
Hadamard Matrices and Weaving

1. Introduction

Hadamard matrices are a class of square matrices first described by James Sylvester
(1814-1897) in 1867. He called them anallagmatic pavement. In 1893, Jacques Hadamard
(1865-1963) discussed them in relation to what is now called Hadamard’s theorem on
determinants, and his name stuck. Hadamard matrices have several interesting properties
and have found use in tessellation, signal processing, error detection and correction
codes, statistics, combinetics, combinational block designs, and now, weaving.

2. Definitions

A Hadamard matrix, Hn, is a square matrix of order n = 1, 2, or 4k1 where k is a positive
integer. The elements of H are either +1 or –1 and HnHn

T = nIn, where Hn
T is the

transpose of Hn, and In is the identity matrix of order n. A Hadamard matrix is said to be
normalized if all of the elements of the first row and first column are +1.

3. Properties

Hadamard matrices have several interesting properties:

• The determinant, |Hn| = nn/2, is maximal by Hadamard’s theorem on determinants.
• A normalized Hn has n(n-1)/2 elements of –1 and n(n+1) elements of +1.

• For normalized Hadamard matrices of order 2 or greater, every row (except the
first) or column (except the first) has n/2 elements of +1 and n/2 elements of –1.

• Any two rows or two columns are orthogonal.
• Every pair of rows or every pair of columns differs in exactly n/2 places.

A Hadamard matrix may be transformed into an equivalent Hadamard matrix by any of
the following operations:

• Interchanging any two rows or any two columns
• Multiplying any row or any column by –1

• Matrix transpose

Using these operations, it is possible to normalize any Hadamard matrix. The problem of
determining if two Hadamard matrices are equivalent is very difficult.

The number of distinct (i.e., non equivalent) Hadamard matrices for various orders is
given in the Table 1. [Wal]

                                                  
1 This is conjectured to be true for all k, and has been verified for n < 688. There are several methods for
the construction of Hadamard matrices [Wal], several of them for n of particular forms.



Order 1 2 4 8 12 16 20 24
Number of distinct
Hadamard matrices 1 1 1 1 1 5 3 60

Table 1. Number of Distinct Hadamard Matrices for Various Orders

4. Examples

In order to more easily visualize the Hadamard matrices, let us map the +1 elements as
white squares, and the –1 elements as black squares. Figure 1 show normalized
Hadamard matrices for the orders of n = 1, 2, 4, 8, 12,  and 16.

Figure 1. Hadamard matrices of order n = 1, 2, 4, 8, 12, and 16

5. Relevance to Weaving



If we consider a Hadamard matrix to be a tie-up, then many of the properties described in
section 3 such as the near balance of +1 and –1 elements, a bound number of difference
between rows, and orthogonality would lead one to believe that it would produce a good
weave. Indeed, the normalized H12 above is an 11-shaft twill tie-up. Using the operations
in section 3, it is relatively easy to create tie-ups. Using H4 in figure 2(a) to demonstrate,
multiply the first column by -1 giving the result in figure 2(b). Then multiply the first row
by –1 to give figure 2(c).  Then by interchanging rows 2 and 3, we end up with a warp
surface twill tie-up in figure 2(d)2.

   (a) (b)    (c)  (d)

Figure 2. Transformation of H4 into a tie-up

A more complex transformation of H16 is shown in figure 3 as a tie-up and possible
drawdown on the next page.

6. Conclusion

Even though Hadamard matrices are conceptually simple, they have some surprising
properties and uses. For weaving, Hadamard matrices provide an interesting design
foundation for tie-ups.

7. References

 [Hed] Hedayat, A., Wallis, W. D., Hadamard Matrices and their Applications, The
Annals of Statistics, Vol. 6, Number 6, pp 1184-1238, 1978.

[Wal] Wallis, W.D., Street, A. P., Wallis, J. S., Combinatorics: Room Squares, Sum-free
Sets, Hadamard Matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag,
New York, 1972.

                                                  
2 It is conjectured that this is the only circulant Hadamard matrix. Because of its relationship to Barker
sequences, it is known to be the only one for n < 12,100. [Hed]



Figure 3. H16 Tie-up and Drawdown
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