Designing with L-Systems, Part 5: Termination

Most L-Systems produce longer and longer strings with each successive generation, and do this endlessly. This is intentional in the design of such L-Systems, where successive generations produce more complex and detailed patterns. Generation goes on endlessly because the rewriting rules contain variables [1]. Such L-Systems are called nonterminating.

It is possible to design nonterminating LSystems that "loop" and have only a fixed number of different generations. A simple example is

```
seed: X
rules: }X->
    Y}->
```

where the generations are:
X
Y
X
Y

Such L-Systems are contrived aberrations and are not interesting for design purposes.

It is also possible to design L-Systems in which generation leads to a string with no defined variables. In this case, all subsequent generations would be the same, and generation effective terminates. Such L-Systems are called terminating.

An example of a terminating L-System is

```
seed: X
rules: }X->Y
    Y ZaZ
```

where the generations are

```
X
YY
ZaZZaZ
```

In this case, different strings can be provided for \mathbf{Z} during interpretation to give different results.

Although terminating L-Systems are limited in the variety of patterns they can produce, they are nonetheless useful in design.

Consider, for example, this L-System:

```
seed: X
rules: }\quad\textrm{X}->\textrm{Y},1,2,3,
```

Generation quickly terminates with the string

$$
\mathrm{Y}, 1,2,3, Y
$$

If a rule for Y is added
$Y \rightarrow 4,3,2$
the result is

$$
4,3,2,1,2,3,4,3,2
$$

On the other hand, if

$$
Y \rightarrow 1,2,3,4,3,2
$$

the result is

$$
1,2,3,4,3,2,1,2,3,1,2,3,4,3,2
$$

Put in words, this L-System characterizes all strings that have two instances of a given string separated by $1,2,3$. This is, of course, obvious. But the idea can be used as a design tool.

For example, the next step might be to provide a rule for Y that contains a variable:

$$
Y \rightarrow 4,3,2, Y
$$

This results in a nonterminating L-System with endless generation:
X

Y, 1, 2, 3, Y
4, 3, 2, Y, 1, 2, 3, 4, 3, 2, Y
$4,3,2,4,3,2, Y, 1,2,3,4,3,2,4,3,2, Y$
$4,3,2,4,3,2,4,3,2, Y, 1,2,3,4,3,2,4$, $3,2,4,3,2, Y$

Reference

1. Designing with L-Systems, Part 4: Articulated L-Systems, 2004:
http:/ / cs.arizona.edu/ patterns/weaving/webdocs/gre_ls04.pdf

Ralph E. Griswold
Department of Computer Science The University of Arizona

Tucson, Arizona
© 2004 Ralph E. Griswold

