
Characterizations of Restricted Pairs of

Planar Graphs Allowing

Simultaneous Embedding with Fixed Edges
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Abstract. A set of planar graphs share a simultaneous embedding if they
can be drawn on the same vertex set V in the Euclidean plane without
crossings between edges of the same graph. Fixed edges are common edges
between graphs that share the same simple curve in the simultaneous
drawing. Determining in polynomial time which pairs of graphs share a
simultaneous embedding with fixed edges (SEFE) has been open.

We give a necessary and sufficient condition for whether a SEFE exists for
pairs of graphs whose union is homeomorphic to K5 or K3,3. This allows
us to characterize the class of planar graphs that always have a SEFE with
any other planar graph. We also characterize the class of biconnected
outerplanar graphs that always have a SEFE with any other outerplanar
graph. In both cases, we provide efficient algorithms to compute a SEFE.
Finally, we provide a linear-time decision algorithm for deciding whether
a pair of biconnected outerplanar graphs has a SEFE.

1 Introduction

In many practical applications including the visualization of large graphs and
very-large-scale integration (VLSI) of circuits on the same chip, edge crossings
are undesirable. A single vertex set can be used with multiple edge sets that
each correspond to different edge colors or circuit layers. While the pairwise
union of all edge sets may be non-planar, a planar drawing of each layer may be
possible, as crossings between edges of distinct edge sets are permitted. Finding
such drawings is the basic problem of simultaneous embedding (SE) and this can
be viewed as a generalization of the notion of planarity to multiple graphs.

Without restrictions on the types of edges, any number of planar graphs can
be drawn on the same fixed set of vertex locations [13]. However, difficulties
arise once straight-line edges are required. This is the problem of simultaneous
geometric embedding (SGE). If edge bends are allowed, then having common
edges drawn in the same way using the same simple curve preserves the “mental
map”. Such edges are called fixed edges leading to the problem of simultaneous
embedding with fixed edges (SEFE). Since straight-line edges between a pair of
vertices are also fixed edges, any graph that has a SGE also has a SEFE, but the
converse is not true; see Fig. 1 that shows SGE ⊂ SEFE ⊂ SE.
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Fig. 1. The path and planar graph in (a) do not have a SGE with straight-line edges [2],
but have a SEFE in (b). The two outerplanar graphs in (c) do not have a SEFE, but have
a SE in (d) if the edge (b, e) is not fixed.

Deciding whether two graphs have a SGE is NP-hard [6], while deciding
whether three graphs have a SEFE is NP-complete [9]. However, deciding whether
two graphs have a SEFE in polynomial-time remains open. We give a necessary
condition in terms of forbidden minors for when pairs of graphs can have a SEFE.
This leads to a polynomial-time decision algorithm in the restricted case of pairs
of biconnected outerplanar graphs. We also characterize the class of biconnected
outerplanar graphs that always have a SEFE with any other outerplanar graph.
Finally, we characterize the graphs that always have a SEFE with any planar
graph and compute a SEFE when possible.

1.1 Related Work

Any number of stars, two caterpillars (trees whose removal of all leaves gives a
path) and two cycles always have a SGE, whereas three paths and two trees may
not [2, 10]. Which graphs always have a SGE with a path, a caterpillar, a tree,
or a cycle remains unknown. For the case of SEFE, a planar graph and a tree
always have a SEFE, whereas two outerplanar graphs do not [8]. This shows that
the topological problem of SEFE is less restricted than the geometric problem
of SGE. Note that this is unlike standard planarity where the sets of topological
and geometric planar graphs are identical [5]. Planar graphs are characterized in
terms of the forbidden graphs, K5 and K3,3, which form two minimum examples
of non-planarity [12, 14]. No similar characterization for SEFE in terms forbidden
pairs has been given until now, even for restricted pairs of planar graphs.

1.2 Our Contribution

1. We show there exist three paths without a SEFE. We provide a necessary
and sufficient condition in terms of 17 minimal forbidden pairs for when a
pair of graphs whose union forms a subdivided K5 or K3,3 has a SEFE.

