gas takes fire and burns, but it does not burn completely as may be proved by inserting a cold glass rod in it, this will be covered by soot showing that the gas is not completely burned. It is part of this flame that gives us light.

3. The outer flame can be scarcely seen, in it there is complete combustion; there are no black particles. There is enough air present to burn the gas completely, no carbon is set free, it is all burned. When there is complete combustion, the flame is not bright but is very hot.

The ordinary flame was explained to show how the Bunsen burner is used in laboratories for heating and fusing. By bringing as much air or oxygen into the gas as is necessary for the complete combustion of all carbon, none of the latter separates and a faintly luminous but very hot flame is produced. Upon this principle is based the construction of a Bunsen burner. In this burner a large quantity of air is introduced into the gas, which burns up completely all combustible matter in the gas, producing in turn a very hot flame. When this supply of air is shut off, the Bunsen burner is changed into a common gas burner.

From the Boss Dyer of a prominent Woolen Mill in Maine.

Possett’s Textile Journal:—Enclosed check for another year’s subscription. I like the Journal very much. W. C. 1-14-09.

A Prominent Textile Man Honored.

Seven hundred of the most prominent business men of Greater New York, January 21st, attended a banquet at the Waldorf-Astoria in honor of Comptroller Herman A. Metz, of the prominent dye stuff concern, H. A. Metz & Co., New York. Their presence signified the appreciation of the worth of the Comptroller in placing the finances of the city on a sounder business basis.

Henry Clews, the banker, said in part: “I have long and carefully watched the career of Comptroller Metz in public office, and I think all here will agree with me that he has invariably shown a most consistent and conscientious regard for the duties of the high office of trust which has been delegated to him by the free choice of the people. That trust has never been abused, and it is his intelligent and public-spirited devotion to duty that has raised him in the public’s confidence. Such men are too rare, and when found it is our privilege to honor them with generous appreciation.”

DICTIONARY OF TECHNICAL TERMS RELATING TO THE TEXTILE INDUSTRY.

(Continued from page 32.)

Flannel—A cotton fabric made in imitation of woolen flannel. Produced by raising of a soft pile upon one or both surfaces of a plain or twilled cotton cloth, the threads of which, in order to provide substance for the pile, must be of a comparatively low count, spun from a fairly long stapled cotton.

Flat Underwear—Undergarments knitted in plain stitch.

Flax—A crystalline dyestuff derived from flax, which produces a yellow color on cotton, wool and silk.

Flax—A yellow-brown compound, formed by the action of sulphuric acid on quercitrin, and used as a dyestuff.

Flax—An imperfection in weaving, or a dropped stitch in knitting.

Flax—The fibres forming a long thick walled cellular tissue, situated between the wood and the bark of the flax plant and used for making linen. The principal sources of supply are Russia, Germany, the Netherlands, and Ireland.

Flax—A device or machine for breaking up the woody parts of flax to facilitate their removal from the fibre.

Flax—Flax, a strong fibre useful for making ropes, mats, etc.

Fleece—The pelt or mass of wool removed from one sheep by the process of shearing, and then tied into a bundle.

Fleece—A term applied to a variety of heavy-weight undergarments knitted with an extra backing thread. A heavy nap of fleece is then produced by running the cloth through a muffer or a stiff brushing machine. Said extra thread is used so as to not to tender the body structure of the fabric.

Fleece—Wool from the live sheep.

Flemish—A stitch used in making certain kinds of point-lace.

Fleur de Soie—A trade name for a Satin de Lyon, interlaced with a 12-harness satin weave.

Fleur de Velours—A superior grade of velours.

Folded—Skin wool from certain breeds of one year old sheep by which the wool as pulled off adheres so much together that it retains the form of the fleece.
FLOAT.—In weaving, threads that have by accident not been
intersected in the body of a fabric, but lie loose upon
its surface.

FLOATS.—Wool stock ground very fine.

The soft fluffy fibres cast out of different machines used
in various finishing processes in a woolen mill.

SHEAR FLOATS are produced at shearing and brushing
processes.

GIG FLOATS are produced by gigging or mapping.

Cheaper grades of floats are such as are produced from
woolen rags by grinding them up in special machinery.

Floats are felted into lower grades of woolen fabrics
during fulling, both for lowering cost of production as
well as increasing their weight and firmness.

FLOCK-CUTTER.—A machine for grinding woolen rags into
floats.

FLOCK-CUTTERS.—A heavy woolen cloth used for overcoatings
constructed with 2 or 3 system of filling. The face fill-
ing forms the face of the fabric and is cut in the fin-
ishing process, the fabric being afterwards rubbed by
machinery to give the face of the cloth the appearance
of being covered with fine locks of wool.

FLORE.—The first quality of indigo dye.

FLORE.—A thin silk taffeta.

FLORE.—The first quality of indigo dye.

FLORE.—A heavy woolen cloth used for overcoatings
constructed with 2 or 3 system of filling. The face fill-
ing forms the face of the fabric and is cut in the fin-
ishing process, the fabric being afterwards rubbed by
machinery to give the face of the cloth the appearance
of being covered with fine locks of wool.

FLORE.—-The first quality of indigo dye.

FLORE.—The first quality of indigo dye.

FLORE.—The first quality of indigo dye.

FLORE.—-The first quality of indigo dye.

FLORE.—The first quality of indigo dye.

FORMALDEHYDE.—An excellent preservative for thickenings
and dressings, effective in very small quantities and hav-
ing no action on the fibres. It should not be used in the
presence of easily reducible metallic salts, as there is
a tendency to produce stains in certain cases. The
danger is greatest in the presence of chromic acid.

FOULARD.—A soft, fine, untwilled, washable silk fabric, dyed
in the piece.

FOULARDINE.—An imitation in cotton of silk foulards.

FOUNDATION MUSLIN.—A fabric used to give stiffness to
parts of garments. It is loosely woven like canvas, and
is stiffened with a suitable substance.

FOUNDATION WEAVES.—Plain, twills and satins are known as
the foundation weaves.

FRAME.—A machine which carries the rollers and accesi-
ories for spinning or doubling by means of a flyer, cap,
or ring and traveller.

Technical grading of Brussels carpets.

FRAME-KNITTING.—Weaving or knitting yarns, upon a frame
or board, bearing projecting pins, which when completed
resembles knitting.

FRAYING.—One set of threads slipping upon the other, and
so producing imperfections in the fabric.

(To be continued.)

THE LIGHTING OF TEXTILE MILLS

(Continued from Vol. II, No. 3.)

A very important fact for the mill owner to con-
sider is that because of the higher efficiency of the
tantalum lamp, he can get fully 50% more light in his
mill from, say, 50 tantalum lamps, than from the same
number of carbon lamps, with about one-half the
power consumption. This means that if a mill needs
more illumination than its power plant can furnish,
instead of buying more engines, dynamos, etc., it can
get the required illumination by using tantalum lamps
instead of carbon lamps, the same power then operat-
ing with twice the lighting effect, or even more.

Similarly, where the mill buys its electric current, it can
get more light, with smaller bills, if tantalum lamps
are used in place of the ordinary incandescent types.

No doubt extended use and competition will soon
lower the price of these new lamps, meanwhile their
greater cost is repaid by their greater efficiency and
lower power consumption.

ARC LAMPS. There are two commercial sizes of
enclosed arc lamps, one operating with a current of
about 4 amperes, the other about 6 amperes, on the
same voltage as the incandescent lamp, 110 to 120
volts. A type of enclosed arc lamp made by the
General Electric Company operates with a current of
6.6 amperes, requiring about 72 to 76 volts, alternating
current. Each of these latter lamps consumes about
500 watts, with an efficiency of 95%.

