Modelling Metamorphism by Abstract Interpretation

Mila Dalla Predd, Roberto Giacobazkj Saumya Debray Kevin Coogan, and
Gregg Townserd

! Dipartimento di Informatica, Universita di Verona
{m | a. dal | apreda, roberto. gi acobazzi }Qunivr.it
2 Department of Computer Science, University of Arizona
{debr ay, kpcoogan, gnt }@cs. ari zona. edu

Abstract. Metamorphic malware apply semantics-preserving transitions to
their own code in order to foil detection systems based onasige matching.
In this paper we consider the problem of automatically extmaetamorphic sig-
natures from these malware. We introduce a semantics foneslifying code,
later calledphase semantic@nd prove its correctness by showing that it is an
abstract interpretation of the standard trace semantieseéPsemantics precisely
models the metamorphic code behavior by providing a setages of programs
which correspond to the possible evolutions of the metahiomode during ex-
ecution. We show that metamorphic signatures can be autmathaextracted by
abstract interpretation of the phase semantics, and tialremetamorphism can
be modelled as finite state automata abstraction of the fgeasantics.
Keywords:Abstract interpretation, malware detection, metamorioide, pro-
gram transformation, static analysis, security, semantic

1 Introduction

Challenges and insightetecting and neutralizing computer malware, such as worms
viruses, trojans, and spyware is a major challenge in moctamputer security, involv-
ing both sophisticated intrusion detection strategies ahnced code manipulation
tools and methods. Traditional misuse malware detectdss ¢@mown assignature-
based detectojsre typically syntactic in nature: they use pattern maighd compare
the byte sequence comprising the body of the malware agesitgtature databasi?2].
Malware writers have responded by using a variety of teaesdn order to avoid de-
tection: Encryption, oligomorphism with mutational degtyr patterns, and polymor-
phism with different encryption methods for generating adless sequence of decryp-
tion patterns are typical strategies for achieving malwiarersification. Metamorphism
emerged in the last decade as an effective alternativeegirao foil detectors. Meta-
morphic malware apply semantics-preserving transfonatto modify its own code
so that one instance of the malware bears very little ressmall to another instance,
in a kind of body-polymorphisni23], even though semantically, their functionality is
the same. Thus, a metamorphic malware is a malware equipjledaymetamorphic
enginethat takes the malware, or parts of it, as input and morplsat syntactically
different but semantically equivalent variant in order toid detection. The quantity
of metamorphic variants possible for a particular piece afware makes it impractical

to maintain a signature set that is large enough to cover orosl of these variants,
making standard signature-based detection ineffectiveEfsting malware detectors
therefore fall back on a variety of heuristic techniques,tbase may be prone to false
positives (where innocuous files are mistakenly identifisdralware) or false neg-
atives (where malware escape detection) at worst. The mefascthis vulnerability
to metamorphism lies upon the purely syntactic nature oftrersing and commer-
cial detectors. The key for identifying metamorphic malevhes, instead, in a deeper
understanding of their semantics. Still a major drawbackxa$ting semantics-based
methods (e.g., see [13,19]) relies uponahariori knowledge of the obfuscations used
to implement the metamorphic engine. Because of this, itways possible for any
expert malware writer to develop alternative metamorptratsgies, even by simple
modification of existing ones, able to foil any given detectscheme.

Contributions. We proposes a different approach to metamorphic malwaectien
based on the idea thextracting metamorphic signatures is approximating maénse-
mantics A metamorphic signaturis therefore any (possibly decidable) approximation
of the properties of code evolution. The semantics condersthe way code changes,
i.e., the effect of instructions that modify other instioos. We face the problem of
determining how code mutates, yet catching propertiesisfrttutation, without any
a priori knowledge about the way the metamorphic transftiona are implemented.
Traditional static analysis techniques are not adequatéhfe purpose, as they typ-
ically assume that programs do not change during execWiientherefore define a
more general semantics-based behavioral model, galfiade semanti¢c¢hat can cope
with changes to the program code at run time. The idea is titipareach possible ex-
ecution trace of a metamorphic program ipteaseseach collecting the computations
performed by a particular code variant. The sequence ofgsh@ce disassembled)
represents the sequence of possible code mutations, Wwhitegjuence of states within
a given phase represents the behavior of a particular catenti@Abstract interpreta-
tion is then used to extract the invariant properties of peag/hich are properties of
the generated program variants. Abstract domains regdrbeemproperties of the code
shape in phases. We use the domain of finite state automatg {6iSapproximating
phases and provide a static semantics of traces of FSA as putalbfe abstraction of
the phase semantics. We introduce the notiomegtilar metamorphisnas a further
approximation obtained by abstracting sequences of FSAargingle FSA. This ab-
straction provides an upper regular language-based ajppaitimn ofany metamorphic
behavior of a program. This is particularly suitable to agtrmetamorphic signatures
for engines implemented themselves as FSA of basic codsfaramations, which cor-
respond to the way most classical metamorphic genera®isiatemented [16, 20, 25].
Our approach is general and language independent, provdsiystematic method for
extracting approximate metamorphic signatures from anm@amerphic malware®, in
such a way that checking whether a program is a metamorphawaf P is decidable.

2 Background

Mathematical notation Given two setsS and7’, we denote withp(.S) the powerset of
S, with S ~. T the set-difference betweehirandT’, with S C T strict inclusion and

with S C T inclusion. LetS,| be setS augmented with thendefined valuel., i.e.,
S1 = SU{Ll}. (P, <) denotes a pose? with ordering relation<, while a complete
lattice P, with ordering<, least upper bound (luby, greatest lower bound (glb),
greatest element (tofd), and least element (bottont)is denoted by P, <, vV, A, T, L).

C denotes pointwise ordering between functionsfIf S — T andg : T — @
thengo f : S — @ denotes the composition gfandg, i.e.,g o f = A\x.g(f(x)).
f: P — Q on posets is (Scott)-continuous whérpreserves lub of countable chains
in P. f : C — D on complete lattices is additive (co-additive) when for anyC
C,f(veY) =Vpf(Y) (f(AcY) = Apf(Y)). Let A* be the set of finite sequences,
also called strings, of elements dfwith e the empty string, and withw| the length
of stringw € A*. We denote the concatenationwfr € A* asw :: v. We say that a
string sp - . . s, Is a subsequence of a string. . . ¢, denotedsg . .. s, =< toty ... ty, if

A el,n]:Viel0,h]: s;=tiy.

