## Operations on Patterns, Part 2: Geometrical Transformations

In the first article in this series [1], we introduced the basic notions related to operations on patterns. This article deals with geometric operations.

There are two kinds of geometrical operations that can be performed on patterns: rotations and flips.

## Rotations

A pattern can be rotated in increments of $90^{\circ}: 90^{\circ}, 180^{\circ}$, and $270^{\circ}$. Rotation by $360^{\circ}$ leaves the pattern unchanged. We will assume clockwise rotation as a convention.

We will indicate the rotations of a pattern $P$ by $90^{\circ}, 180^{\circ}$, and $270^{\circ}$ by $\oplus P, \oplus P$, and $\oplus P$, respectively.

Figure 1 shows the rotations of a square pattern and Figure 2 shows the rotations of an oblong pattern.


$\oplus P$

$\oplus P$

$\oplus P$

Figure 1. Rotations of a Square Pattern


P

$\oplus P$

$\oplus P$

$\oplus P$

Figure 2. Rotations of an Oblong Pattern

Note that:

$$
\begin{aligned}
& \eta(P)=\omega(\oplus P)=\omega(\oplus P) \\
& \omega(P)=\eta(\oplus P)=\eta(\oplus P) \\
& \eta(P)=\eta(\oplus P) \\
& \omega(P)=\omega(\oplus P) .
\end{aligned}
$$

## Flips

There are four flips:

- horizontal, around a vertical axis
- vertical, around a horizontal axis
- right, around the left diagonal (from the upper-left corner to the lower-right)
- left, around the right diagonal (from the upper-right corner to the lower-left)

We will indicate these flips of a pattern $P$ by $\leftrightarrow P, \downarrow P, \swarrow P$, and $\nwarrow P$, respectively.

Figure 3 shows these flips for a square pattern and Figure 4 shows them for an oblong pattern.


$\leftrightarrow P$


IP

$\nearrow P$

$\nwarrow P$

Figure 3. Flips of a Square Pattern


Figure 4. Flips of an Oblong Pattern

Note that:

$$
\begin{aligned}
& \eta(P)=\eta(\leftrightarrow P)=\eta(\$ P) \\
& \omega(P)=\omega(\leftrightarrow P)=\omega(\$ P) \\
& \eta(P)=\omega(\swarrow P)=\omega(\S P) \\
& \omega(P)=\eta(\swarrow P)=\eta(\nwarrow P)
\end{aligned}
$$

## Compound Operations

For rotations in increments of $90^{\circ}$, only one operation, $\oplus P$, is needed. Applying it twice results in rotation by $180^{\circ}$, and applying three times results in rotation by $270^{\circ}$ :

$$
\begin{aligned}
& \oplus \oplus P=\oplus P \\
& \oplus \oplus \oplus P=\oplus P
\end{aligned}
$$

There also are relationships between rotations and flips. For example,

$$
\oplus \Vdash_{K} \subset P=\leftrightarrow P
$$

In fact, all the geometrical operations can be obtained by using just $\oplus P$ and $\swarrow^{Z} P$ or by using just $\overparen{\swarrow} P, \leftrightarrow P$, and $\downarrow P$. For a discussion of these relationships, see Reference 2.

Although the relationships between the geometrical operations are interesting, for pattern construction, it's more convenient to have the whole set available.

## Summary

| $\oplus P$ | rotation by $90^{\circ}$ |
| :--- | :--- |
| $\oplus P$ | rotation by $180^{\circ}$ |
| $\oplus P$ | rotation by $270^{\circ}$ |
| $\leftrightarrow P$ | horizontal flip |
| $\downarrow P$ | vertical flip |
| $\nearrow P$ | right flip |
| $\nwarrow P$ | left flip |