The current for the former lamps costs about ten cents per kilowatt
hour, the 4 ampere lamp giving about 250 candle-

power, 6 ampere lamp about 300 candle-power, on
a consumption of 300 to 400 watts per light hour.

The open arc lamp is usually operated on a higher
voltage than the enclosed arc, and consumes 400 to
600 watts per light hour, giving an average of 400 to
600 candle-power. The cost of the open arc lamp, in
series, averages about 33 cents per night of eight
hours, or about four cents per light hour. This price,
however, is only for a number of lamps arranged in series.

One point in favor of arc lamps is that they give a much higher efficiency than do incandescent lamps in the conversion of electric power into light, as less of the current that they consume is wasted by being transformed into heat than is the case with incandescent lamps. However, for mill lighting, the open arc lamp has several drawbacks and the loss of power is compensated for by certain advantages of the incandescent lamp. The enclosed arc lamp has the disadvantage of excessive glare and brilliancy.

Gas Lighting. Since the invention of incandescent mantles of the Welsbach type, gas lighting has again become a competitor with electricity for indoor illumination, these mantles having a very high lighting efficiency on a small consumption of gas. The discovery of practical methods of using acetylene gas has also placed a very efficient illuminant at our disposal. Candle-power for candle-power, either common gas or acetylene is probably cheaper in most places than electricity; however, in textile mills there are grave objections to their use. Still, as in some cases the illumination of a mill by gas may be necessary, either because electric current cannot be secured, or for other reasons, a brief summary of the important points about gas lighting will be given in this article.

The greatest objection to the use of gas for illuminating a mill is because of the great heating effect it has, this requiring extra ventilation and seriously affecting the relative humidity of the rooms. A cubic foot of gas when burned will give about 650 heat units, a cubic foot of acetylene gas gives about 1000 heat units, all of which is given off to the air of the room, increasing its temperature and lowering its relative humidity. Burner for burner, acetylene gives off less heat because less is used for the same amount of light.

Another objection is the contamination of the air by the products of combustion. One gas burner will give off as much carbon dioxide gas as will five or six persons working there, and this gas must be removed and fresh air supplied, or else the room will be unfit to work in. This also means more power for ventilation.

In estimating the comparative cost of gas lighting and electric lighting, this increased ventilation and humidification necessary must be figured in with other items to arrive at a true conclusion. Of course, if the only means for ventilation are doors and windows, this item does not enter, but only in the smallest mill could these be at all depended on, and even then there would be no adequate way of getting rid of the extra heat, etc., without causing damaging air currents.

Cost of Gas Lighting. With gas estimated at $1.00 per 1000 cubic feet and carbide of calcium at 4 cents a pound (one pound of the carbide giving 5 cubic feet of acetylene gas), the following table shows the cost for the same candle-power of light with plain gas burners, gas mantles and acetylene gas, with incandescent lamps with current at 1 cent per hour for a 16 candle-power lamp added for comparison:

<table>
<thead>
<tr>
<th>Table of Cost of Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene Gas, ten 1/4-foot burners give 250 candle-power, cost per hour—4 cents.</td>
</tr>
<tr>
<td>City Gas, fifteen 5-foot plain burners give 250 candle-power, cost per hour—8 cents.</td>
</tr>
<tr>
<td>Gas, with common mantle, ten 5-foot burners give 250 candle-power, cost per hour—4 cents.</td>
</tr>
<tr>
<td>Incandescent Lamps, 10 c. p. each, sixteen give 250 candle-power, cost per hour—16 cents.</td>
</tr>
</tbody>
</table>

From this table it will be seen that electric lighting will cost, under the conditions stated, four times as much as acetylene or gas mantle burners and twice as much as plain gas burners. The great advantage of acetylene is that its light remains constant in its intensity, whereas the incandescent lamp and the gas mantle steadily lose in illuminating effect with every hour of use, the former diminishing to 75% to 50% of its intensity, the latter to only 66% to 50% of its first brightness.

Acetylene gas will give about 250 c. p. per burner when burned at the rate of 5 cubic feet per hour. Ordinary city gas in a plain burner gives about 16 candle-power on 5 cubic feet per hour consumption. With a good Welsbach mantle, city gas will give from 50 to 60 candle-power on a consumption of only 3 cubic feet per hour. Artificial gas, made from gasoline, has about the same efficiency as common gas, i.e., 14 to 16 c. p. in a plain burner and about 50 c. p. with a good mantle. At $1.00 per 1000 cubic feet, city gas will cost only 0.3 cents per hour for 50 c. p. with a mantle.

When using gas, an important point to be noted is the pressure of the gas as delivered at the burners. There is a great waste of gas with an over-pressure, as only a certain quantity can be consumed with a burner and the extra amount forced through by a high pressure will simply escape uncondensed. Where many burners are used, this waste may amount to 10% to 25% of the gas bill. Thus, each 0.1 inch of over-pressure will cause a burner to use 4 cubic foot of gas per hour more than it would use at the standard pressure of 0.5 inch. The standard pressure of gas at the burners should be as follows: Common burners—0.5 inch. Mantle burners—0.5 inch. Atmospheric burners—1.0 inch. The pressure of gas is measured as being equal to the pressure of a column of water 1 sq. in. in area.

(To be continued.)

COTTON PRICES ADVANCE.

Speculation in cotton is broadening, and prices in turn have advanced. Large spot interests have been heavy buyers of March and May, and spinners have bought a good deal of July and October. There has been so much covering of October that the differences have narrowed. Europe has evidently become alarmed over the outlook. It is heavily short here, particularly against October straddles, originally made by selling in New York and buying in Liverpool. Now Europe begins to suspect that the crop may not be so large
as it at one time expected it to be. It has therefore been liquidating the October straddles on an increasing scale as prices have advanced, which means buying in New York. There has also been a good deal of general covering, both in this crop and the next by people who have become nervous over the National Gimmers' Association report stating that the ginning from January 1 to 16 was only 158,000 bales, as against the Census Bureau figures of 388,046 bales for the same time last year; 435,168 in 1906-07, and 264,208 in 1905.

Years ago a feeling pervaded New England, New York, New Jersey and Pennsylvania that supremacy in cotton goods manufacturing had passed to the South, and investors with the exception of the most far-sighted ones, were not anxious to invest their capital in this field.

Since that time a radical change has taken place in sentiment. The possibilities of the northern States with their intelligent and efficient help, and climatic superiority, have shown a combination enabling their manufacturers to constantly expand their output along the finer classes of fabrics where the combination of a maximum of skill and intelligence with a minimum of raw material required in their construction, means relatively greater profit and growth in manufacturing, leaving to the South the manufacture of the more common, plain structures.

During the late commercial depression the value of linen fabrics in bonded warehouses shrunk considerably. The goods were entered at top figures and importers were compelled to mark off as much as 40% of the cost at one time when computing the market price. To save some of the loss was a problem that puzzled many, an appeal to the Government being out of the question. The goods had been appraised at a certain price, a declining market never affecting the values of goods in bonded warehouses. It then looked as though the cloths had to remain where they were, until prices rose again.

One importer solved the problem by withdrawing 250 cases and placing them on board a steamer, presumably for export. When landed in Ireland the cases were re-marked, put aboard the same vessel and entered here at a figure so much lower, that after deducting freight and other charges it was found that the sagacious Irishman had saved his house $10,000. This plan was followed by several others to their great profit, and the practice was considered legitimate.

THE ELECTRIC DRIVE FOR TEXTILE MILLS.