Finite State Automata (FSAAn FSA M is a tuple(Q, ¢, S, F, A), whereQ is the set
of statesy : @ x A — p(Q) is the transition relation§ C @ is the set of initial states,
F C Q is the set of final states andl is the finite alphabet of symbols. Let e A*,
functiond* : Q@ x A* — p(Q) denotes the extension 6fto strings:0*(q,¢) = {q}
andd* (¢, ws) = Uy es-(qw) (4, 8)- Astringw € A* is accepted by if there exists
qo € S 0*(qo,w) N F # (. The language? (M) accepted by an FSA{ is the set of
all strings accepted by/. Given an FSAV/ and a partitionr over its states, thguotient
automatonM/m = (Q’,d',S’, F', A) is defined as followsQ’ = {[¢]- | ¢ € Q},

"1 Q' x A — p(Q) is the functiond’([q]x, s) = U,eq. {[d]x | ¢ € d(p,s)}
S ={lglr 1 q € St andF’' = {[¢lr | q € F}. AnFSAM = (Q,4,S,F,A) can
be equivalently specified as a graph = (Q, E, S, F') with a nodeq € @ for each
automata state and a labeled edges, ') € E ifand only if¢' € 6(q,).

Abstract Interpretation.Abstract interpretation is based on the idea that the behavi
of a program at different levels of abstraction is an appr@tion of its (concrete) se-
mantics [8, 9]. The concrete program semantics is computetth® concrete domain
(C, <¢), while approximation is encoded by an abstract donfain< 4). In abstract
interpretation abstraction is specified as a Galois comme¢GC) (C, a, v, A) , i.e.,

an adjunction [8, 9], namely as an abstraction mapC — A and a concretization
mapy : A — C such thatVa € A,c € C : alc) <4 a & ¢ <¢ v(a). Let 4;
and A, be abstract domains of the concrete dom@inA; is more precise thanl,
when~,(A43) € 71 (A;). Givena GC(C, a, v, A) and a concrete predicate transformer
(semanticsyF : C — C, we say thatF't : A — A is asoundapproximation ofF" in
Aif Ve € C, a(F(c)) <a F¥(a(c)). Whena o F = F¥ o , the abstract functiod™

is acompleteabstraction off’ in A. While any abstract domain induces the canonical
best correct approximation o F' o v of I’ : C — (' in A, not all abstract domains
induce a complete abstraction [17]. The least fixpoint (fpyn operato' on a poset
(P, <), when it exists, is denoted byp=<F, or by IfpF when< is clear. Any con-
tinuous operatof” : C — C on a complete lattice’ = (C, <¢, Vo, Ao, To, Le)
admits a Ifp: lfp<CF V,en Fi(Le), where for anyi € Nandz € C: FO(z) = x;
Fitl(x) = F(F'(x)). If FE A — Ais a correct approximation of' : ¢ — C on

Expressions:

Syntactic categories:
nacN (naturals) e:=n| MEMe] | MEMe1] op MEMe2] |
K MEMe1] op n
ecE (expressions) S
) . Instructions:
Iel (instructions)

] It=call e|ret |pop e|push e|nop|
PEMANLE (rogamsy | MEMe = [imput = MEM]
o prog if e;goto ex|goto e|halt

Fig. 1. Syntax of an abstract assembly language

(A, <4), thena(lfpSCF) <4 lfp=4F*. Convergence can be ensured througtien-
ing iterations along increasing chains [8]. A widening operato: P x P — P ap-
proximates the lub, i.e¥X,Y € P : X <p (XVY)andY <p (XVY), anditis
such that the increasing chaifi?, whereW? = | and Wl = WivF(W?) is not
strictly increasing for<p. The limit of the sequenc® provides an upper fixpoint
approximation off’ on P, i.e.,lfpSPF <p lim;_ oo W™

3 Modelling metamorphism

Abstract assembly languagé&xecutable programs make no fundamental distinction
between code and data. This makes it possible to modify ag@nmogy operating on a
memory location as though it contains data, e.g., by addirsgibtracting some value
from it, and then interpreting the result as code and exegliti To model this aspect,
we define a program to be a pdt = (ma), wherem specifies the contents of a
memory(both code and data) amddenotes thentry pointof P, namely the address of
the firstinstruction of”. Since a memory location contains a natural number thatean b
interpreted either as data or as instructia® use an injective functioencode : I —
N that, given an instructioi € I, returns its binaryencode(/) € N, and a function
decode : N — I, that given a natural number returnsI if encode(I) = n
otherwisel . Fig. 1 shows the syntax of our abstract assembly langudges@mantics
of expressions is specified by a functén E x M — N:

Enm=n

E[VEMe][m= m(E[e]m)

E[MEMe1] op MEMez]]m= E[MEMe1][m op E[MEMe:]]m

E[MEMey] op n]jm= E[MEMe;]Jm op n
and the semantics of instructions by a functionll x X' — 3

ZI[cal | e]{a,m0,3) = (E[eJmm (a + 1) :: 0,7)

ZIretJ{a,mn::0,3) = (n,m8,7)

Z[MEMe,] == e2](a,m0,T) = (a + 1, mME[e1]m« Ee2]M, 6,7)

Z[i nput = MEMe]]J{a,m@,n :: J) = (a + 1,n{E[e]m<+ n],0,7)

3 For simplicity, we assume that each instruction occupigagieslocation in memory, because
the issues raised by variable-length instructions areogrhal to the topic of this paper, and
do not affect any of our results.

mo,3) = { (E[e2lmm 8, 3) if E[e1[m# 0
I (e+1,m6,T) otherwise
pop el(a,mn ::0,3) = (a+ 1,mMEe]m « nl,0,7)

1]

[

[goto e(a.m8,3) = (E[eJmme,3)
[6,3)

[

if ex goto ez](a

S

push eJ{a,m0,3) = (a+ 1,mE[e}m :: 6,7)
hal t J(a,m#,3) = (L,m86,7)

Z[nop]{a,m0,3) = (a+1,mb,7)
A programstateis a tuple(a, m 6,) wheremis the memory mapy is the address of the
next instruction to be executefl,e N* is the stack and € N* is the input string. Let
Y =N, x M x N* x N* be the set of possible program states @ndp(X) — o(X)
be thetransition relationbetween states, which is given by the point-wise extension
of T((a,m#,73)) = Z[decode(ma))]{a,md,T). As usual [11], thenaximal finite
trace semantic8§[P] € p(X*) of a programP = (ma) is given by the least fixpoint
of Fr[P] : p(X*) — p(X*) wherenit[P] = {(a,me,J) | Jis an input strearh
andFr[P](X) = Init[P] U {oooj | 0; € T(0:),00; € X}.