2. Using this condition, we characterize the class of planar graphs that have a
SEFE with any planar graph to be the set of (i) forests, (ii) circular cater-
pillars, (iii) K4, and (iv) subgraphs of K3-multiedges; see Fig. 2(a)–(d). We
efficiently compute a SEFE in each case. We show that any other graph not
in this class contains a subgraph homeomorphic to a cycle and a disjoint
edge. We provide a similar characterization for the class of biconnected out-
erplanar graphs that always share a SEFE with any outerplanar graph; see
Fig. 2(e). Table 1 summarizes our results.
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Fig. 2. Forests in (a), circular caterpillars (removal of all degree-1 vertices yields a cycle)
in (b), K4 in (c) and subgraphs of K3-multiedges (an edge with any number of incident
edges) in (d) have a SEFE with any planar graph. K3-cycles (n-cycles with chords that
form 3-cycles with the n-cycles) as in (e) have a SEFE with any outerplanar graph.

3. We determine which pairs of biconnected outerplanar graphs can have a
SEFE using a forbidden outerplanar pair. This leads to a linear-time decision
algorithm for this restricted case.

1.3 Preliminaries

Let P be a set of n distinct points in the plane R
2. A planar drawing of G(V, E)

with |V | = n on P consists of a bijection σ : V → P with a simple curve for
each edge (u, v) ∈ E drawn in the plane R

2 connecting the points σ(u) and σ(v)
with curves that only intersect at endpoints. Let G = {G1(V, E1), G2(V, E2), . . .,
Gk(V, Ek)}. G has a simultaneous embedding (SE) if there exist planar drawings
of Gi(V, Ei) with the same bijection σ : V → P . If each edge is a straight-
line segment, then G has a simultaneous geometric embedding (SGE). If every
common edge in G connecting a pair of vertices uses the same simple curve, then
G has a simultaneous embedding with fixed edges (SEFE).

In a graph G(V, E), subdividing an edge (u, v) ∈ E replaces edge (u, v) with
the pair of edges (u, w) and (w, v) in E by adding w to V . A subdivision of
G is obtained through a series of edge subdivisions. Contraction of edge (u, v)
replaces the vertices u and v with the vertex w that is adjacent to all the vertices
that were adjacent to either u or v. A minor H of G is obtained through a series
of edge contractions and edge deletions. A graph G(V, E) is isomorphic to a
graph G̃(Ṽ , Ẽ) if there exists a bijection f : V → Ṽ such that (u, v) ∈ E if and
only if

(

f(u), f(v)
)

∈ Ẽ. A graph G(V, E) is homeomorphic to a graph G̃(Ṽ , Ẽ)

if the subdivisions of G and G̃ are isomorphic.

SGE SEFE

Path Tree Forest Circular K4 K3- K3-

caterpillar multiedge cycle

Path X [2] ? X [8] X [8] X [8] X [8] X [8]

Caterpillar X [2] ? X [8] X [8] X [8] X [8] X [8]

Tree ? 7 [10] X [8] X [8] X [8] X [8] X [8]

Outerplanar ? 7 [10] X X X X X

Planar 7 [2] 7 [2, 10] X X X X 7

Table 1. Old and new results for SGE and SEFE pairs. The shaded pairs are new.
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2 Forbidden Simultaneous Embeddings with Fixed Edges

We begin with Kuratowski’s and Wagner’s planar graph theorems [12, 14].

Theorem 1 (Kuratowski, Wagner) A graph is non-planar if and only if it
has a subgraph homeomorphic to K5 or K3,3 or has K5 or K3,3 as a minor.

2.1 Forbidden Triples of Paths and Cycles

Next we show that the triples without a SGE of three paths in [2] and three
cycles in [1] extend to the case of SEFE.

Theorem 2 There exist three paths on 9 vertices and three cycles on 6 vertices
without a SEFE.