(Continued from Vol. 11, No. 3)

14. The possibilities of concentration and specialization by use of the electric drive. If it is possible for one mill to operate more economically with the electric drive, it certainly will be still more economical for several to operate from one central power station and thereby save the cost of several independent power plants and the cost of their maintenance.

This is one of the most important possibilities of the development of the uses of electric power, but it has been given little consideration, because the textile manufacturer is not an engineer and seldom studies power economics and also because of the theory that competition requires a separation into individual activities. Another reason is that previous to the perfection of the electric drive it was impossible to distribute power over areas of any extent, each mill was compelled to have its power generators where they would be applicable to the machinery. Nowadays, it is possible to generate electric power at a central station and from thence to distribute it over wide areas with a very slight loss, the power plant itself being located with a view to the greatest utilization of water power, the cheapest source and delivery of fuel, cheap building site, etc.

There are a number of economies that can be secured by the operation of one large power plant, the items of cost of labor and cost of fuel alone justifying the cooperation of several mills in the maintenance of one plant for all the mills instead of a separate plant for each. Then the best electrical and mechanical engineers can be afforded, and by their employment the power plant can be operated most efficiently and economically, labor-saving devices can be installed and arrangements be made to utilize the maximum capacity of the power plant at all times and thus to prevent losses from its maintenance in idleness. There is no more reliable a source of power than an electric generating plant operated either by steam or water power, when proper attention has been paid to the duplication of apparatus, and "throwover" connections to another power station can be installed, which will absolutely guard against stoppages from a breakdown.

The comparison in the first costs of a large power plant and of several small plants aggregating the same horse-power is too obvious to need more than a brief mention. One building and one set of engines and generators will cost a great deal less than several buildings and generators, even though they be smaller, and where water power can be utilized it would be simply folly for each of several neighboring mills to install their own turbines and generators. The question is one that merits thoughtful consideration by textile manufacturers, setting aside old prejudices and ideas.

To sum up, the electric drive has the advantages over all other power transmission systems of flexibility and ease of extension; absence of costly shafting, belting, steam-pipes, etc; compactness and less space needed for both the motors and the power transmitting devices; more regular and more constant operation of machinery; no cost for maintenance when not in use and productive; better regulation of power; independence of machines and groups of machines; the application of power when needed and where needed without affecting machinery not wanted in operation; less liability to stoppages or breakdowns, and if such occur, they are local in effect; and, finally, the ease by which the power can be generated under the most favorable conditions.

(Continued on page xii.)
LIST OF ADVERTISERS

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altemus, Jacob K., Philadelphia</td>
<td>VII</td>
</tr>
<tr>
<td>Berge, J. & H., New York</td>
<td>XI</td>
</tr>
<tr>
<td>Brinton, H., Co., Philadelphia</td>
<td>VIII</td>
</tr>
<tr>
<td>Chapin, Geo. W., Philadelphia</td>
<td>IX</td>
</tr>
<tr>
<td>Cheney Brothers, South Manchester, Conn.</td>
<td>V</td>
</tr>
<tr>
<td>Commercial Photo-Engraving Co., Philadelphia</td>
<td>XIII</td>
</tr>
<tr>
<td>Crosby & Gregory, Boston</td>
<td>XI</td>
</tr>
<tr>
<td>Draper Company, Hopedale, Mass.</td>
<td></td>
</tr>
<tr>
<td>Farbenfabriken of Elberfeld Co., New York</td>
<td>XVI</td>
</tr>
<tr>
<td>Firth & Foster Co., Philadelphia</td>
<td>IX</td>
</tr>
<tr>
<td>Globe Machine and Foundry Co., Inc.</td>
<td>X</td>
</tr>
<tr>
<td>Halton’s, Thomas, Sons, Philadelphia</td>
<td>III</td>
</tr>
<tr>
<td>Holbrook Mfg. Co., The, New York</td>
<td>IX</td>
</tr>
<tr>
<td>Howson and Howson, Philadelphia</td>
<td>XI</td>
</tr>
<tr>
<td>Hunter, James, Machine Co., North Adams, Mass.</td>
<td>V</td>
</tr>
<tr>
<td>Frederick Jones & Co., Philadelphia</td>
<td>X</td>
</tr>
<tr>
<td>Keyworth, Wm. C., Paterson, N. J.</td>
<td>XI</td>
</tr>
<tr>
<td>Kilburn, Lincoln & Co., Fall River, Mass.</td>
<td>XI</td>
</tr>
<tr>
<td>Kilpeck, A. & Co., New York</td>
<td>XII</td>
</tr>
<tr>
<td>Knapp, Chas. H., Paterson, N. J.</td>
<td>X</td>
</tr>
<tr>
<td>Lentz, F. G., & Co., Philadelphia</td>
<td>X</td>
</tr>
<tr>
<td>Lever, Oswald Co., Inc., Philadelphia</td>
<td>XI</td>
</tr>
<tr>
<td>Littauer, Ludwig, New York</td>
<td>IX</td>
</tr>
<tr>
<td>Mason Machine Works, Taunton, Mass.</td>
<td>IV</td>
</tr>
<tr>
<td>Metalic Drawing Roll Co., Indian Orchard, Mass.</td>
<td>III</td>
</tr>
<tr>
<td>Metz, H. A. & Co., New York</td>
<td>IX</td>
</tr>
<tr>
<td>New England Butt Co., Providence, R. I.</td>
<td>XVI</td>
</tr>
<tr>
<td>Palmer, The L. E. Co., Middletown, Conn., V.</td>
<td>V</td>
</tr>
<tr>
<td>Philadelphia Drying Machinery Co., The, Philadelphia</td>
<td>XVI</td>
</tr>
<tr>
<td>Roesseler & Hasslacher Chemical Co., New York</td>
<td>XV</td>
</tr>
<tr>
<td>Royle, John, & Sons, Paterson, N. J.</td>
<td>III</td>
</tr>
<tr>
<td>Ryle, William, & Co., New York</td>
<td>IX</td>
</tr>
<tr>
<td>Saguqf Silk Mfg. Co., Philadelphia</td>
<td>IX</td>
</tr>
<tr>
<td>Schaefflenbaum, Rob., Co., The, Providence, R. I.</td>
<td>XI</td>
</tr>
<tr>
<td>Schuchardt & Schütte, New York</td>
<td>XIV</td>
</tr>
<tr>
<td>Sipp Electric & Machine Co., Paterson, N. J.</td>
<td>VII</td>
</tr>
<tr>
<td>Steel Heddle Mfg. Co., Philadelphia</td>
<td>IV</td>
</tr>
<tr>
<td>Textile Publishing Co., Philadelphia</td>
<td>XIII</td>
</tr>
<tr>
<td>Troenner, Henry, Philadelphia</td>
<td>X</td>
</tr>
<tr>
<td>Vinal, Samuel S. & Co., Boston</td>
<td>X</td>
</tr>
<tr>
<td>Weimar Bros., Philadelphia</td>
<td>XIII</td>
</tr>
<tr>
<td>Whitaker Reed Co., Worcester, Mass.</td>
<td>XIX</td>
</tr>
<tr>
<td>Whitin Machine Works, The, Whitinville, Mass.</td>
<td>XV</td>
</tr>
<tr>
<td>Woosneck Machine & Press Co., Woosneck, R. I.</td>
<td>V</td>
</tr>
<tr>
<td>Wright, Robert A., Philadelphia</td>
<td>XIII</td>
</tr>
</tbody>
</table>

BUYERS' INDEX

Apparatus for the Dye Trade.
Berge, J. & H.