7
ya
T
z

Phase Semanticdntuitively, a phaseis a maximal sequence of states in an execution
trace that does not overwrite any memory location storingnatruction that is going

to be executed later in the same trace. Given an executioa éra= o ...o0,, We

can identifyphase boundarieby considering the sets of memory locations modified
by each stater; = (a;,m, 0;,7;) with ¢ € [0, n]: every time that a location;, with

1 < j < n, of a future instruction is modified by the execution of statethen the
successive state;; is a phase boundary, since it stores a modified version of the
code We consider the setod(o;) C N of memory locations that are modified by the
instruction executed in statg:

{ {E[e1]m} if decode(m(a;)) = MEMe1] := e2
mod(o;) =

{&E[e]m} if decode(m(a;)) € {i nput = MEMe],pop e}
0 otherwise

This allows us to formally define the phase boundaries anghlases of a trace.

Definition 1 The set of phase boundariesot= oy ...0, € X*, whereVi € [0,n] :
o; = (a;,m, 0;,3;),is: bound(o) = {oo}U{o; | mod(c;—1)N{a;|i < j < n} # 0}
The set of phases of a traeec Y* is:

phases(o) = { Oi...0j

0=00...04...050541...0n,
0i,0j4+1 € bound(o),Vl € [i +1,7] : o1 & bound(o)

Observe that, by definition, the memory map of the first sthge ghase always spec-
ifies the code snapshot that is executed in the same phasee Hbka sequence of the
initial states of the phases of a trace highlights the difiécode snapshots encountered
during code execution. In general, different executiona pfogram give rise to dif-
ferent sequences of code snapshots. A complete charatitenipf all code snapshots
of a self-modifying program can be obtained by organizinggas in gorogram evo-
lution graph Here, each vertex is a code snapshotorresponding to a phase, and an
edgeP; — P; indicates that in some execution trace of the program, aeplvik code
snapshof’; can be followed by a phase with code snapshot

Definition 2 The program evolution graph of a prograRy is G[] = (V, E):

V={P,=(m,qa) |0 =09.0.0n € S[P] : 0; = (a;,m,0;,7;) € bound (o)}

E— { (PZ,PJ) P, = (m,ai),Pj = (n}-,aj),a = 00..04..0j-105..0n € S[[PQ]] : }

oi = (a;,m,0;,3;),0; = (a;,m;,0;,3;),0i...0j_1 € phases(c)

A path inG[P,] is therefore a sequence of prografs . . P, such that for every
[0,n] we have that P;, P,+1) € E. Given a progrant, the set of all possible (finite)
paths of the program evolution gragh[F] is the phase semanticsf P, denoted
Sph[[Po]]: Sph[[Po]] = {PO ...P, | Py...P, isa path II'G[[PQ]]}

Py 1: NEMSf] := 100 8: MEMMEMf]] := MEM4]
2: i nput = MEMa| 9: MEMMEMf] + 1] := MEM5]
3:if (MEMa|nod 2)goto 7 10: MEMMEMf] + 2] := encode(got 0 6)
4: MEMb] := MEMd] 11: MEM4] := encode(nop)
5: MEMa| := MEMa]/2 12: MEM5] := encode(got o MEMf])
6: goto 8 13: MEMf] := MNEMf] + 3
7: MEMa] := (MEMa] + 1) /2 14: goto 2

oo 01 02 035 04 05 [’ 3 0w 015 016 017

Py = (ag, mo)—>Ps = (a5, ms)—=Ps = (ag, meg)—>P7 = (a7, m7)—=Ps = (as, ms) Py = (ag, my)

Fig. 2. A metamorphic progran®, and the phases of one of its traces.

Consider for instance the metamorphic progrggrof Fig. 2. The metamorphic engine
of Py, which is stored at memory locations fra$to 13, writes anop at memory lo-
cation 4 and copies the original content of this locationh® free location identified
by MEM f]; then it adds somgot o instructions to preserve the original semantics. We
consider the execution traee= ogo; ... 017 of programP, corresponding to the input
sequencd = 7 :: 6, in particularo = (1, my,€,7 :: 6)(2,m = my[f < 100],¢€,7 ::
6)(3,m = mla < 7),6,6)(7,m = m,e,6)(8,m = mya + 4],¢6)(9,m =
m[100 < encode(MEMY] := MEMa|)], €, 6) ... (17, m7 = mgla < 3], ¢, ¢€). Fig. 2
shows the considered execution tracevhere: the bold arrows denote the modifi-
cations of instructions that will be later executed, for rexde the bold arrow from
o4 = {aq, My, 04,734) t0 015 = (a15, M5, 015, T15) Means that locatioa, 5 is overwrit-
ten by the execution of instructiatecode(my(a4)) at stateoy, i.e.,a15 € mod(cy);
and the black dots identify the states that are phase boiesdar

Fixpoint phase semanticd/Ve introduce the notion ahutating transitioni.e., a tran-
sition between two states that leads to a state which is agfmsdary. We say that a
pair of statego;, o) is @ mutating transition afy, denotedo;, ;) € MI(P), if there
exists a trac& = oy ...0;0;...0, € S[Fy] such thatr; € bound(c). This allows

us to define the code transform®f” : o(P) — (P) that associates with each set
of programs the set of their possible metamorphic variaitss 77" (P,;) means that
during execution programf; can be transformed into prograf).

Definition 3 77" : o(P) — ©(P) is given by the point-wise extension of:

TP (Py) = { A

Py = (my,a1),0 =0¢...01-101 € S[P], 01 = (a;,m, 0;,73;), }
(0’1_1,01) S MT(P()),VZ S [O,Z - 1[2 (Ui70i+1) & MT(PQ)

TP can be extended to trac&r.[P] : p(P*) — p(P*) as:Frm[Po](Z) = Py U
{zP,P; | P; € TPM(P,),2P; € Z}.

Theorem 1 Ifp< Frm[Po] = ST Po].

A program@ is a metamorphic variant of a prografy, denoted?, ~ p;, @, if Q is an
element of at least one sequenc&i [F].