Proof. Consider the three paths g--d--h--c--e--a--f--b--i, h--d--i--b--e--c--f--a--g, and
i--d--g--a--e--b--f--c--h and the three cycles a--d--c--f--b--e--a, a--e--c--d--b--f--a,
and a--f--c--e--b--d--a shown in Fig. 3. In both cases, the union forms a subdi-
vided K3,3 and any drawing must have a crossing by Theorem 1. Each edge in
the union belongs to two paths (or two cycles). Such a crossing must be between
two pairs of paths (or cycles). Since there are only three paths (or three cycles)
and fixed edges are being used, one path (or cycle) must self-intersect. ⊓⊔

2.2 Minimal Forbidden Pairs

Suppose a pair of graphs G1(V, E1) and G2(V, E2) does not have a SEFE as in
Fig. 4(a). If deleting any edge from either graph allows a SEFE, then G1 and G2

are edge minimal as in Fig. 4(b). If a degree-2 vertex v (adjacent to u and w)
in the union of G1 and G2 is not a degree-1 vertex in either G1 or G2, then we
can unsubdivide the vertex by deleting v and replacing edges (u, v) and (v, w)
with the edge (u, w) in G1 and/or G2. A pair of graphs for which this can no
longer be done is vertex minimal as in Fig. 4(c). A minimal forbidden pair does
not have a SEFE and is edge and vertex minimal.

We define the union G1 ∪ G2 and the intersection G1 ∩ G2 as having edge
sets E1 ∪ E2 and E1 ∩ E2, respectively; see Fig. 4(c)–(d). Suppose then that
G1 ∪ G2 is homeomorphic to a graph G with no degree-2 vertices. Let u  v

in G1 ∪ G2 be the path corresponding to the subdivided edge (u, v) in G. Path
u  v is incident to x  y in G1 ∪ G2 if and only if (u, v) is incident to (x, y)
in G. An alternating edge is a u  v path in which the edges strictly alternate
between being in either G1 or G2; see Fig. 4(e). An exclusive edge is a u  v

path composed of the edge (u, v) that is only in G1 or G2; see Fig. 4(f)–(g), while
an inclusive edge is composed of the fixed edge (u, v) in G1 ∩ G2; see Fig. 4(d).

d

g
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eh

i

f

(a) 3 paths on 9 vertices

cba

ed f

(b) 3 cycles on 6 vertices

Fig. 3. Two graph triples without a SEFE.
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(e)(d)(c)(b)(a) (g)(f)

G1 ⊎ G2G1 ∩ G2G1 ∪ G2 G2 \ G1G1 \ G2

Fig. 4. Removing extraneous edges from (a) gives (b). Unsubdividing degree-2 vertices in
(b) gives (c) that can be partitioned into the four subgraphs in (d)–(g).

Lemma 3 Any pair of graphs G1(V, E1) and G2(V, E2) can be reduced to a pair
in which every u v path is either an inclusive, exclusive, or alternating edge.

Proof. We examine each u  v path p in G1 ∪ G2. If path p is in G1 ∩ G2, we
replace p with a single inclusive edge (u, v) in both G1 and G2. If p is in Gi but
is missing edges in Gj for i 6= j, we replace it with the single exclusive edge (u, v)
in Gi. If p is missing an edge from each graph, we make p into an alternating
edge by deleting edges from p in either G1 or G2 until each edge along p is no
longer in G1 ∩G2. Then we unsubdivide p until it is strictly alternating. We can
always avoid crossings along edges of u v paths contained in G1 ∩G2 reduced
in this way. Hence, neither operation changes whether the pair has a SEFE. ⊓⊔

Suppose G1 and G2 are a reduced pair, which is a pair of graphs where all
u v paths have been reduced. The alternating edge subgraph, G1 ⊎ G2, is the
subgraph of G1 ∪ G2 consisting only of alternating edges. The exclusive edge
subgraph of G1, G1 \G2, is the subgraph of G1 ∪G2 consisting of exclusive edges
from G1, where G2 \ G1 is defined analogously. Hence, edges of G1 ∪ G2 are
partitioned into G1 ∩G2, G1 ⊎G2, G1 \G2, and G2 \G1; see Fig. 4(d)–(g). Next
we see why we only need to consider crossings between non-incident edges.