Bleachers.
Firth & Foster Co.

Bleaching Kiers.
Philadelphia Drying Machinery Co.

Bleaching Materials.
Roesseler & Hasslacher Chemical Co.

Bobbins.
Draper Co.

Brundizing Machinery.
New England Butt Co.

Carbonizing Machinery.
Hunter, James, Machine Co.
Philadelphia Drying Machinery Co.

Card Stampers.
Lentz, F. G. & Co.

Carpet Machinery.
Altemus, Jacob K.
Philadelphia Drying Machinery Co.

Chemicals.
Berge, J. & H.
Kilpeck, A. & Co.
Metz, H. A. & Co.
Roesseler & Hasslacher Chemical Co.

Chroming Machinery.
Philadelphia Drying Machinery Co.

Cost and Accounting Systems.
Wright, R. A.

Cotton.
Vinal, Samuel S. & Co.

Cotton Combers.
Mason Machine Works.
Whitin Machine Works.

Cotton Machinery.
Altemus, Jacob K.
Crompton & Knowles Loom Works.
Draper Co.
Halton’s, Thomas, Sons.
Mason Machine Works.
Metallic Drawing Roll Co., The.
Philadelphia Drying Machinery Co.
Schaefflenbaum, Rob., Co., The.
Schuchardt & Schütte.
Whitin Machine Works.
Woosneck Machine & Press Co.
Lever, Oswald Co., Inc.

Cotton Yarns.
Chapin, George W.
Littauer, Ludwig.

Design Yarns.
Lentz, F. G. & Co.

Design Paper.
Textile Publishing Co.

Drawing Frames.
Mason Machine Works.
Whitin Machine Works.

Drying Machinery.
Hunter, James, Machine Co.
Philadelphia Drying Machinery Co.

Dust Collectors.
Philadelphia Drying Machinery Co.

Dyers & Finishers.
Firth & Foster Co.

Drying, Bleaching and Finishing Machinery.
Hunter, James, Machine Co.
Philadelphia Drying Machinery Co.
Schuchardt & Schütte.
Woosneck Machine & Press Co.

Dyestuffs.
Farbenfabriken of Elberfeld Co.
Kilpeck, A. & Co.
Metz, H. A. & Co.

Dynamors & Motors.
Sipp Electric & Machine Co.

Electric Fans.
Philadelphia Drying Machinery Co.

Engravers.
Commercial Photo-Engraving Co.

Grades for Lappers.
Schaefflenbaum, Rob., Co., The.

Harness Builders.
Crompton & Knowles Loom Works.
Halton’s, Thomas, Sons.
Lentz, F. G. & Co.

Harness Twine.
Littauer & Ludwig.

Heating and Ventilating Apparatus.
Philadelphia Drying Machinery Co.

Heddes.
Steel Heddle Mfg. Co.
Whitaker Reed Co.

Jaguaros.
Crompton & Knowles Loom Works.
Halton’s, Thomas, Sons.

Jaguard Card Stamping, Lacquering and Repeating Machinery.
Royle, John & Sons.

Knitting Machinery.
Brinton, H., Co.
The QUILLER that Will Produce More

GOOD QUILLS

IN LESS TIME

Than Any Other QUILLER Made

% of the raw silk quilled in the United States is wound on these machines, made from their use for soft silk and cotton yarn.

Prices and Circulars on Application to

THE Sipp Electric and Machine Company

Keen and Warren Streets and Erie R. R.

PATERSON, N. J.

Patent Winders for Filling Yarns from the Skein to Shuttle Bobbins

- These machines exceed the production of any other make of this type of machines built and will under a guarantee defy its equal to appear.
- There are many conditions in winding, we meet all, and we know how.
- Spooling from the skein, on fine yarns requires a machine that to give production and quality of work is hard to get. Our latest improvement enables us to meet all requirements.
- In Warping, our latest type, with drying cylinders for fine yarns has new improvements that gives them a speed, which means production.
- With our Pinless device our Warpers obviate pin or section stripes.
- Our Experience on Winding and Warping Questions at your services, any time for the asking.

Established 1865

JACOB K. ALTEMUS TEXTILE MACHINERY

2824 North Fourth Street, Philadelphia, Pa.
BUYERS' INDEX—Continued

Reels.
Draper Co.
Knapp, Chas. H.
Sipp Electric & Machine Co.
Whitkn Machine Works.

Revolving Flat Cards.
Mason Machine Works.
Whitkn Machine Works.

Ribbons and Piece Silks for Trimming Knit Goods.
Cheney Bros.
Sauquoit Silk Mfg. Co.

Scales and Weights.
Troemner, Henry.

Silk Machinery.
Altemus, Jacob K.
Crompton & Knowles Loom Works.
Halton's, Thomas, Sons.
Keyworth, Wm. C.
Knapp, Chas. H.
Mason Machine Works.
Sipp Electric & Machine Co.

Silk Yarns.
Cheney Bros.
Littauer, Ludwig.
Ryle, William & Co.
Sauquoit Silk Mfg. Co.

Soap.
Holbrook Mfg. Co., The.

Spindles.
Draper Co.

Spinning Frames.
Mason Machine Works.
Schuchardt & Schütte.

Spinning Rings.
Draper Co.
Whitaker Reed Co.

Tanks and Tubs.
Philadelphia Drying Machinery Co.

Tapes, Braid and Edgings.
Chapin, George W.
Welmar Brothers.

Temples.
Crompton & Knowles Loom Works.
Draper Co.

Threads.
Chapin, George W.
Littauer, Ludwig.

Thread Guides.
Pamer, The E. C.
Whitkn Machine Works.

Tins.
Littauer, Ludwig.

Twisters.
Draper Co.
Mason Machine Works.
Whitkn Machine Works.

Winding, Braiding and Warping Machinery.
Altemus, Jacob K.
Draper Co.
Knapp, Chas. H.
Leaver, Oswald Co., Inc.
Sipp Electric & Machine Co.
Whitkn Machine Works.

Wool Combers.
Crompton & Knowles Loom Works.

Woolen Machinery.
Altemus, Jacob K.
Crompton & Knowles Loom Works.
Halton's, Thomas, Sons.
Lever, Oswald Co., Inc.
Philadelphia Drying Machinery Co.
Schuchardt & Schütte.

Woolen Yarns.
Littauer, Ludwig.

Wool Washing Machinery.
Hunter, James, Machine Co.
Philadelphia Drying Machinery Co.

Yarn Testing Machinery.
Knapp, Chas. H.
Sipp Electric & Machine Co.
GEORGE W. CHAPIN
COTTON YARNS
TAPES, BRAIDS, THREADS
LACE EDGINGS
229 CHURCH STREET 231
PHILADELPHIA, PA.
N. Y. Office, 350 Broadway
R. E. SCHNEEBELI, Res. Manager

LUDWIG LITTAUER
SUCCESSOR TO MOELLER & LITTAUER
THROWN SILK
ARTIFICIAL, SHAPPE AND SPUN SILK
DOMESTIC AND IMPORTED, PLAIN
GASED, MERCERIZED AND POLISHED COTTON
POLISHED AND GLAZED THREADS
MOHAIR AND WORSTED
TINSEL
TURKEY RED
109 GREENE ST., NEW YORK
BEST QUALITY HARNESS TWINE

WILLIAM RYLE & CO.
FOREIGN AND DOMESTIC
SPUN SILK YARNS AND NOILS
DOMESTIC THROWN SILK OF EVERY DESCRIPTION. FINE PURE DYE SILKS FOR THE WOOLEN TRADE A SPECIALTY. IMPORTERS OF EUROPEAN AND ASIATIC RAW SILK
54 HOWARD ST. NEW YORK

FIRTH & FOSTER CO.
DYERS AND FINISHERS
OF PIECE GOODS EXCLUSIVELY

The best equipped plant for the DYEING and FINISHING of fine wool and worsted goods, also silk and wool fabrics.