Correctness and completeness of phase semantesprove the correctness of phase
semantics by showing that it is a sound approximation ofetisEmantics, namely by
providing a pair of adjoint mapspy, : p(X*) = p(P*) andvypy, : (P*) — p(X"),
for which the fixpoint computation of-». [Py approximates the fixpoint computation
of Fr[Po]. Giveno = (ag,my, 00, Jo) ...0i—10; ..., We definexp, as:

app(0) = (My,ap)apy(o;...0p) Stoo; € bound(o),Vl € [0,i— 1] : 07 & bound(o)

Abstractionap, observes only the states of a trace that are phase boundadeis
can be lifted point-wise tep(X*) giving rise to the GG p(X*), apn, ven, p(P*)). The
following result shows the correctness of the phase sepgnti

Theorem 2 VX ¢ p(Z*) : Oéph(XU]:T[[Po]](X)) - Oéph(X)U]:TPh [[P()]](Ozph(X)).

The converse may not holdipy, (X UF7r[Po] (X)) C apn(X)UFren[Po](apn(X)).
In fact, givenX € p(X*), the concrete functiodFr[P,] makes only one transition
in 7 and this may not be a mutating transition, while the absfiattion F7r.[Fy]
jumpsdirectly to the next mutating transition. Even if the fixpp@f F7-r.[Py] is not
step-wise complete, it is complete at the fixpoint, as showthe following theorem.

Theorem 3 apy, (ifpS Fr[Po]) = lfpS Fren[Po].

4 Abstracting metamorphism

Our model of metamorphic code behaviour is based on a venryldeal representa-
tion of programs as memory maps that simply give the contefintsemory locations
together with the address of the instruction to be executet! MVhile such a represen-
tation is necessary to precisely capture the effects of setfenodification, it is not a
convenient representation if we want to statically anatymedifferent code snapshots
encountered during a program’s execution. Our idea is t@gdem abstract interpre-
tation of phase semantics, namely to approximate the catipotof phase semantics

on an abstract domain that captures properties of the évolat the code, rather than
of the evolution of program states, as usual in abstractpré¢ation. We have to: (1)
Define an abstract domai, C 4) of code propertiesuch that(p(P*), aa, va, A);
(2) Define the abstract transitioh* : p(A) — p(A) and Fra[P] : A — A
such thatlfp=* Fra[Py] = SA[Po]; (3) Prove thaS4[P,] is a correct approxima-
tion of phase semantic&”™ [Fy], i.e., aa(ifpSFrr[Po]) Ta SA[Po]. This proves
that S4[Py] is such that program@ is a metamorphic variant of prograrf, with
respect tod, denotedP) ~ 4 Q, if SA[Py] approximates) in the abstract domain:
Py~aQ < aa(Q)Ca SAP]. In this senseS4[Py] is anabstract metamor-
phic signatureor Py. Abstract domains for code properties need to approximate-p
erties of sequences of instructions. This can be achievedtally by grammar-based,
constraint-based and finite state automata abstractioniselfollowing we propose to
abstract programs by a FSA describing the sequence of fhwpsdistract) instructions
that may be disassembled from the given memory.

Phases as FSAThe most commonly used program representation istimrol flow
graph In this representation, the vertices contain the insioastto be executed, and
the edges represent possible control flow. For our purp@ssgonvenient to consider
a dual representation where vertices correspond to profgreations and abstract in-
structions label edges. Létl» denote the FSA-representation of a given progfam
and let.Z(Mp) be the language it recognizes. The idea is that for each seque
Z(Mp) the order of the instructions in the sequence correspontigetexecution or-
der of the corresponding concrete instructions in at leastron of the control flow
graph of P. Instructions are abstracted in order to provide a simpliighabet. In
the rest of the paper, for the sake of simplicity, we consfdection. : I — T de-
fined in Fig. 3. Letp : I x N — p(N) denote any sound control flow analysis that

& (Py) MEM[b]:= MEM[a]:=

MEM MEMa)/2,
O ML D goro
MEMIf]:= input => MEMMEM[f]]:=
@ 100 @ MEMI[a] MEM[a] mod 2 MEM[4]

MEM[MEM(f]+1]:=
MEM[MEMI[f}+2]:= MEM[5]

encode(goto 6)

/
goto
\ MEMI: @

MEM(5]:= MEM([4]:=

MEMIf] +3 encode(goto MEMIf]) encode(nop)
—————— @~

W@~

Edges(P = (ma),Qp, p)

Ep =10
call ifI=call e while Qp # 0
() =i= el if I=if ejgoto e selecth € Qp andQp = Qp ~ {b}
=47 goto ifI=goto e I = decode(mb))
1 otherwise for eachc € p(1,b) N Qp
Ep =EpU{(b,u(I),c)}
returnEp

Fig. 3. FSA &(Fy) corresponding to progratf, of Fig. 2, instruction abstraction: I — I and
the algorithm that computesp

determines the possible successors of a given instructiang&ven location, namely
p(I,b) associates with instructiohstored at memory locatiolthe set of locations of
its possible successors. Lghbe the set of FSA over the alphalﬁeﬂf abstract instruc-
tions where every state is considered to be final. Each FSAisrspecified as a graph
M = (Q,E,S). We define functiont : P — § that associates with each program
P = (ma) its corresponding FSA-representation as follow&P) = (Qp, Ep, {a})
whereQp = {b| decode(m)) € I} is the set of locations that store an instruction
of P, and the set of edgdsp C Qp x I x Qp is computed by the algorithiBdgesin
Fig. 3. This algorithm, give® = (m, a), starts by initializingE'r» to the empty set and
then for every memory locatidithat stores an instructiahit adds an edge labeled with
«(I), whose source is the locatiérand whose destinations are the locationg(if, b).

As an example, at the top of Fig. 3 we show the autométdh) corresponding to pro-
gramP, of Fig. 2. We say that = ag[lo] . .. [Ion_l]an[ln]anﬂ is apathof automaton
M = (Q,E,S), denotedr € II(M), if ag € S andVi € [0,n[: (a;, I;,ai41) € E.
Observe that even if the aIphatfe's unbounded (due to the unlimited number of pos-
sible expressions), the FSA-representation of every progrses only a finite subset of
alphabetl. By point-wise extension of functioh we obtain the GGp(P), &, %, p(3)).
Note that abstractiondefined above makes the FSA-representation of programs inde
pendent (up to renaming) from program position.

Theorem 4 If P, and P; differ only in their memory position thef(P;) and é&(P,)
are equivalent up to address renaming.

