
1 July 12, 2005

L-System Design, Part 1: Introduction

Previous articles on L-Systems [1-10] described
how they work and showed a variety of ways they
could be used in design. This series of articles
addresses issues in designing original L-Systems.

Creating an L-System for a particular purpose
is neither easy nor intuitive, but, when successful,
the results can be more than worth the effort. And
as is the case with much such things, with practice
and experience, the process becomes easier.

When designing L-Systems, it is important to
keep in mind their basic properties and their inher-
ent problems.

The Fractal Nature of L-Systems

L-Systems fundamentally are fractal genera-
tors. Although it is possible to design L-Systems
that produce simple, easily understood patterns,
the L-System mechanism by its nature is fractal.

This fractal nature comes from three sources:

• parallel operation on symbols

• symbols defined in terms of themselves

• repeated application of the rules (iteration)

The ways symbols can be defined in terms of
themselves is of central importance. A simple ex-
ample is

seed: A

rules: A ➛ ABA

B ➛ BBA

Here both A and B are defined in terms of
themselves and each other. Repeated applications
of the rules produces increasingly long and intri-
cate combinations of the two symbols:

A

ABA

ABABBAABA

ABABBAABABBABBAABAABABBAABA

…
Although the rules are simple, the patterns

that develop are nonetheless complex and not easy
to characterize.

The Seed

The seed, with which generation begins is not
particularly important. In most of the examples
given in the series of articles on L-Systems, the seed
is a single symbol. The seed can be a string of
symbols, but an L-System with such a seed can
always be replaced by an L-System whose seed is
a single symbol.

Consider this example:

seed: ABCBA

rules: A ➛ BC

B ➛ AB

C ➛ CB

A new symbol can be added as the seed and a
new rule can be added replacing it by the original
seed:

seed: D

rules: D ➛ ABCBA

A ➛ BC

B ➛ AB

C ➛ CB

The only difference between these two L-
Systems is an additional initial generation in the
second. Note that D only appears once.

Alphabet

The alphabet of the symbols used in an L-
System really only matters as to the number of
symbols. Symbols are arbitrary. They may be cho-
sen for mnemonic value, but until the interpreta-
tion of a string generated by an L-System, they
have no meaning.

For example,

seed: A

rules: A ➛ ABA

B ➛ BBA

and

seed: 3

rules: 3 ➛ 3X3

X ➛ XX3

2 July 12, 2005

are equivalent.

Generation Length

An inherent property of L-Systems is increase
in length of successive generations. In fact, this
limited early work on L-Systems at a time when
computer memory was very limited.

It is possible to design L-Systems in which
generation length does not increase. An example is

seed: A

rules: A ➛ B

B ➛ A

which generates

A

B

A

B

…
Such L-Systems are both contrived and trivial.

When a rule specifies replacement by more
than one symbol, generation length increases. This
problem is addressed in a subsequent article.

Symbol Relationships

The way that symbols are defined in terms of
themselves and each other has many effects on L-
System generation.

If not all symbols appear in all rules, there
many be successive generations that have essen-
tially different characteristics.

A simple and trivial example is

seed: A

rules: A ➛ BB

B ➛ CC

C ➛ AA

for which the generations are

A

BB

CCCC

AAAAAAAA

BBBBBBBBBBBBBBBBBB

 …
A subsequent article will address the issue of

symbol interaction in more detail.

What is Possible

L-Systems are one of many kinds of formal
grammars [11]. Different kinds of grammars have
different “expressive power”. The issue of expres-
sive power is of both theoretical and practical
importance.

Expressive power, roughly speaking, is a
measure of what kinds of patterns a formal gram-
mar can produce. Expressive power is measured
more in terms of what patterns can be excluded
than what may appear.

For example, for almost all kinds of formal
grammars there are specific grammars than can
produce palindromes, but they inevitably produce
other patterns as well. That is non-palindromes
cannot be excluded by grammars of most kinds.
(They can be by L-Systems.)

What kinds of patterns L-Systems can pro-
duce will be the subject of a future article.

Interpretation

The power of interpretation of symbols in the
strings produced by L-Systems has been described
in other articles [1-7].

Although interpretation falls outside the scope
of L-Systems proper, it is a power design tool and
its possible use needs to be kept in mind when L-
Systems are designed.

An L-System intended to produce a profile
draft may not require any interpretation other than
the think of the symbols as blocks. On the other
hand, an L-System designed to draw a pattern may
require interpretation of symbols as navigation
and drawing actions [1].

But interpretation can be used to change L-
System strings in arbitrary ways, including reor-
dering them, deleting symbols, and so forth.

3 July 12, 2005

References

1. Designing with L-Systems, Part 2: A Side Trip to Graphics, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls02.pdf

2. Designing with L-Systems, Part 3: Back to Basics — T-Sequence Design, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls03.pdf

3. Designing with L-Systems, Part 4: Articulated L-Systems, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls04.pdf

4. Designing with L-Systems, Part 6: Generating T-Sequence Expressions, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls06.pdf

5. Designing with L-Systems, Part 7: T-Sequence Models, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls07.pdf

6. Designing with L-Systems, Part 9: Devious Interpretation, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls09.pdf

7. Designing with L-Systems, Part 10: Profile Drafts Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls10.pdf

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2004 Ralph E. Griswold

http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls02.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls03.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls04.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls06.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls07.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls09.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ls10.pdf