EMERALD, YORK AND ADAMS STREETS
PHILADELPHIA
NEW YORK OFFICE: Silk Exchange Bldg., Room 702

H. A. METZ & CO.
122 HUDSON STREET
NEW YORK

Philadelphi.a, Pa.
Boston, Mass.
Providence, R. I.
Chicago, Ill.
Atlanta, Ga.

Charlotte, N. C.
San Francisco, Cal.
Montreal, Canada
Toronto, Canada
Hamburg, Germany

Good Mills turn out Good Work
Good Work requires Good Soap

"The Best is Good Enough"

THE HOLBROOK MFG. CO.
470 WASHINGTON ST.
NEW YORK
Write Dept. P for a Letter Opener—sent free.
Globe Machine and Foundry Co.
(Incarnated)
Frankford, Philadelphia, Pa.
Builders of the
Denn Warping Machinery

Our New Design Ball Warper
(Patented and Patents Pending)
Spindle Driven | Regular Wind
No Slipage | Ends Square
No Lifting | Drops on Truck
Can Use Three-inch Shells

Posselt's Textile Journal
VOLUMES I, II AND III

Complete sets of the above are now on hand and ready for delivery.

PRICE: $1.50 EACH VOLUME
This will give you an opportunity to get back volumes in order to
complete the series of articles appearing now in the Journal on:

COTTON SPINNING (The Ring Frame)
The first authentic treatise on the American Frame in print.

DICTIONARY OF WEAVES
Comprises over 2000 practical weaves on 8 to 12 harnesses, taken from woven
fabric structures.

LESSONS ON DESIGNING
Harness and Jacquard Work, a series of practical discussions and instructions on
these subjects, based on the Editor's life experience and practical work.

DICTIONARY OF TECHNICAL TERMS
Relating to the Textile Industry. The first complete and authentic collection of
words, trade names, phrases, etc., compiled.

A TREATISE ON THE KNOWLES LOOM
Covering its construction, etc.

THE MANUFACTURE OF NARROW-WARE FABRICS
Ribbons, Trimings, Edgings, Webings, Elastics, etc.

TESTING OF CHEMICALS, DYESTUFFS, ETC.
Also hundreds of articles on new machinery, processes, etc.

The supply being limited we would suggest that those who desire the
same would order at once, remitting by money, check or registered mail.

The number is ever increasing.
There is a good reason why.

THE SCHAELLI BAUM GRID

The grid with a comb is getting in general use all over the country. It does the work. You get better cleaning and lose less cotton in the process than by any other grid.

The ROB. SCHAELLI BAUM CO.
268 Dyer Street, Providence, R. I.

Oswald Lever Co., Inc., Builders of Textile Machinery

PHILADELPHIA, PA.

SPECIALTY: WINDING MACHINERY IN ALL VARIETIES FOR ALL CLASSES OF WORK

CHEMICALS AND APPARATUS FOR THE DYE TRADE

J. & H. Berge

Best Bohemian Chemical Glassware and German Porcelain. G. P. Chemicals and Reagents. Chemists' Supplies of all kinds.

95 John Street, New York

Keyworth “Model B”

Silk Thread Finishing Machine for Best Results—WHY?

Because the new features embodied in “Model B” do away with all the difficulties to be met with in silk thread finishing and make it the peer of any machine ever placed on the market. Investigate and see the number of duplicate orders we have received to date. Summed up, our success is due to the fact that we have the best and most complete system, and always honestly represent it and say to those who have tried the rest to try the best and see the difference. In ordering solutions, state the class of goods you wish to make. Correspondence solicited.

Wm. C. Keyworth
Engineer and Designer
219 Van Houten St., Paterson, N. J.
conditions and then be distributed over wide areas and at great distances.

There is but one practical objection to the adoption of the electric drive, and that is the present cost of the motors. It costs more to equip a textile mill throughout with the electric drive than it does to equip it with a mechanical drive of equal horse-power, the more the motors are applied to individual machines, the greater will be the cost. But here the comparison ends, for in cost of maintenance, repairs, operation, etc., the electric drive is much less than for any other system. If the power operating the mill be purchased from a central supply station, then in the long run, (a few years only) the greater cost of the electric installation will be repaid by its greater economy of power consumption and the absence of cost when the machinery is idle and not productive. Another feature of the electric drive that will make it pay for its greater first cost is that by its use a cheap source of water power at a distance from the mill can be utilized and the cost of engines and fuel can be saved. No other power can be thus transmitted and used.

For a time the cost of power was considered the deciding factor in comparing the electric drive with other methods, the loss by friction and slipping between the engine and the machine with shafts and belting necessitating an allowance of from 30% to 50% more horse-power in the engine than was required to run the machines. However, the cost of the power required to operate a mill is a small item in its total expenses, seldom averaging over 4%, the following table showing the distribution of costs in an average plant.

Cost of raw material	50%
Cost of labor	40%
Cost of power	4%
Cost of supplies and repairs	3%
Cost of insurance, taxes, etc.	3%
Total	100%

The cost of raw materials depends upon the laws of supply and demand and can be lessened by foresight and prudence in buying alone, so it has no relation to the cost for power. The item of cost for labor is related to the cost of power, for it can be reduced by any application of the power that will give an increased production per person and per machine, and this is just what the electric drive does.

Another feature of importance, especially in textile mills, is the greater cleanliness that is obtained with electrically driven machines because of the absence of overhead shafting, pulleys, belting, etc., in great measure. For the same reason there will be better lighting and ventilation, and a clean, well-lighted, well-ventilated workroom will enable the employees to do more work and better work. There is also less heating of the air from electrically driven machinery, because of the absence of the friction heat from long lines of belts or shafting. All of these items make for a better sanitary condition in the mill, which means an increased production.

TEXTILE WORKER'S BUREAU

Manager. Textile expert with practical experience on wide variety of silk and cotton decorative fabrics will shortly be open for engagement.

Has successfully filled the most important positions in the U. S. as Head Designer Colorist, Salesman and General Manager. Is prepared to take financial interest in live concern.

Address, Manager (203) care of Posselt's Textile Journal.

Asst. Supt., Boss Weaver, Designer. Married man, temperate; has had extensive experience in Wool, Cotton and Silk. Fully acquainted with Jacquard work. Was Designer and Overseer for several New England Mills during the last ten years. At present employed. Will go anywhere. P. J. (205) Posselt's Textile Journal.

Boss Weaver or Designer. Now with a New England Mill; has had three years' practical experience. Will go anywhere. C. E. (204) Posselt's Textile Journal.

Manager for Fancy Mill. A practical man of over 20 years' experience as Manager and Head-Designer of prominent fancy mills in Philadelphia and New York City, formerly of Scotland, is open for engagement. Satisfactory reason for change.

A reputation in Philadelphia and New York City as reference.

Wanted. To make connections with some good Worsted Yarn Mill, or Commission House, to sell Production in New England. Either commission or salary. Would also take on cotton account if desired.

Have had a large experience in these lines and am thoroughly acquainted with the New England trade. Address: W. H. (208) Posselt's Textile Journal.

Foreman. In silk mills, 21 years experience in silk mill, 6 years as foreman in winding, quilting, warping, twisting, managing of stock throughout, and the inspection of cloth. Total abstinence.