Abstract phase semantics as traces of F&&t az : P* — §* be the extension of
& : P — §to sequencesiz(e) = eandag (PP ... P,) = a(Po)ag(Py ... Py). ag
can be lifted point-wise tg(P*) and it gives rise to the GCp(P*), oz, vz, p(F*)).
In order to compute a correct approximation of the phase sgasaon (p(F*),),
we need to define an abstract transition relatioh : o(5) — p(§) on FSA that
correctly approximateg ©” : o(P) — p(P). One possibility is to defing as the
best correct approximation 6t on (g), namely7s = & o T o 4, and function
]:TS [[PQ]] : p(%*) — p(g*) as fO”OWS:]:TK [[PQ]](K) = d(Po) @] {kMZMJ | kM; €
K,M; € TS(M;)}. FromT?3 correctness we ha® [Py] = IfpFs [Po] correctness.

Theorem 5 ag(lfpFren[Po]) C lfpFrs[Po] = SS[P].

SS[P,] approximates phase semantics by abstracting programsRBiéh while the
transitions, i.e., the effect of the metamorphic enginkgodirectly from 77" and are
not approximated. For this reas8r [P] is not computable in general. In the follow-
ing we introduce a static computable approximation of thegition relation on FSA
that allows us to obtain a static approximatii{Py] of the phase semantics &% on
(p(3*), C). S*[Py] may play the role of abstract metamorphic signatur&pfTo this
end, we introduce the notion 6imits of a path that approximates the notion of bounds
of a trace, and the notion ¢fansition edgehat approximates the notion of mutating
transition. Moreover, we assume to have access to the fiolipsound program analy-
ses forPy:

— a stack analysiStackVal : N — p(N) that approximates the set of possible values
on the top of the stack when control reaches a given locagian [1, 2]);

—a memory analysidocVal : N x N — o(N) that approximates the set of possible
values that can be stored in a memory location when the daetiohes a given loca-
tion (e.g. [1,2]).

These analyses allow us to defii@al : N x E — o(N), that approximates the evalu-
ation of an expression in a given point:

EVal(b,n) = {n}

EVal(b,MEMe]) = {LocVal(b,1) | I € EVal(b,e)}

EVal(b,MEMe;] op MEMes]) = {n1 op n2|i € {1,2}:n; € EVal(b, MEMe;))}
EVal(MEMe] op n) = {n1 op n|ny € EVal(b,MEMe])}

and a sound control flow analysis T x N — o(N):

p(call e, b) =p(goto e)= EVal(b,e)

p(ret b) = StackVal(b)

p(if e goto ez, b) ={b+1} U EVal(b,ez)

pthal t ;b)) =0

p(I,b) = {b+ 1} in all other cases

Moreover, we definevrite : I x N — p(N) approximating the set of locations that may
be modified by the execution of an abstract instruction méeadrat a given location:

) EVal(b,ey) if I = NEMey] := eo
write(1,b) = { EVal(b,e) if I € {i nput = MEMe],pop e}
0 otherwise

We define thdimits of a pathr as the nodes that are reached by an edge labeled by an
abstract instruction that may modify the label of a futurgeethw, namely an abstract
instruction that occurs later in the same path. Given a pathag [Io]) [In 1]an we
have:limit(r) = {ao} U {a; | write(l;_1,a;_1) N {aj i <j<n}#0}.

Definition 4 A pair of program locationsb, c) is a transition edge oM = (Q, E, S),
denotedb, ¢) € TE(M), if there exists: € S: 7 = a[l,] ... [I,_1]b[Iy)c € II(M) and
¢ € limit(m).

In the FSA of Fig. 3 the transition edges are the dashed ones $he instructions
labeling these edges overwrite a location that is reachialilee future. Observe that
also the instructions labeling the edges fr&t 9, from9 to 10, and from10 to 11 write
instructions in memory, but the locations that store thastructions are not reachable
when considering the control flow @,.

In order to statically compute the set of possible FSA evoiubf a given automaton
M = (Q, E, S) we need to statically execute the abstract instructiortsttlag modify
an FSA. AlgorithmEXE (M, I, b) in Fig. 4 returns the sdfze of all possible FSA that
can be obtained by executing instructibrstored at locatior of automaton). The
algorithm starts by initializingZze to the FSAM’ that has the same states and edges
of M and whose possible initial stat§$are the nodes reachable through instrucfion
stored ab in M. This ensures correctness when the execution of instruftitoes not
correspond to a real code mutation. Then Writes in memory we consider the s&t
of locations that it can modify and the sgtof possible instructions that it can write,
and we add td@ze the set of all possible automata that can be obtained byngrén
instruction ofY” in a memory location iX, i.e., NEXT (X, Y, M, b).

10

EXE(M,1,b) I| M = (Q,E,S)isaFSA
Eze ={M' = (Q,E,S") | S'={d| (b,],d) € E}}

if I = VEMey] := ez NEXT(X,Y,M,b)
thenX = write(I,b) Nezt =0
Y = {n|n € EVal(b,e2),decode(n) e I} while X # ()
Eze = Eze UNEXT(X,Y, M,b) selecta; from X and X = X'~ {a;}
iff:input :>|VE|\/[6] E:E\{(ajvljvc)|(ajjlv)AGAE‘}
thenX = write(1,b) Nexzt = Neaxt U, oy { M = (Q, E,5) |
Y = {n|nisaninput, decode(n) € I} Q QU{a;} U p(decode(n),])
Eze = Eze UNEXT(X,Y, M,b) E = EU{(aj;,.(decode(n)),d) |
if [=pop e A d € p(decode(n), a;)}
thenX = write(I,b) S={d|(b,],d) € E}}
Y = {n|n € StackVal(b),decode(n) € I} return Next
Eze = Eze UNEXT(X,Y, M,b)
return Eze

Fig. 4. Algorithm for statically executing instructioh

Let Suce(M) denote the possible evolutions of automatdnnamely the automata
that can be obtained by the execution of the abstract ingrulabeling the first transi-
tion edge of a path aof/:

ao[lo] ... [L-1)a[L)arsr € (M), (a7, ar41) € TE(M), }
)

— / r
Suce(M) = { M Vi € [0,1[: (ai,ait1) € TE(M), M" € EXE(M, I, a;

We can now define the static transitidi : p(F) — o(F). The idea is that the possible
static successors of an automafdhare all the automata ifiucc(M) together with all
the automata/’ that are different from\/ and that can be reached frohd through
a sequence of successive automata that differ fidnonly in the entry point. This
ensures the correctness®f, i.e., M; € TS(My) = M, € T#(M,), even if between
M, and M, there are transition edges that do not correspond to anytimyiteansition.

