T-Sequences, Part 6: Modular Operations

Modular Reduction

Modular reduction was described in an earlier article as a method of bringing the values in a sequence within a specified range[1]. In terms of t-sequence operations,

$$
S \equiv m
$$

denotes modular reduction of S, shaft-modulo m. See the following figures:

$S \equiv 8$

$S \equiv 6$

$S \equiv 5$

$S \equiv 4$
 $S \equiv 3$
 $S=2$

Modular Expansion

Modular expansion, which is the converse of modular reduction, can be used to convert a t-sequence on m shafts to a t-sequence on n shafts, $n \geq m$, in which there is no wrap-around. The result is a sequence whose residues, shaft modulo m, produce the original sequence.

Here is an example:

A T-Sequence with Wrap-Around

Wrap-Around Removed by
Modular Expansion
The process of modular expansion is simple and relies on the fact that 1 and m are adjacent on the modular wheel. This is illustrated in the modular wheel for 8 shafts:

Starting with $i=1$, if term $t_{i}=m$ and $t_{i+1}=$ 1 , add m to t_{i+1} and all the remaining terms (shifting them upward by m). Similarly, if $t_{i}=$

1 and $t_{i-1}=m$, subtract m from t_{i-1} and all the remaining terms (shifting them downward by m). Note that adding or subtracting a multiple of m does not affect the residues.

When the process is done, add enough multiples of m to bring the smallest value in the range 1 to m. (The smallest value can be less than 1 but it cannot be greater than m, since t_{1} is not greater than m and is not changed by the process.)

The notation
$\not \equiv S$
denotes the modular expansion of S.

The relationship between modular reduction and modular expansion is shown by

$$
((\neq S) \equiv m)=S
$$

Of course, $\equiv \equiv S$ is not the only sequence whose residues shaft modulo m produces S.

Summary

$S \equiv m \quad$ modular reduction
\# 1 S

Reference

1. Ralph E. Griswold, "Drafting with Sequences", 2002:
http:// www.cs.arizona.edu/patterns/ weaving/webdocs/gre_seqd.pdf

Ralph E. Griswold
Department of Computer Science
The University of Arizona
Tucson, Arizona