(Continued on page xiv.)
BOOKS ON TEXTILE SUBJECTS.

Wool Dyeing (Part 1), by W. M. Gardiner. Price $2.00.

TABLE OF CONTENTS:
- Fibre, Bleaching, Dyeing, Mordants, and Dyes.
- Classification of Fibres: Wool, Silk, Cotton, Linen, and Others.
- Successful Dyeing and Spraying with Indigo and Various Synthetic Dyes.

Wool Dyeing (Part 2), by Gardner and Kracxs. $3.00.

TABLE OF CONTENTS:
- Natural Dyeing: Water Colors, Logwood, Redwood, Madder, Cochineal, Kermes and Lac Dyes.
- Chemical Dyes: Acid and Alkaline Dyes, Indigo, and Artificial Dyes.
- Classification of Coaltar Dyes, Artificial Mordant Dyes, direct Dyeing Wool, and Direct Dyeing Wool in Various Forms.

The Dyeing of Cotton Fabrics, by F. Beech. Price $3.00.

TABLE OF CONTENTS:
- Fibre: Action of Alkalies, Acids, and Oxidizing Agents.
- Bleaching and Dyeing Machinery and Processes.
- Principles and Practice of Cotton Dyeing.
- Dyeing of Textile Fabrics by Hummel and Hasluck. Price $2.00.

TABLE OF CONTENTS:
- Three Volumes Bound in One:
 - Vol. 1: Textile Fabrics and Their Preparation for Dyeing.
 - Vol. 2: Coloring Matters for Dyeing Textile Fabrics.
 - Vol. 3: Machinery, Methods and Machines used in Dyeing.

Wool, Cotton, Silk: Fibre to Finished Fabric, by Posselt. Price $5.00.

TABLE OF CONTENTS:
- Textile Raw Materials: Preparation for Processes:
 - Carding, Drawing, Spinning, and Twisting.

TABLE OF CONTENTS:
- Different Parts of the Jacquard Machine and its Method of Operation.
- The Comber, Tying up of Jacquard Harnesses for all Kinds of Fabrics.
- Stamping, Lacing, and Repeating of Jacquard Cards.

A textbook presenting the student in a condensed form from the most complete and modern chemistry of dye-stuffs.

Woolen Spinning, by C. Vickerman. Price $1.75.

TABLE OF CONTENTS:
- Sheep, Super, Sorting, Scouring, and Dyeing, Bleaching and Starching, Dyeing, Bunting, Mixing, and Oiling, Carding, Spinning.

TABLE OF CONTENTS:

TABLE OF CONTENTS:
- A Treatise on the Principles of Silk Throw and Waste Silk Spinning with Illustrations and Descriptions of the Machinery used.

TABLE OF CONTENTS:

A self-instructor with questions and answers on this subject, treating machinery and processes as used abroad.

The above books, as well as any other books on Textile Subjects, no matter where published, and charges prepaid. Receipts should be made by Check or Money Order, or in Registered Letters. Not responsible for money lost, otherwise sent.

TEXTILE PUBLISHING COMPANY
Lambert and Berks Sts., PHILADELPHIA, PA.
and can give best of references as to character and ability. Address, Foreman (209) Posselt's Textile Journal.

Designer for Woolen or Worsted. Graduate from Textile School, with four years practical experience in New England Mills, is open for position either as Designer or Assistant Superintendent. H. B. (211) Posselt's Textile Journal.

MILL NEWS

Philadelphia. The Textile Overseers' Association of Philadelphia, which was started a few months ago at the offices of Posselt's Textile Journal, held its first annual banquet at the Phoenix Hotel, Front street and Lehigh avenue, January 28th. This Association represents not only the textile trade in Philadelphia, but several of its members are overseers in cities in the upper part of the State.

Officers have been elected for the coming year, as follows: President, William Secor; vice-president, James Stock; secretary, William Mugford, and treasurer, John Bellis.

At a reorganization meeting of the Leicester and Continental Mills Company the number of directors was increased from seven to eleven, and Everett H. Brown, former secretary, was elected manager.

Norristown, Pa. The Penn Art Square Mills, recently destroyed by fire, have been sold to Lee Harris & Son, of Philadelphia, who will rebuild the plant.

A Philadelphia textile company has leased the old mill at Valley Forge and is making alterations preparatory to installing machinery.

Allentown, Pa. Klotz & Bregenzer, proprietors of the Rittersville Silk Mill, have purchased the tract of land between their mill and Central Park, comprising a little more than an acre of ground, to enable them to enlarge their mill.

Siegfried, Pa. Construction of an addition to the plant of the Central Silk Manufacturing Company has been begun. The new section will be by 60 feet, two stories high and provide room for 50 looms.

Mauch Chunk, Pa. The Mauch Chunk Silk Mill Company has voted to increase its capital stock from $50,000 to $100,000. The increase it is rumored to be used to establish a mill in Nesquehoning.

Paterson, N. J. F. J. Day & Company, manufacturers of ribbons, will erect a three-story brick and concrete mill at Harris and Streeter streets, to cost $30,000. They will add a number of new looms and occupy the second and third floors, while the first will be let.

The plant of the Ramsay & Gore Silk Company was purchased by Nathan Barnet for $25,000. The machinery was sold some time ago for $7,000.

The Radium Silk Finishing Company has taken room in the William Strange Silk Mill. They will make a specialty of ribbon finishing, moireing and re-blocking.

Passaic, N. J. The growth of Passaic and its vicinity as a textile centre during the past few years has been very rapid, and when the new Forsmann & Hoffmann mill is completed this little town will rank with the most important woolen and worsted manufacturing districts in the United States.

The largest men's wear and dress goods mills in this country are located at South Lawrence, Mass. While exact data is difficult to obtain, the figures published show that the looms available there total 8,000, and the spindles 250,264. Probably more wool is consumed in Lawrence than in other parts of the country, but Passaic is pushing the great New England centre for first place.

The spindles given in the latest returns show that in this New Jersey town and in Garfield, just across the river, there are above 200,000 spindles. The number of looms given for Passaic is 5,470.

South Amboy, N. J. The Acme Underwear Company has been incorporated with a capital stock of $100,000.

Phillipsburg, N. J. The Mauchline-Firth Silk Company has been incorporated with a capital stock of $50,000.

Troy, N. Y. Organization of the Troy Bleaching Company has been completed and a contract for the building and equipment placed. George Bothamley is president and manager.

Hudson, N. Y. About 100 operators have been put to work in the U-branch of the Union Mills which has resumed after a year's idleness.

Pleasant Valley, N. Y. Two hundred new looms will be installed in the building of the old Harmony Cotton Mill, which will again start in April manufacturing print cloth for the big mill at Wappingers Falls.

North Tonawanda, N. Y. The Niagara Silk Mills has applied for a permit to construct an addition to its factory, which will be used as a dry house.

Construction of an addition is planned by the Niagara Silk Mills.

Oneonta, N. Y. The Paragon Silk Company is to install forty additional looms, and expects to add as many more.

Boston, Mass. At a special meeting of the directors of the American Woolen Company it was unanimously voted to authorize the increase of the worsted production of the company by additions.
We are prepared to prove that Peroxide of Sodium in Bleaching animal, vegetable fibres or mixtures is the best.

WOONSOCKET YARN GASSING MACHINE

Woonsocket Machine & Press Company, WOONSOCKET, R. I.
Builders of Cotton and Woolen Machinery
to the Wood Worsted Mills and the Fulton Mills.

During the year 1908 the company sold in the neighborhood of $30,000,000 worth of goods, and at the rate at which they are moving now, which is on a par with previous years, they expect to do a business of between $50,000,000 and $60,000,000.