Definition 5 LetM = (Q, E, S). T* : p(F) — o(3) is given by the point-wise exten-
sion of:

MDM; ... MM’ : My € Succ(M),Yi € [1,kl[:
THM) = Succ(M)US M'| My € Suce(M;), M’ = (Q', E' S’) € Suce(My,),
(E#EVQ#Q)Vje[lk: M= (Q E,S;)
This allows us to define functiofr: [P] : o(F*) — e(F*) that statically approxi-
mates the iterative computation of phase semantics on #teaabdomain p(F*), C)
as follows: Fr+[Po](K) = &(Py) U {kM;M; | (M;, M;) € T* kM; € K}. The
following result shows the correctnessSH Po] = Ifp Fre [Po].

Theorem 6 agz(IifpFre[Po]) C UfpFri[Po]-

In Fig. 5 we report a possible sequence of FSA that can be gitkduring the execu-
tion of programP, of Fig. 2. In this case, thanks to the simplicity of the examjilis
possible to use the transition relation over FSA defined@ By

11

MEM(] = 100 MEM] = 100

input 54 MEM[a]
¥

MEMa] mod 2

-
joto

g
»

Mo M1
MEM[D] : = MEMa]
¥
©
MEM(a] := MEMa)2
¥
golo
M2 M3 Y
©
Mo M1 M2 M3 M4 P
entry-point=1 entry-point=12 entry-point=13 entry-point=12
TE: (11,12) TE: (12,13) TE: (11,12) TE: (12,13)

M4

Fig.5. Some metamorphic variants of prografy of Fig. 2, where the metamorphic engine,
namely the instructions stored at locations freno 14, is briefly represented by the box marked
ME. In the graphic representation of automata we omit to sti@wnodes that are not reachable.

5 Widening phases for regular metamorphism

Regular metamorphisrmodels the metamorphic behaviour as a regular language of
abstract instructions. This can be achieved by approximgatequences of FSA into a
single FSA, denote®V[P,]. W[P,] represents all possible (regular) program evolu-
tions of P, i.e., it recognizes all the sequences of instructionsdbatspond to a run

of at least one metamorphic variant@f. This abstraction of course is able to precisely
model metamorphic engines implemented as FSA of basic egdaacement as well as

it may provide a regular language-based approximationtigrraetamorphic engine,

by extracting theegularinvariant of their behaviour.

It is known that FSA can be ordered according to the languhgg tecognize:
M, Cz My if Z(M,) C Z(M,). Observe that; is reflexive and transitive but not
antisymmetric and it is therefore a pre-order. Moreoverpatting to this ordering, an
unique least upper bound of two automata and M, does not always exist, since
there is an infinite number of automata that recognize thgdage? (M,) U £ (Ms).
Given two automatd/; = (Q1, 1,51, F1, A1) and My = (Q2, 02,52, Fa, As), we
approximate their least upper bound as follows:

MU M, = (Q1UQ2,8,51USy, Fy UFy, A U Ap)

12

whered : (Q1 U Q2) x (A1 U Ay) — p(Q1 U Q,) is defined as(q, s) = d1(q, s) U
02(q, s). FSA areu-closed for finite sets, and the following result shows thaipprox-
imates any upper bound with respect to the ordefigg

Lemma 1 Given two FSAV/; and M, we have Z (M;) U £ (Ms) C L (M1 U M,).

We can now define2, [FRy] : § — § as follows: 72, [Po] (M) = &(Py) U M U
(W{M' | M' € T*(M)}). Observe that the set of possible successors of a given au-
tomatoni/, i.e., 7*(M), is finite since we have a (finite family of) successor for gver
transition edge of\/ and M has a finite set of edges. Since FSA arelosed for fi-

nite sets, thewF2, [Py] is well defined. Letor(§*) denote the domain of finite sets

of strings of FSA and let us define function : pr(F*) — § asas(My ... M) =
W{M; | 0<i<k}andag(K) = U{as(My...My) | My... My € K}, with K €
pr(F*). Functionag is additive and it defines a GGor (F*), as,vs,). The fol-
lowing result shows that, when considering finite sets otiseges of FSAFZ, [o]
correctly approximate&: [P] ong.

Theorem 7 Forany K € o (§*) we havevs(Fr: [Ro](K)) Cz F2; [Po](as(K)).

The domain(§, Cz) has infinite ascending chains, which means that, in gertheal,
fixpoint computation ofF2, [P,] on § may not converge. A typical solution for this
situation is the use of a widening operator which forces eogence towards an upper
approximation of all intermediate computations along thedint iteration, i.e., an ele-
ment ing which upper approximates the iterates](jﬁ11 [Po] - We refer to the widening
operation over FSA described by D’Silva [14]. Here the widgroperator between two
FSAM;, = (Q1, E1, S1) andMsy = (Q2, Eo, S2) over afinite alphabet is formalized

in terms of an equivalence relatidh C); x Q- between statesz, also calledviden-
ing seedlis used to define another equivalence relatigic Q2 x Q2 over the states of
M, such that=g= R o R~'. The widening between/; andMs is then given by the
quotient of M, with respect to the partition induced byg: M1V My = My/ =g . By
changing the widening seed we obtain different wideningafoes. It has been proved
that convergence is guaranteed when the widening seedislgi®nR,, C Q1 X Q2
such that(qi1, ¢2) € R, if ¢1 andgs recognize the same language of strings of length
at mostn [14]. When considering the widening se&¢ we have that two statesand

¢ of My are=pg, -equivalent if they recognize the same language of lengthastn
that is recognized by a stateof My, i.e., if 3r € Q1 : (r,q) € R, and(r,q¢’) € R,.

V., denotes the widening operator that uggsas widening seedz,, is well defined if

I is finite. This can be achieved by considering expressiorisrass and by applying
some of the standard methods for approximating them. The strasghtforward one is
the depthk string abstraction [24], while more refined expressionralcibns can be
designed by considering graph-based or grammar-basedatestractions [3, 15]. For
simplicity we consider here the depthterm abstraction where expressions are repre-
sented as trees with leafs that are natural numbers derithngy a memory location
or a constant, and internal nodes are the operators cotistyespressions, namely the
unary operatoMEMor the binary operatorsp. We annotate each node with its depth,
namely with the length of the path from the root to the nodee @apthk abstraction,
given a tree representation of an expression, consideystomhodes with depth less or

