
1 March 3, 2004; last revised August 1, 2004

Code Drafting, Part 3: A Larger Character Set

The first article in this series [1] noted that
conventional code drafting considers only let-
ters and treats upper- and lowercase letters as
equivalent.

There is some basis for considering up-
per- and lower case letters to be equivalent.
Capitalization is largely a matter of conven-
tion. In English the first word of a sentence is
capitalized, but that does not change the mean-
ing of the word. (Some other languages have
different conventions. In German, all nouns
are capitalized.)

On the other hand, the capitalization of
titles, acronyms, and so fort´h is more signifi-
cant and provides an argument that, in some
cases, upper- and lowercase letters should be
considered to be different.

The most glaring problem with conven-
tional code drafting is its disregard for blanks
(spaces). Blanks separate words; in their ab-
sence, meaning can be ambiguous or lost alto-
gether. The classic example is the difference
between therapist and the rapist. Since the
main motivation for code drafting is capturing
meaning in a weave, ignoring blanks is a seri-
ous flaw.

The problem probably stems from the
common view that blanks are not characters
and hence are insignificant. In the computer
culture, a blank is just as much of a character as
the letter A. In the absence of context, in the
computer culture, “all characters are created
equal”. The fact that the blank has no associ-
ated glyph (graphic) is irrelevant. In fact, many
computer characters have no associated glyphs.

The absence of a glyph for the blank is
essential for readability of text. But it can be a
problem in some contexts, such as tabular lists,
where it cannot be “seen”. The symbol some-
times is used for blanks in such contexts.

Another important aspect of blanks in
ordinary text, including strings typically cho-
sen for code drafting, is that blanks occur, on
average, more frequently than any single let-
ter.

Digits also are absent from standard code-
drafting tables. Because of this, strings with
digits are not chosen for code drafting, al-
though they otherwise might well be. Con-
sider

The 1876 Centennial Exposition

And it and it’s are different, as are many
other such words.

All this leads to the consideration of code
tables that include all the characters commonly
found in text. A natural basis for this is the
characters that are available on modern per-
sonal computers.

Computer character sets have developed
over time. Modern personal computer have
256 different characters as part of their archi-
tecture. Internally, characters have numerical
values, which provides a way of ordering them.
The 256 different characters are traditionally
divided into two 128-character sub-sets. The
first 128 are called ASCII and the last 128,
Extended ASCII. The ASCII character set pro-
vides the basis for “plain” text. Over time,
glyphs have been assigned to some characters
in the Extended ASCII character set. These
include letters with diacritical marks, like ç;
mathematical symbols, like ∞; ligatures, like
æ; and various other characters. (Different
fonts provide different glyphs for the same
character, but that is beyond the scope of ordi-
nary code drafting.)

The glyphs for the ASCII character set are
standard across different personal computer
systems, but the glyphs for the Extended ASCII
character set are not. See Reference 2.

The first 32 ASCII characters and the last
ASCII character are reserved for keyboard con-
trol operations and have no glyphs. This leaves
95 characters with glyphs. Ten are digits, 52
are letters (upper- and lowercase) and the re-
maining 29 are punctuation marks; common
arithmetic operators, like +; commercial sym-
bols, like $, and a few less commonly used
characters, like \.

2 March 3, 2004; last revised August 1, 2004

It may seem that some of the 95 ASCII
characters would never appear in strings cho-
sen for code drafting. But consider

Screw the &*%^$#/@\ dummies!

One can imagine a smiling corporate ex-
ecutive sitting at a desk behind which is an
elegant wall hanging that commemorates this
sentence. See the (not-so-elegant) weave at the
end of this article.

The 95-character subset of ASCII provides
an adequate basis for code drafting. There
always will be subjects to be commemorated
that cannot be represented with these 95 char-
acters or, in fact, any linear string. Consider

E = mc2

and the famous continued fraction [3]

Einstein’s famous equation can be spelled out.
Complex typography is another matter; a sub-
jects for another approach, perhaps.

Back to reality. Code tables for 95 charac-
ters for use with 4-shaft overshot are some-
what cumbersome at an average of about 24
characters per shaft, but they nonetheless man-
ageable.

Such code tables can be constructed in
many ways. For example, if upper- and lower-
case letters are to be considered equivalent,
they can be paired, as in

EeDdHh …

As described in the second article in this
series [4], balanced code tables are important
in obtaining balanced shaft utilization.