Observation 4 Crossings between incident edges in a non-planar drawing can
be removed without affecting the number of crossings of non-incident edges.

This can be done by swapping the simple curves from the incident vertex to
the first intersection point p. Separating the curves at p by a small distance
eliminates the crossing without affecting the rest of the drawing. Repeating
this process removes all crossings of incident edges. Hence, we only need to
consider crossings of non-incident edges in a simultaneous drawing with fixed
edges. Removing an edge from either K5 or K3,3 of Theorem 1, allows a planar
embedding. Only one crossing needs to be introduced when replacing the edge,
since there is at most one edge separating any pair of faces in the embedding.
This fact along with Observation 4 gives the next corollary.

Corollary 5 (a) Every drawing of K5 or K3,3 has a crossing between non-
incident edges. (b) K5 or K3,3 can be drawn with only one crossing between any
pair of non-incident edges.

We use this corollary to produce a sufficient condition for SEFE.

Lemma 6 Suppose the union G1 ∪G2 of a reduced pair (G1, G2) is homeomor-
phic to K5 or K3,3. Let u v and x y be non-incident paths in G1 ∪ G2 but
not in G1 ∩G2. If either path belongs to G1 ⊎G2 or one belongs to G1 \G2 and
the other belongs to G2 \ G1, then G1 and G2 have a SEFE
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Proof. By Corollary 5(b), a K5 or a K3,3 can always be drawn so that only (u, v)
and (x, y) cross. Hence, there is a SEFE in which an alternating edge in G1 ⊎G2

only crosses an edge in either G1 \ G2 or G2 \ G1. Likewise, an edge in G1 \ G2

can cross any non-incident edge in G2 \ G1. ⊓⊔

With Lemma 6 we determine when a K5 or a K3,3 pair has a SEFE.

Corollary 7 Suppose the union G1 ∪ G2 of a reduced pair (G1, G2) is homeo-
morphic to K5 or K3,3. The pair (G1, G2) has no SEFE if and only if (i) every
non-incident edge of an alternating edge in G1 ⊎G2 is in G1 ∩G2 and (ii) every
non-incident edge of an exclusive edge in G1 \ G2 is in G1.

Proof. For necessity, suppose the pair (G1, G2) does not have a SEFE. Consider
an x y path in G1 ∪ G2 that is non-incident to an alternating edge u v in
G1⊎G2 in which x y is not in G1∩G2. By Lemma 6, the pair (G1, G2) would
have a SEFE since u  v is in G1 ⊎ G2 and neither path is in G1 ∩ G2. Next
consider an x  y path in G1 ∪ G2 that is non-incident to an exclusive edge
(u, v) in G1 \ G2 in which x  y is not in G1. By Lemma 6, the pair (G1, G2)
again would have a SEFE since x y either is in G1 ⊎ G2 or is in G2 \ G1.

For sufficiency, suppose conditions (i) and (ii) hold. Since the union forms a
subdivided K5 or K3,3, by Corollary 5(a) at least one pair of non-incident paths
u  v and x  y cross. If either is in G1 ∩ G2, then there must be a crossing
in G1 or G2. If either is in G1 ⊎ G2, then by (i) the other would be in G1 ∩ G2,
again giving a crossing in G1 or G2. If both are in Gi \ Gj for i 6= j, then there
is a crossing in Gi. Finally, (ii) prevents one edge being in G1 \G2 and the other
edge being in G2 \ G1. Hence, G1 and G2 do not have a SEFE. ⊓⊔

Theorem 8 There are 17 minimal forbidden pairs with a union homeomorphic
to K5 or K3,3.