13

equal tok and “cuts” the remaining nodes by approximating them withror example,
the depth-3 abstraction of expressidBM(MEMa] op MEMb op MEMc]]) op d]

is VEM(MEMT] op MEMT]) op d]. Givenk € N, lets;, : I — I, be the instruc-
tion abstraction that applies the depttabstraction to the expressions occurring in an
abstract instruction, and let;, : § — $x be the function that abstracts the edge la-
bels of a FSA in§ according ta. It is possible to show thdf, ax, Vi, §%) is a GC,
wherey, (M*) = W{M' | ax(M') £ M*}. This allows us to approximate the least
fixpoint of 722, [Po] on (3x, E) with the limit W[F,] of the following widening se-
quenceWy = ax(a(Fp)) andWipy = Wi Vo ar(FZ [Po] (v (W:))). Let us refer
to W[P] as thewidened fixpoinbf 72, [F] and toW, W1, . .. as thewidening se-
quenceof }'Eﬁu [P]. From the correctness of,, and by Theorem 7, it follows that the
widening sequencl/y 1V . .. converges to an upper-approximation of the least fixpoint
of Fr:[Fo], namely any automata modelling a possible static variaii,aé approx-
imated byW[Py] i.e.,... M;... € IfpSFr[P] = M; Ty W[P]. Therefore
Z(W[P]) contains all the possible sequences of abstract instngtimt can be exe-
cuted by a metamorphic variant 8. As a consequence, a progréhis a regular (ab-
stract) metamorphic variant &}, if W[P,] recognizes all the sequences of abstract in-
structions that correspond to the rungplip to address renamingy ~z, Q iff there
exists an address renamitiguch that)(.Z (ax (&(Q)))) € Z(W][F]). The language
Z(W[Fy]) represents the regular metamorphic signaturépfind the automaton
W|[P] represents the mechanism of generation of the metamoratiaows and there-
fore it provides a model of the metamorphic engindpfFig. 6 (a) shows the widened
fixpoint W[P,] of programP, in Fig. 2, where the widening seedhs andk > 3, This
automaton recognizes any possible program that can baneldtdirring the execution of
Py. Note that, we may have false positives, as for example tpeesees of instructions
along the bold pativEM f] := 100;i nput = MEMa]; MEMa] mod2 = 0; MEMD] :=
MEMal; got 0; MEMb] := MEMal; got o;. .. which is not a run of any of the variants
of Py. Regular metamorphism can easily cope with metamorphistoamations com-
monly used by malware (e.g/¥ n95/ Regswap, W n32/ Ghost , W n95/ Zper m

W n95/ Znmor ph, W n32/ Evol) such asregister swapthat changes the registers
used by the prograntode permutatiorthat changes the order in which instructions
appear in memory while preserving their execution ordenigh the insertion of direct
jumps;junk/nop insertiorthat inserts junk instructions and semantic-nops, nanmely i
structions that are not executed or that do not alter produaictionality. Observe that
all these transformations can be seen as special caseslefsubstitutionLet P, be

a metamorphic malware: whenever a sequenagf instructions is substituted with an
equivalent ones,, we have that during the widened fixpoint computation a neth pa
containing sequence is added to the widened fixpoiWV [P]. Therefore, by correct-
ness,W|[P,] recognizes all the possible metamorphic variant&pbbtained through
code substitution. Of course it is possible to further a&w® [P;] in order to address
semantic-nop/junk insertion, permutation and registepsim a more efficient way,
namely in such a way that the resulting widened fixpoint is @omaton of a reduced
size. In semantic-nop insertion, the more precise is thesiaalysis used for identi-
fying (sequences of) instructions that are equivalemtdp, the smaller is the widened
fixpoint W[Fy] that we obtain. In code permutation, a smaller FSA can bdrudddy

14

performinggot o-reduction, i.e., by folding nodes reachablednt o-instructions. In
register swapping it is sufficient to replace registers refne., memory locations) with
uninterpreted symbols and then use unification to bind theggerpreted symbols to
the actual register names (i.e., memory locations) as doff.iLet us consider pro-
gramP," obtained by enriching the metamorphic engine of progfanof Fig. 2 with

a code permutation and a transformation that substitutgtsuction VEMe;| := eo
with the equivalent sequenpeish e, pop es. A possible evolution is shown below,
where ME denotes the metamorphic engine.

Fig. 6 (b) shows the FSA that represents an approximation of

all the possible evolutions of prograRj” whenk > 3. This
FSA is obtained through widening with widening seRg

v

: goto 8
:if (MEMa] mod2) goto 11

= (=)
comNoupwN R T

: nop

: goto 100

: push MEMa]/2
1 pop a

and by applying thgot o-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled WiVEMe;| := eo between

VM) = 100 two statesg and p, then we also have a path labeled with
Lora s o push ey, pop e; that connectg andp, and this precisely
12w LT MM cantures the fact that the metamorphic engine implements
100+ push VEMa] this substitution. Thgot o-reduction allows here to have a
102 : goto 5 reduced FSA, and the self-loop labeled withp makes clear

that the metamorphism could insert an unbounded number of
nop instructions.

MEM[] := 100

\nnﬂ:)v MEM[a] <LP‘/

3

ut => MEM(a]
MEM[a] mod 2

MEM(al:=MEM[b] MEMa] mod 2

S

nop _push MEMa]

pop b,
o T F R
MEM(b]:= MEM[a] goto MEM[T]:=MEM[fl+3 MENIBLMEME]
push MEM[a]
MEM[b]: MEM[a] ush MEM(a]
MEM[a] :=(MEM[a]+1)/2 goto MEMa]:= MEM[a}/2 \/AC> ’ "
Vet =EMak 2 pop </
MEM[al:= MEM[a)2 MEMb] : 2 MEM[a]
goto
MEM[a] : = MEM[a)/2
v
got

>,

MEM[b]:=MEM[a]

popb. j

push MEM[al/2
N

popa

push (MEMa]+1)/2

0

MEM[a]:=MEM[a}/2

6 Related Works and Discussion

In [13] the authors use trace semantics to characterizeghaviours of both the mal-
ware and the potentially infected program, and use abstr@epretation to “hide” their
irrelevant behaviours. A program is infected by a malwatbeéir behaviours are indis-
tinguishable up to a certain abstraction, which correspdndsome obfuscations. A
significant limitation of this work is that the knowledge betobfuscation is essential
in order to derive abstractions. In [19] the authors modelrttalware)M as a formula
in the new logic CTPL, which is an extension of CTL able to Handgister renaming.
A programP is infected byM, if P satisfies the CTPL formula that modél$. By