New Bedford, Mass. Early in 1909 New Bedford cotton mills will have in operation 2,137,811 spindles, an increase of 40,468, or about 2.1%, over those operated in 1908; the Dartmouth, Grin nell, Hathaway, Mamomet, Soule and Tabor mills all contributing to the increase. The number of looms is 36,061, an increase of 133. The operatives number 21,529, an increase of 650.

There was a net gain during the year 1908 in capital stock invested in New Bedford cotton industries of $317,000; the Beacon Mfg. Co. increased its capital $57,000; the Bristol $100,000; and the Tabor mill $130,000. Three new mills were added, bringing the number up to 50—the Grinnell, Potomka, and Wamsutta, each having completed a weave shed.

The Essex Manufacturing Company will expend $200,000 in providing room and installing 12,000 spindles and 500 looms.

New Bedford’s cotton mills paid, in 1908, $1,798,935 in dividends on $20,287,000 capital, while Fall River’s cotton mills paid $1,741,135 on $27,125,000. New Bedford’s mills paying $57,450 more in dividends than those of Fall River. New Bedford investors, it is rumored, in 1908 added largely to their already large holdings of Fall River mill shares.

The average dividend rate paid in 1908 on the capital stock of New Bedford’s cotton mills, excepting the Tabor, which is new, was 91%. On $20,287,000, the entire capital stock, old and new, the average was 8.77%.

Fall River, Mass. Locally, spindles will be increased 175,000 to 200,000 by plants already under way or by additions to existing ones.

The annual meeting of the trustees of the Bradford Dyer Textile School was held at the school, Jan. 18, President Leontine Lincoln presiding. It was voted to ask the State for an appropriation of $5,000 for maintenance and the city for $8,000, and also ask the State for a special appropriation of $10,000 for equipment. These bills have been placed in the hands of Representative Brayton.

Worcester, Mass. After a successful run of fifteen years, the affairs of the Southgate Woolen Co. will liquidate and the corporation dissolved as soon as possible.

Leicester, Mass. Ashworth Bros. mill has started on three months’ orders, giving employment to about 75 hands.

Millsbury, Mass. The National Crash Mfg. Co., formerly the U. S. Linen Co., are installing one hundred additional looms, as well as spinning machinery, and will manufacture another line of goods besides crash.

The Mayo Woolen Mills, of Bramon ville, Mass., which have been running on a reduced time for some time past, have resumed full time schedule.

Seventy of the hundred looms have been installed in the Wilkinsonville Mill and it is expected that operations will be commenced in a short time. They are Crompton and Knowles Looms.

Cherry Valley, Mass. The Darling Woolen Mills Co. resumed operations after a long period of idleness.

Rockdale, Mass. With the reopening of the A. W. Howarth & Sons’ mill, which had been idle for seven weeks, and the resuming of a full time schedule by the E. J. Carlton & Sons’ mill, better times have appeared.

Southbridge, Mass. The Hamilton Woolen Company is adding new looms.

Fitchburg, Mass. The Parkhill Manufacturing Company are adding 200 looms to their weave shed, making in all 700 looms for their manufacture of ginghams.

West Fitchburg, Mass. The long idle and dismantled Cambridge mill is now to resume operations. J. D. Armsteg, formerly superintendent of the Arlington Mills, is to be agent of the mill and will operate it for the American Woolen Company.

Unionville, Mass. George R. Whiting’s woolen mill has been started up after being closed for several months. Mr. Whiting also operates a mill at South Milford.

North Brookfield, Mass. The Oxford Linen Mills will more than double the capacity of their plant. A new weave shed is to be one of the structures, also a larger power plant.

Webster, Mass. If the plans of Mr. H. H. Phillips, of Boston, are favorably reported on by the business men of Webster a factory will be built before July, with a capacity of 25,000 spindles, and employing 500 hands. Those who heard of the offer of the worsted concern for whom Mr. Phillips is agent, are enthusiastic.

Lowell, Mass. The Lyon Carpet Company will erect a new building in the spring to accommodate 29 new looms.
Lawrence, Mass. The Everett Mills are to double their plant.

North Andover, Mass. The Brighton Manufacturing Company is operating its plant on a full-time schedule, two shifts being run round the clock.

North Chelmsford, Mass. Fire destroyed brick building occupied jointly by the George C. Moore Wool Scouring Plant and the Brookside Worsted Mill No. 2, Jan. 19th. Through loss of stock, equipment, money on hand, etc., the fire did far greater damage than can be estimated. The total loss is estimated between $100,000 and $700,000, partly covered by $500,000 insurance.

Great Barrington, Mass. It is stated that the Eggenenee Mills have resumed operations.

Hudson, Mass. The Hudson Worsted Co. has recently completed, the capital stock being $175,000. Work has begun on an addition to the main mill.

North Adams, Mass. The plant of the North Adams Manufacturing Co. has been sold to Arthur G. Meyer, of New York, for $35,000, who states he intends making the new plant the home of woolen goods as now made.

Providence, R. I. Four carloads of looms for the new weave shed of the Elston Worsted Co. have arrived. It is reported that the company has work for the looms, although the weave shed is not completed nor are the looms in place.

The preparatory departments of the Riverside Worsted Mills are said to be very busy and additional wool sorters have been engaged.

Pawtucket, R. I. Announcement was made to the 1,200 employees at the Royal Weaving Co.'s mill that their wages are increased one-quarter of a cent per yard on all qualities of goods.

Valley Falls, R. I. The Penkeke Silk Company, which operates a mill of 300 looms, has announced an increase in wages of 15 per cent.

Warren, R. I. Frank S. Drowne, treasurer of the Warren Manufacturing Co., is at his home Jan. 14th from an attack of grip. Mr. Drowne, who was 66 years old, was one of the best known men in Rhode Island, prominent also in banking circles and in other ways.

Bridgeton, R. I. The Bridgeton Worsted Company has been incorporated for the purpose of buying, selling, manufacturing and dealing in wool and worsted yarns, and all manufactures of woollen.

Weinsock, R. I. The Lafayete Worsted Company is operating its plant day and night, its full capacity.

Manchester, N. H. The Amoskeag Manufacturing Company has declared a regular semi-annual dividend of 6% per month.

February 10th, 1901.

Dover, N. H. The Cocheco Manufacturing Company at a special meeting, Jan. 27th, voted unanimously to accept the offer of the Pacific Mills of Lawrence for the purchase of the entire plant. The offer made and accepted by the Pacific Mills is the sum of $1,750,000 in cash, with its assets and all outstanding obligations and liabilities of the company. The plant employs about 7,000 hands.

Bridgeport, Conn. The Bridgeport Webbing Company has filed a certificate of incorporation. It has a capital stock of $5,000 and will manufacture elastic webbing.

Buckland, Conn. It is reported that the E. F. Hilliard Company will erect an addition to its finishing department, 50 feet square.

Central Village, Conn. Many of the mills here are running overtime. These plants include the Fletcher Woolen Mills, employing 300 hands; the Plainfield Woolen Mills, the Central Worsted Company, and other Mills Company, at Kennedy City, and the Cutler Mills at Packerill. About $40,000 worth of new machinery is now arriving for the new Mill.

Danilion, Conn. An equipment of 66 looms is to be installed at once by the Danielson Cotton Company, another enlargement being expected to be equipped by spring.

New London, Conn. The contract has been awarded for the additional factory which the directors of the New London Wash Silk Company recently decided to build. It will be two stories high.

Plainfield, Conn. The cotton mills of this county are experiencing the greatest business boom ever known, it being assumed that a million dollars will be invested in additions and new machinery this spring.

