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Drawdown Automata, Part 2:
Neighborhoods and State-Transition Rules

In the first article on drawdown automata
[1], we described basic concepts and how cel-
lular automata can be used to produce draw-
down patterns. In this article, we’ll look more
closely at neighborhoods and state-transition
rules.

Neighborhoods

The neighborhood of a cell, called the core
cell, consists of the core cell and those sur-
rounding cells whose states determine the next
state of the core cell. The term neighborhood
implies proximity. Every cell in a cellular au-
tomaton has the same kind of neighborhood.

Figures 1 and 2 show the most commonly
used neighborhoods. Core cells in neighbor-
hood diagrams are outlined to emphasize their
location.

Figure 1. Von Neumann Neighborhood

Figure 2. Moore Neighborhood

Many other neighborhoods are possible.
Examples are shown in Figures 3-9.

Figure 3. Moore Neighborhood with “Ears”
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Figure 4. 9-Cell Cross

Figure 5. 9-Cell Star

Figure 6. 13-Cell Checkerboard

Figure 7. 9-Cell Spread

Figure 8. 17-Cell Compound

Figure 9. Extended Moore Neighborhood
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All the neighborhoods shown so far are
symmetric with respect to rotation. This need
not be the case. See Figures 10-12.

Figure 10. 11-Cell Diagonal

Figure 11. 15-Cell Spiral

Figure 12. 7-Cell Scatter

The radius of a neighborhood is defined to
be the maximum distance from the core cell,
horizontally or vertically, to cells in the neigh-
borhood. The neighborhoods in Figures 1 and
2 have radius 1. The other neighborhoods have
radius 2.

The number of cells in a neighborhood,
their relative positions, and radius of the neigh-
borhood all figure into the possibilities for
pattern generation.

Given what is possible even with the von
Neumann and Moore neighborhoods, the use
of other neighborhoods needs to be justified.
We’ll look into this in a subsequent article.

State-Transition Rules

A state-transition rule specifies how the
state of a core cell changes as a function of the
states of the cells in its neighborhood.

Even for small neighborhoods, the num-
ber of possible rules is very large. For the 5-cell
von Neumann neighborhood, there are more
than four billion possible rules.

General Rules

In general, each cell in the neighbor can
figure into a state-transition rule independently
of all other cells. This is illustrated in Figures 13
and 14 for the von Neumann and Moore neigh-
borhoods, where each cell is shown in a differ-
ent color.

Figure 13. Von Neumann General Rules



4 February 13, 2002; last revised August 1. 2004

Figure 14. Moore General Rules

A general rule can be described by a table
whose rows show all possible combinations of
the states of individual cells along with the
corresponding new state for the core cell.

For example, the parity rule for the von
Neumann neighborhood, for which the new
state of the core cell is 1 if the sum of all the cells
in the neighborhood is odd but 0 otherwise,
has the following table. The cells are identified
by position as in Reference 1 and C' is the new
state of the core cell.

NESWC C' NESWC C'
00000 0 10000 1
00001 1 10001 0
00010 1 10010 0
00011 0 10011 1
00100 1 10100 0
00101 0 10101 1
00110 0 10110 1
00111 1 10111 0
01000 1 11000 0
01001 0 11001 1
01010 0 11010 1
01011 1 11011 0
01100 0 11100 0
01101 1 11101 0
01110 1 11110 0
01111 0 11111 1

Since there are five cells in the neighbor-
hood, there are 25 rows in the table. Notice that
the values for NESWC are given in increasing

order, considered as base-2 integers. For each
of the rows, there are 2 possibilities for C'. Thus
there are 232 = 4,294,967,296 possible rules.

For a 9-cell neighborhood, rule tables have
29 = 512 rows and there are 2512 possible rules.
Multiplied out, this number is

13,407,807,929,942,597,099,574,024,998,
205,846,127,479,365,820,592,393,377,723,
561,443,721,764,030,073,546,976,801,874,
298,166,903,427,690,031,858,186,486,050,
853,753,882,811,946,569,946,433,649,006,
084,096

Don’t even try to think about this.
The rule for a table can be encoded as an

integer in the following way. First write out
the values in the C' column in reverse order (to
correspond to a base-2 integer, in which the
most significant digit is at the left.) Then con-
vert this base-2 number to base 10.