Proof. Let Gi,j denote the 17 pairs of graphs for i ∈ {1, . . . , 17} and j ∈ {1, 2} in
Figs. 5 and 6. One can verify that all the non-incident edges of any alternating
edge are in the intersection and every edge non-incident to an exclusive edge of
Gi,1 is also in Gi,1. This satisfies Corollary 7 implying that none of these pairs
has a SEFE. Removing any edge means either (i) the union no longer forms a K5
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(d)

(e)

(i) (j) (k)

G3,2G3,1G1,2G1,1 G2,2G2,1

G8,2G8,1G7,2G7,1G6,2G6,1

G4,2G4,1

G5,2G5,1

G9,2G9,1 G10,2G10,1 G11,2G11,1

Fig. 5. Eleven K5 minimal forbidden pairs.
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G12,1 G12,2 G13,2G13,1

G16,1 G16,2G15,1 G15,2 G17,1 G17,2

G14,1 G14,2

Fig. 6. Six K3,3 minimal forbidden pairs.

or a K3,3 or (ii) the intersection does not contain all the non-incident edges of
Gi,1 ⊎Gi,2 or of Gi,1 \Gi,2 (other than those already in Gi,1) so that Corollary 7
is no longer satisfied. This implies that all 17 forbidden pairs are minimal.

We next show that our 17 pairs are the only minimal forbidden pairs homeo-
morphic to K5 or K3,3. Assume w.l.o.g. (G1, G2) is a reduced minimal forbidden
pair whose union forms a K5 or a K3,3 where G2 has at least as many edges as
G1. We consider all the possibilities for edges to be in G1 \ G2 or G1 ⊎ G2.

Pairs (G1,1, G1,2), (G2,1, G2,2), (G12,1, G12,2), and (G13,1, G13,2) are the only
possibilities in which there is one exclusive edge in G1 or one alternating edge
in G1 ⊎ G2. Two non-incident alternating edges would violate Corollary 7. The
other case of two non-incident edges that are exclusive in G1 is given by pairs
(G6,1, G6,2) and (G14,1, G14,2). Three non-incident edges are only possible in a
K3,3, but adding all of their non-incident edges implies that G1 is a K3,3.

For the case of G1∪G2 homeomorphic to K5, the pairs (G3,1, G3,2), (G4,1, G4,2),
and (G5,1, G5,2) give the three possibilities of two incident edges that are exclusive
and/or alternating. Two incident exclusive edges with a third exclusive or alter-
nating edge cannot happen since G3,1 has seven edges with two incident exclusive
edges. Adding another exclusive or alternating edge along with its non-incident
edge would imply that |G2 \G1| = |G1 ∪G2|− |G1|− |G1 \G2| = 10− 7− 2 = 1.
This contradicts our assumption of G2 having at least as many edges as G1.

Two non-incident exclusive edges with a third incident alternating edge is
given by the pair (G7,1, G7,2). Two or three alternating edges that are all incident
with another exclusive or alternating edge are given by the pairs (G8,1, G8,2),
(G9,1, G9,2) and (G10,1, G10,2), respectively. The last possibility of three alter-
nating edges that are only pairwise incident is given by pair (G11,1, G11,2) in
which all the non-incident edges of each alternating edge is in the intersection.

For the case of G1 ∪ G2 homeomorphic to K3,3, if there are two incident
exclusive and/or alternating edges, then the third incident u  v edge in the
union is the only edge that can be in G2 \G1. This is because edges non-incident
to u v are also in G1 implying that G2 \ G1 can only contain the edge (u, v).
Hence, |G1 \ G2| < |G2 \ G1| = 1. Pairs (G15,1, G15,2) with one exclusive edge
and one alternating edge and (G16,1, G16,2) with two alternating edges are the
only possibilities for two incident edges. However, u v could be an alternating
edge. The pair G16,2 already has one exclusive edge with two incident alternating
edges. This leaves three alternating edges that are all incident given by pair
(G17,1, G17,2) as the final possibility. ⊓⊔
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Fig. 7. The pair (G7,1, G7,2) in (a) is a minor pair of the two forbidden pairs in (b) and
(c), which have no SEFE, as well as the pair in (d), which has the given SEFE.