Putnam, Conn. The Putnam Woolen Company, whose plant has been closed for some time, has resumed operations.

Greeneville, S. C. An additional mill is to be built by the Brandon Mills, to be equipped with 25,000 spindles and 700 looms. At the time of the action of the directors, the capital stock was increased to $500,000.

The Woodside Mill will, with the new machinery they will install, have 70,000 spindles and 1,000 looms, making it the city's largest mill.

Anderson, S. C. The Anderson Cotton Mills are preparing to operate 18,000 spindles in Mill No. 1, which has long been idle, an evidence of the return of prosperity for the South.

Concord, N. C. Creditors of the Odell Manufacturing Company are to be paid a final dividend of 75 per cent, which has been declared by the receiver, Caesar Cone. It is stated that the creditors will receive 100 cents on the dollar of their claims without interest.

Laurinburg, N. C. The Waverly Mill has been chartered, the capital stock being $50,000.

The McCauley & Co. of South Carolina have purchased 18,000 spindles for a big new mill to be built here at once.

Tryon, N. C. The Tryon Hosiery Mills, employing from 200 to 400 hands, are being moved to Flat Rock.

Belmont, N. C. W. J. Willett, overseer of spinning at the plant of the Erwin Cotton Mills Co., at Cookeville, will erect a 1,000 spindle mill here.

Mount Holly, N. C. Work is rapidly progressing on the addition to the Woodlawn Cotton Mill, 22 spinning frames will be added to the plant in this way.

Canton, N. C. Arrangements are being made to add 3,000 more spindles to the Arlington Cotton Mill.

Harden, N. C. The Harden Mills are planning the installation of 4,000 more spindles.

Cliffside, N. C. It is rumored that the Cliffside Mills are to double their equipment.

The amount of capital invested in cotton mills in North Carolina is $750,000, while the amount in South Carolina is $500,000.

Sparta, Ga. The Sparta Cotton Mill, the operation of which has been delayed several months on account of the financial depression, has begun operations.

Norfolk, Va. Removal from its former site to the new plant here completed by the Parker Hosiery Mills, at full capacity the factory will make 1,000 dozen pairs of hose daily.

Lebanon, Tex. The Lebanon Woolen Mills intend erecting a building for the manufacture of woolen blankets.

Huntsville, Ga. The Huntsville Cotton Mills, which were sold, will be incorporated as the Southern Cotton Mills, having begun operations.

Dublin, Ga. The Dublin Cotton Mill has been sold for $50,000 to J. C. Cooper of Atlanta, Ga., who will operate the plant under the title of the Georgia Cotton Mills.

Lowryville, Ky. The Hope Worsted Mills, recently reorganized with a capital stock of $150,000, have begun operations. Within three weeks it is expected to have the plant in operation, which will require the employment of 200 hands. The maximum output is estimated at 50,000 pounds of woolen yarns daily.

Houston, Texas. The Oriental Textile Mill of this city has increased its capital stock from $200,000 to $300,000.

DeSoto, Texas. The Denison Cotton Mill Company has ordered ninety-six looms additional to present equipment.

Fort Worth, Tex. It is now definitely settled that Fort Worth will have a $300,000 cotton mill within three months.

Cleveland, O. Construction of a factory for the Standard Knitting Company has been begun. It is expected to be ready for occupancy in September. O. F. Schmidt is president, and the concern has $65,000 capital stock.

Salem, Ore. The Salem Woolen Mills have been incorporated, the capitalization being $50,000.

Los Angeles, Calif. The only cotton hosiery mill west of Chicago, to be known as the Pioneer Hosiery Mills, soon will begin operation in Los Angeles, expecting to turn out their first product by April.

San Francisco. The steamship Chiyo Maru, which has arrived, brought raw silk valued at $700,000.
EXPLANATIONS FOR THE CHART OF WEAVES ON "Textile Designing Simplified."

The object of this chart is to show how easy weaves for all classes of Textile Fabrics can be constructed; it will be a search light in the misty matters in the field of designing Textile Fabrics. Keep this chart of weaves for reference. Millions of new weaves can be obtained by it.

All weaves for Textile Fabrics have their foundation in Plain Twills and Satins.

PLAIN.—This weave and its sub divisions are explained on the chart in the top row by 16 weaves, the sub divisions covering common, fancy and figured Rib and Basket weaves.

TWILLS.—The foundation of constructing regular (45°) twills is shown by rows 2 and 3 with twenty-six weaves, covering twill weaves all the way from 3 harness up to 13 harness. The sub divisions of twills are quoted next on the chart, being Broken twills, Skip twills, Corkersews, Double twills, Drafting twills. Curved twills, Combination twills warp drafting, Combination twills filling drafting, 6/3 twills, 7/6 twills, Wide wale twills, Entwining twills, Checker-board twills, Pointed twills, Fancy twills, thus covering every sub division of twill weave possible to be made.

SATINS are next shown, giving also their sub divisions, viz.: Double satins and Granites.

HOW TO PUT A BACK WARP ON single cloth is shown below the satins by two examples, and at its right hand is quoted the principle of HOW TO PUT A BACK WARP ON single cloth.

On the bottom line are given the four steps for:—

THE CONSTRUCTION OF DOUBLE CLOTH, 2 @ 1; and above the same one example, with the arrangement 1 @ 1.

THE BACK CLOTH is shown by one example.

HOW TO MAKE SINGLE CLOTH WITH ITS OWN WARP is shown by two examples.

WEAVES FOR SPECIAL FABRICS are quoted: Tricots (warp, filling and Jersey effects), Rib fabrics, Honeycombs, Imitation Gauze, Velveteen, Corduroy, Chinchillas Quilts Plush, Double-plush, Tapestry, Crape, Terry, Worsted coating stitching, Hacks, and Bedford cords

HOW TO WORK THIS CHART OF WEAVES.

Capital letters of references refer to the plain weave and its sub divisions.

Small letters of references refer to twills and their sub divisions.

Normal letters of references refer to satins and their sub divisions.

Example.—How to ascertain the construction of the weave at the right hand top corner of the chart; being the figured rib weave marked C C'? These two letters of reference mean that said figured rib weave is nothing else but the combination of the 2 harness 6 picks common rib weave warp effect C, and the 6 harness 2 picks common rib weave filling effect C'.

Example.—The letter of reference c, underneath the first broken twill indicates that the same is obtained from the 1/2 4 harness twill c (third weave on the second row); in other words, letter of references below each weave of any of the various sub divisions refer always to the corresponding foundation weave.

Example.—Twills q, and o, are the foundation for the eight combination twills filling drafting, said common twills are drafted 1 @ 1, the different designs being obtained by means of different starting.

Example.—The wide twill 2', 3', has for its foundation the 6/3 twills, marked also respectively 2' and 3', the latter two weaves have again for their foundation respectively the common twills marked 1' and 2'.

Example.—Granites marked 8 have for their foundation the 8 leaf satin, such as marked 12 the 12 leaf satin.

Example.—Farmed by filling e, means the common 2/4 harness twill e, (fifth weave on second row) and the 8 leaf satin is used in the construction of this weave.

Example.—The complete design of double cloth, marked e 8 A, means that the common 2/4 harness twill e, the common plain (A) and the 8 leaf satin (S) are used in the construction.

Example.—Rib fabric A, indicates that the plain weave forms the foundation.

It will be easy to substitute different foundations in constructing weaves for heavy weights. In reference to single cloth weaves we only want to indicate that by following rules shown in the chart, millions of new weaves can be made up from it.