For the parity rule, the base-2 integer is

10000110011010010110100110010110

which in base 10 is 1771476585.
Integer encodings of state-transition rules

are unintuitive, but they are useful for some
cataloging and programming purposes.

Totalistic Rules

Many interesting state-transition rules
depend only on the sum (total) of the values of
cells in the neighborhood. Such rules are termed
totalistic.

Two kinds of totalistic rules have been
studied extensively: purely totalistic and outer-
totalistic, also called semi totalistic. In a purely
totalistic rule, the next state of the core cell
depends only on the sum of the states of all
cells in the neighborhood, including the core
cell. In outer-totalistic rules, the state of the
core cell depends on the sum of all the cells in
the neighborhood except the core cell, and the
state of the core cell figures in separately. These
rules are illustrated in Figures 15-18, where
cells with the same color are taken together for
the purpose of forming sums.
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Figure 15. Von Neumann Totalistic Rules

Figure 16. Von Neumann
Outer-Totalistic Rules

Figure 17. Moore Totalistic Rules

Figure 18. Moore Outer-Totalistic Rules

For purely totalistic rules, the number of
possible sums is one more than the number of
cells in the neighborhood: 0 through n for an n-
cell neighborhood. For example, rule tables for
5-cell neighborhoods have only 6 rows.

 The parity rule, which is totalistic, has the
following table for the von Neumann neigh-
borhood, where ∑ indicates the sum:

∑  C'
0      0
1      1
2      0
3      1
4      0
5      1

The totalistic integer code for this rule is
42.

There are 26 = 64 purely totalistic rules for
5-cell neighborhoods and 210 = 1,024 purely
totalistic rules for 9-cell neighborhoods.

For outer-totalistic rules, the number of
possible sums of the cell states equals the num-
ber of cells: 0 through n–1. For each, there are
two core cell states to consider, so rule tables
for 5-cell neighborhoods have 10 rows and
rule tables for 9-cell neighborhoods have 18
rows.

The Game of Life [1,2] uses an outer-
totalistic rule for the Moore neighborhood. In
the terminology of the Game of Life, a live cell
(C = 1) remains alive (C' = 1) only when
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surrounded by 2 or 3 live neighbors. Other-
wise it dies (C' = 0). A dead cell (C = 0) comes
to life (C' = 1) only when it is surrounded by
exactly 3 live neighbors. The corresponding
table is:

∑C  C' ∑C  C'
00    0 41    0
01    0 50    0
10    0 51    0
11    0 60    0
20    0 60    0
21    1 70    0
30    1 71    0
31    1 80    0
40    0 81    0

The base-2 code for this rule is

0000000011100000

which is 224 in base 10.
There are 210 = 1,024 outer-totalistic rules

for 5-cell neighborhoods and 218 = 262,144 outer-
totalistic rules for 9-cell neighborhoods.

Life-Type Rules

There are many variations on the Game of
Life. They follow the pattern of the Game of
Life rules, but the numbers of surrounding live
cells necessary to keep a cell alive or restore a
dead cell to life vary.

These rules can be represented compactly
by listing the numbers of live cells for the two
cases. For the game of life itself, these numbers
are 2 and 3 to maintain life and 3 to restore life.

One encoding method lists the two sets of
numbers with a separating slash. Thus, the
Game of Life rule is 23/3.

Other Ways of Expressing Rules

As if the situation was not already suffi-
ciently confusing, some cellular automata ap-
plications have their own ways of specifying
state-transition rules.

Many rules that are cumbersome when
cast as tables or incomprehensible when given
as integer codess are nonetheless fundamen-
tally simple. For example, the parity rule is
easy to express and understand in plain En-
glish: It’s just a matter of whether the sum of
the states of all neighboring cells is odd or
even.

For precision and as a basis for implemen-
tation in programs, pseudo-code will do. The
parity rule for the von Neumann neighbor-
hood can be written as

(N + E + S + W + C) mod 2

and the 1-of-8 rule can be written as

if (C = 1) and
   (NW + N + NE + E + SE + S + SW + W)
     = 1 then 1 else 0

A few simple conventions can simplify
code like this. For example, if T(N) is the sum
of all states in neighborhood N and O(N) is the
sum of all outer states in N, then the parity rule
becomes

T(N) mod 2

and the 1-of-8 rule becomes

if (C = 1) and (O(N) = 1) then 1 else 0
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