Unlike standard planar graphs in which the set of forbidden minors is iden-
tical to the set of forbidden subdivisions by Theorem 1, the same is not true for
SEFE. Fig. 7 shows three pairs with the same minor pair (G7,1, G7,2) in Fig. 7(a).
Each pair is obtained by “uncontracting” vertex d to form the fixed edge (d1, d2)
in Figs. 7(b)–(d). Fig. 7(b)–(c) are forbidden pairs, whereas, Fig. 7(d) is not.

Figs. 7(c)–(d) are examples in which a new fixed edge (a, d) is created from
the exclusive edges (a, d1) in G1 \G2 and (a, d2) in G2 \G1 by contracting edge
(d1, d2) to vertex d in Fig. 7(a). To avoid this, we define a fixed edge minor
pair as a minor pair (H1, H2) of (G1, G2) that is obtained by only contracting
edges in which no new fixed edges are created. Fig. 7(b) is an example in which
Fig. 7(a) forms a fixed edge minor pair. This leads to the following corollary.

Corollary 9 Pair (G1, G2) has no SEFE if the pair has a fixed edge minor pair
(H1, H2) isomorphic to one of the 17 minimal forbidden pairs of Theorem 8.

This forms a necessary condition for SEFE, but is insufficient since Fig. 7(c)
does not have a SEFE, nor does it have any of the 17 fixed edge minor pairs.

3 Characterizing SEFE with Planar Graphs

We next determine the graphs that always have a SEFE with any planar graph
and produce simultaneous drawings. Let P be the set of planar graphs and PSEFE

be the subset of P containing forests, circular caterpillars (removal of all degree-1
vertices yields a cycle), K4, and the subgraphs of K3-multiedges (edge (x, y) with
the incident edges (x, z) and/or (y, z) for each z ∈ V \ {x, y}).

Lemma 10 G is in PSEFE if and only if G does not contain a subgraph homeo-
morphic to a K3 and a disjoint edge.

Proof. First, we show necessity. Let G ∈ PSEFE and let H be the graph consisting
of a K3 and a disjoint edge. A forest has no cycles unlike H . While a circular
caterpillar has a cycle, all the other edges are incident to the cycle. A K4 has
four vertices while H has five. Finally, every subgraph of a K3-multiedge with a
cycle, either has a 3-cycle, x y  z  x, or a 4-cycle, x z1  y  z2  x,
if there is no edge (x, y). In either case, every other edge is part of the cycle or
is incident to x or y

Let G̃ ∈ P \PSEFE. Showing that G̃ has a subgraph homeomorphic to H gives
sufficiency. The graph G̃ must have a cycle since otherwise it would be a forest.
Let C be a cycle in G̃ of maximum length, and let e be any edge in G̃\C. Either
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the edge e is incident to C or the graph G̃ contains a subgraph homeomorphic
to H . If the edge e forms a chord of C where C is a k-cycle for some k > 4, then
there is a cycle C′ formed by a path in C and the edge e. Thus, C would have
a non-incident edge from the cycle C′ so that G̃ would be homeomorphic to H .

Hence, all cycles in G̃ are 3-cycles or 4-cycles. Suppose C is a 3-cycle with
another cycle C′ in G̃. Either C and C′ share an edge giving a longer cycle
(contradicting the maximality of C) or C′ has an edge non-incident to C. Hence,
C must be a 4-cycle if G̃ has multiple cycles. If two 4-cycles C and C′ only share
a vertex or a single edge, then C would have a non-incident edge in C′. Hence,
C and C′ must share two edges. If the two edges are non-incident, then C1 and
C2 form a K4. Thus, G̃ either forms a K4 or all the 4-cycles share a common
path consisting of the two incident edges (x, z) and (y, z). Thus, all 3-cycles have
the common edge (x, y) if it exists. Any non-cycle edge e must be incident to all
the cycles implying that e is either (x, z) or (y, z) for some vertex z of degree 1.
Thus, if G̃ has multiple cycles but is not a K4, then G̃ is a subgraph of some
K3-multiedge. Finally, if C is the only cycle, then all the vertices not in C have
degree 1 so that G̃ is a circular caterpillar. ⊓⊔

Together Corollary 9 and Lemma 10 allow us to determine when a graph
always has a SEFE with any planar graph with the following lemma:

Lemma 11 A graph G has a SEFE with any planar graph if only if G ∈ PSEFE.