15

knowing the obfuscations used by malwarkit is possible to design CTPL specifica-
tions that recognise several metamorphic variant&/oin [7] the idea is to model the
malware as a template that expresses the malicious intésd.ikthis case the defini-
tion of the template is driven by the knowledge of the obftisces commonly used by
malware. Some researchers have tried to detect metamanphi@re by modelling the
metamorphic engine as formal grammars and automata [1B520These works are
promising, but the design of the grammar and automata isdbas¢he knowledge of
the metamorphic transformations used, and none of theniga®a methodology for
extracting a grammar or an automata from a given metamomaiware. To the best
of our knowledge, we are not aware of any work modelling metgoiism without any
a priori knowledge of the transformations used by the metafno engine. The only
other work we are aware of that formally addresses the aisalyself-modifying code
is the one of Cai et al. [4]. However, their goals and resuksary different from ours:
Cai et al. propose a general framework based on Hoare logiertfy self-modifying
code, while we use program semantics and abstract intatjgreto extract metamor-
phic signature from malicious self-modifying code. In teense, our key contribution
relies upon the idea that abstract interpretation of pheseastics may provide useful
information about the way code changes, i.e., about themwaizhic engine itself. In-
terestingly, the language recognizedW[P] provides an upper-approximation of the
possible metamorphic variants of the original malware Jevie automaton itself mod-
els the mechanism of generation of such variants, i.e., t@morphic engine. With
our approach it is therefore possible to extract propedighe implementation of the
metamorphic engine by abstract interpretation of the pbas®ntics. Itis clear that the
depth# abstraction considered here for approximating the langwéinstructions to-
wards a finite alphabet for widening traces of FSA is for sdkaraplicity. In general,
widening phases for taming the sequence of modified prog(&®4) generated by
metamorphism into a single FSA modeling regular metamamimay require a notion
of higher-order wideningn FSA, acting both at the level of the graph-structure of the
FSA, for approximating the language of instructions, antthatievel of the instruction
set, for approximating the way a single instruction may b@gosed. The abstraction
of code layout may induce the abstraction of instructiortsctvitself can be solved by
means of FSA. This opens an interesting new field that magsepit a future challenge
for abstract interpretatiotthe abstraction of code layouwhere the code is the object of
abstraction and the way it is generated is the object of attstiterpretation. Of course
FSA provide just regular language-based abstractionseghttamorphic engine. More
sophisticated approximations, using for instaada Cousob context free grammars
and set-constraint-based abstractions of sequencesarf/listructions [10], may pro-
vide alternative and effective solutions for non-regul@tamorphism.

References

1. G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelba@ndesurfer/x86-a platform for
analyzing x86 executables. Proc. Internat. Conf. on Compiler Construction (CC'0pp.
250-254, 2005.

2. G. Balakrishnan and T. W. Reps. Analyzing memory acceasse®6 executables. IRroc.
Internat. Conf. on Compiler Construction (CC’'Q4)p. 5-23, 2004.

16

3. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demobstréct Interpretation: Towards
the Global Optimization of Prolog Programs. Pnoc. Symposium on Logic Programmjmap.
192-204, 1987.

4. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifycmge. InProc. ACM conf. on
Programming Language Design and Implementation (PLDI'@p) 66—77, 2007.

5. M. Christodorescu and S. Jha. Static analysis of exelastab detect malicious patterns. In
Proc. USENIX Security Sympp. 169-186, 2003.

6. M. Christodorescu and S. Jha. Testing malware detedioiBroc. ACM SIGSOFT Internat.
Symp. on Software Testing and Analy{($&STA '04, pp. 34—-44, 2004.

7. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and Ry&nB Semantics-aware malware
detection. InProc. IEEE Security and Privacyp. 32—-46, 2005.

8. P. Cousot and R. Cousot. Abstract interpretation: A uhitédtice model for static analysis of
programs by construction or approximation of fixpoints Phoc. ACM Symp. on Principles of
Programming Language@®OPL '77), pp. 238-252, 1977.

9. P. Cousot and R. Cousot. Systematic design of programgsasdtameworks. IProc. ACM
Symp. on Principles of Programming Langua¢e®©PL '79), pp. 269-282, 1979.

10. P. Cousot and R. Cousot. Formal language, grammar aicdis&traint-based program anal-
ysis by abstract interpretation. FProc. ACM Conf. on Functional Programming Languages
and Computer Architecturgp. 170-181, 1995.

11. P. Cousot. Constructive design of a hierarchy of semsnfia transition system by abstract
interpretation.Theor. Comput. ScR77(1-2): 47-103, 2002.

12. P. Cousot and N. Halbwachs. Automatic discovery of limestraints among variables of a
program. InProc. ACM Symp. on Principles of Programming Langua@@3PL '78), 1978.

13. M. Dalla Preda, M. Christodorescu, S. Jha, and S. Delfaemantics-based approach to
malware detectionACM Trans. Program. Lang. SysB0(5):1-54, 2008.

14. V. D'Silva. Widening for automata. Diploma Thesis, itgtFur Informatick, Universitat
Zurich, 2006.

15. M. Emami, R. Ghiya, and L.J. Hendren. Context-sensititerprocedural points-to analysis
in the presence of function pointers. Proc. ACM Conf. Programming language design and
implementationpp. 242-256, 1994.

16. E. Filiol. Metamorphism, formal grammars and undedigl@bde mutation. Ifroc. World
Academy of Science, Engineering and Technology (PWAS&T20, 2007.

17. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making attstmterpretations completd. of
the ACM, 47(2):361-416, 2000.

18. A. Holzer, J. Kinder, and H. Veith. Using verification heology to specify and detect
malware. InProc. Internat. Conf. on Computer Aided System Theaol 4739 ofLNCS pp.
497-504, 2007.

19. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. V&#tecting malicious code by model
checking. InProc. Internat. Conf. on Intrusion and Malware Detectiordaviulnerability As-
sessment (DIMVA'05Yol. 3548 ofLNCS pp. 174-187, 2005.

20. Qozah. Polymorphism and gramma29A E-zinge 2009.

21. P.Singh and A. Lakhotia. Static verification of worm amds behaviour in binary executa-
bles using model checking. Proc. IEEE Information Assurance Worksh@®03.

22. P. Szor.The Art of Computer Virus Research and Defenaddison-Wesley Professional,
2005.

23. P. Szor and P. Ferrie. Hunting for metamorphic.Ptoc. Virus Bulleting Conferencep.
123-144. Virus Bulletin Ltd, 2001.

24. H.Tamaki and T. Sato. Program Transformation Througtahsgifting. New Generation
Computing 1(1):93-98, 1983.

25. P. Zbitskiy. Code mutation techniques by means of fogretnmars and automaton¥our-
nal in Computer Virology2009.

17