While there are extensive studies of letter
frequencies in large bodies of text, there ap-
pear to be none for character frequencies.

An analysis of a small body of text none-
theless can be useful. Here is an example,
using sayings in the style of Dave Farber [5].
These sayings are known as farberisms [6]. An

example is
It sounds like roses to my ears.

Such sayings have the same structural
properties as the strings commonly used for
code drafting.

Here are character percentages, in decreas-
ing order, for 1,830 farberisms totalling 69,675
characters:

 17.3304 (blank)
e 9.5127
t 7.7115
o 6.8202
a 5.5844
n 4.9501
s 4.8539
i 4.5611
h 4.4635
r 4.1650
l 3.0455
. 2.4987
u 2.3365
d 2.3336
g 1.9677
m 1.8055
f 1.7595
c 1.6476
y 1.6017
w 1.5601
‘ 1.5601
p 1.3189
b 1.2802
k 1.0965
I 0.9429
v 0.6358
T 0.4635
H 0.3903
, 0.1880
D 0.1679
W 0.1607
- 0.1248
j 0.1248
A 0.0889
L 0.0875
Y 0.0861
! 0.0861
S 0.0832
x 0.0631

3 March 3, 2004; last revised August 1, 2004

M 0.0545
N 0.0545
P 0.0531
z 0.0531
G 0.0401
q 0.0387
B 0.0272
R 0.0258
? 0.0258
C 0.0258
E 0.0200
F 0.0200
O 0.0186
J 0.0186
K 0.0100
; 0.0086
0 0.0086
5 0.0057
2 0.0043
1 0.0043
U 0.0028
% 0.0028
“ 0.0028
9 0.0028
V 0.0028
Z 0.0028

: 0.0014

Note the high percentage of blanks. To get
frequencies, divide by 100.

Not surprisingly, not all of the 95 charac-
ters appear in the farberisms — only 66 do.
Most of the missing 29 characters can be as-
sumed to occur with very low frequency, and
taken to be 0 for all that matters, in larger
bodies of text.

In designing balanced code tables, it prob-
ably is sufficient to assume that all digits occur
with equal frequency, although in fact, 1 and 0
probably occur somewhat more frequently
than the other digits.

The frequency of blanks and punctuation
marks in the farberisms probably is similar to
what would be expected in strings chosen for
code drafting.

A four-shaft, 95-character balanced code
table, based on these assumptions and using a
technique described in the article on balanced
code tables [4], is shown below. The characters
have been sorted in the order of their internal
codes to make them somewhat easier to locate.

Because of the uneven distribution of char-
acters among the shaft sets, this table would be
difficult to use without computer assistance. A
better method of construction, which balances
both the number of chracters per shaft set and
the frequencies is needed. A small research
project, perhaps.

characters shaft pair frequency

#$&()*+,/134678<=>@EQX[\\]^_`ov{|}~ 1,2 .249987
DMaegt 2,3 .249987
GWhimnrs 3,4 .249999
!\”%’-.0259:;?ABCFHIJKLNOPRSTUVYZbcdfjklpquwxyz 4,1 .249995

4 March 3, 2004; last revised August 1, 2004

References

1. Code Drafting, Part 1: Introduction, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd1.pdf

2. Character Sets, Ralph E and Madge T. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_char.pdf

3. Continued Fraction Sequences and Weave Design, Part 1: Introduction, Ralph E. Griswold, 2000:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cf1.pdf

4. Code Drafting, Part 2: Balanced Code Tables, Ralph E. Griswold:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd2.pdf

5. Dave Farber's home page:
 http://www.cis.upenn.edu/~farber/

6. Farberisms:
 http://www.cs.arizona.edu/icon/oddsends/farber.htm

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2004 Ralph E. Griswold

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd1.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_char.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cf1.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd2.pdf

Ralph E. Griswold
http://www.

Ralph E. Griswold
cis.upenn.edu/~farber/

Ralph E. Griswold
http://www.cs.arizona.edu/icon/oddsends/farber.htm

http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd1.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_char.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cf1.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd2.pdf
http://www.cis.upenn.edu/~farber/
http://www.cs.arizona.edu/icon/oddsends/farber.htm

5 March 3, 2004; last revised August 1, 2004

The CEO's Wall Hanging