Proof. We prove necessity by showing that each G1 ∈ P \PSEFE does not have a
SEFE with every G2 ∈ P . In all the 17 pairs of Theorem 8, both graphs have a
subgraph homeomorphic to G1,1 that is a K3 and a disjoint edge; see Fig. 5(a).
By Lemma 10, we know that that G1 contains a subgraph homeomorphic to
G1,1. Thus, (G1, G2) cannot have a SEFE by Corollary 9 in which G2 contains a
subgraph homeomorphic to G1,2 ∈ P .

To show sufficiency, we must show that every graph in G ∈ PSEFE has a
SEFE. We do this by showing how to efficiently compute a SEFE for the class
of graphs in PSEFE. Frati [8] gave an algorithm that finds a SEFE for forests
and planar graphs without explicitly bounding the number of bends per edge.
Our algorithm computes a SEFE by drawing each edge with a modification of
the optimal Euclidean shortest path algorithm that runs in O(n log n) time [11].
The modification is to determine the shortest path among a set of line segments
(that do not intersect except at endpoints) in the plane in which at least a
distance (of arbitrarily small) ε is always left between the path and the endpoint
of any segment. This can be done using Minkowski sums such that the minimum
distance from each endpoint is 2n/iε in step i for i ∈ [1..n].

For each step i, a new bend bi,k is either caused by an endpoint pk of an edge
or a bend bj,k from a previous step 2 ≤ j < i. However, for each such bend bi,k

only at most two points in the set {pk, b2,k, . . . bi−1,k} (the inner and outer ones)
contribute—bends added more recently hide bends caused by the original point
pk in previous steps. Hence, each time we add edges, at most O(n) new bends
are being introduced. Since the size of the vertex set grows by O(n) for each
step, this gives an overall running time of

∑n
i=1

O(i · n log i · n) = O(n2 log n).

9



Let G1 ∈ PSEFE and G2 ∈ P . First, we draw G2 in O(n) time. We then find
an embedding of G2 and draw G2 on an (n−2)× (n−2) grid, both done in O(n)
time [3, 5]. Some of the edges of G1 were drawn with G2. We can ignore the edges
in G2\G1 as we draw the rest of G1. For a forest or a circular caterpillar in which
the cycle has not yet been drawn, there is a single face giving a shortest Euclidean
path between any two vertices. For a circular caterpillar with the cycle already
drawn, the remaining points either lie inside or outside of the cycle. All edges
are incident to the cycle. Hence, a Euclidean path always exists from vertices of
the cycle to vertices of degree 1. For a graph with multiple cycles, it is a K4 or
a subgraph of a K3-multiedge with a 4-cycle C that has two vertices x and y of
degree greater than 2. We finish drawing C. For K4, one chord is drawn inside
of C, while the other chord is drawn outside of C. For a K3-multiedge, any path
from x to y is either the edge (x, y) or the path x z  y from some degree-2
vertex z. The edge (x, y) can drawn inside of C to start. For the other paths,
there must always exist Euclidean paths from x and y to the common vertex z

that lies inside some cycle drawn so far. Any remaining edges must be incident
to x or y in which a Euclidean path must also exist. ⊓⊔

Lemmas 10 and 11 together imply the following characterization:

Theorem 12 The following two statements are equivalent: A graph has a SEFE

with any planar graph if only if

– it does not contain a subgraph homeomorphic to a K3 and a disjoint edge.
– it is either (i) a forest, (ii) a circular caterpillar, (iii) a K4, or (iv) a subgraph

of a K3-multiedge.

4 Characterizing SEFE with Outerplanar Graphs

We next determine which biconnected outerplanar graphs always have a SEFE

with any other outerplanar graph. A K3-cycle is an n-cycle C with chords such
that every chord forms a 3-cycle with edges from C; see Fig. 2(e).

The following lemma provides an analogous result for biconnected outerpla-
nar graphs with respect to the outerplanar graphs O that Lemma 10 does for
the planar graphs P . The omitted proof can be found in [7]. The set OSEFE of
K3-cycles is shown to be the set of biconnected outerplanar graphs that do not
contain (G14,1, G14,2) as a fixed edge minor pair. This is the only pair of Theo-
rem 8 in which both graphs are biconnected and outerplanar. The graphs G14,1

and G14,2 are both isomorphic to a 6-cycle with a chord that forms two 4-cycles.

Lemma 13 G is in OSEFE if and only if G does not contain a subgraph homeo-
morphic to G14,1.

The omitted proof of the following lemma also appears in [7]. The key idea is
to use Euclidean shortest paths again to draw each edge that is not in the inter-
section. Special care is taken for pairs of edges (x, z) and (y, z) when the chord
(x, y) is in the intersection. First, the edge (y, z) is routed to x and then both
edges proceed within a small distance of each other from vertex z. Remaining
chords can always be drawn inside the outerface of the K3-cycle since each has
a degree-2 vertex z on the outerface that is adjacent to both endpoints.
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Fig. 8. Two biconnected outerplanar graphs with a common chord (a, m) do not have a
SEFE in (a) given that (a, m) and its adjacent endpoints match the forbidden labeling of
(G14,1, G14,2). The same pair in (b) has a SEFE since this is not the case.

Lemma 14 A biconnected outerplanar graph G has a SEFE with any outerpla-
nar graph if only if G ∈ OSEFE.

Lemmas 13 and 14 together give the following characterization:

Theorem 15 The following two statements are equivalent: A biconnected out-
erplanar graph has a SEFE with any outerplanar graph if only if

– it does not contain a subgraph homeomorphic to G14,1.
– it is a K3-cycle.

5 Deciding SEFE for Biconnected Outerplanar Graphs

Corollary 9 provided a necessary but insufficient condition for the SEFE of two
planar graphs. However, for the restricted case of two biconnected outerplanar
graphs, we can give a necessary and sufficient condition.

Lemma 16 The biconnected outerplanar graph pair (G1, G2) has a SEFE if and
only if G1 and G2 does not have the fixed edge minor pair (G14,1, G14,2).

The omitted proof found in [7] compares the labelings of the two outerfaces
and the chords in the intersection to see if they match the forbidden labeling
of the outerplanar graphs of (G14,1, G14,2); see Fig. 8. If so, the pair does not
have a SEFE. Otherwise, an algorithm that runs in O(n2 log n) time is given to
produce a SEFE in which the cycles involving common chords in each graph are
closed in such a way as to avoid any crossings.

Theorem 17 Deciding whether a pair of biconnected outerplanar graphs (G1, G2)
has a SEFE can be done in O(n) time.

The omitted proof found in [7] uses the conditions on the common chords
in the intersection in the proof of Lemma 16. This condition can be checked in
linear time, which yields a linear-time decision algorithm.

6 Conclusion

We gave a necessary condition for whether two graphs can have a SEFE in terms
of 17 fixed edge minor pairs. This allowed us to characterize the graphs that
always have a SEFE with any planar graph. We also characterized the class of
biconnected outerplanar graphs that have a SEFE with any outerplanar graph.

11



For the restricted case of two biconnected outerplanar graphs, deciding whether
they have a SEFE can be done in linear-time.

While our results may be helpful in solving bigger open problems, there are
still no known algorithms for testing whether a pair of planar graphs has a
SEFE in polynomial time. Finding all fixed edge minor pairs of planar graphs
would give a sufficient condition for their SEFE. This may lead to a polynomial-
time decision algorithm, an improvement over the ILP crossing minimization
algorithm in [4].
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