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ABSTRACT
While the multiple sequence alignment output by an aligner
strongly depends on the parameter values used for the align-
ment scoring function (such as the choice of gap penalties
and substitution scores), most users rely on the single default
parameter setting provided by the aligner. A different pa-
rameter setting, however, might yield a much higher-quality
alignment for the specific set of input sequences. The prob-
lem of picking a good choice of parameter values for specific
input sequences is called parameter advising. A parameter
advisor has two ingredients: (i) a set of parameter choices to
select from, and (ii) an estimator that provides an estimate
of the accuracy of the alignment computed by the aligner
using a parameter choice. The parameter advisor picks the
parameter choice from the set whose resulting alignment has
highest estimated accuracy.

We consider for the first time the problem of learning the
optimal set of parameter choices for a parameter advisor that
uses a given accuracy estimator. The optimal set is one that
maximizes the expected true accuracy of the resulting pa-
rameter advisor, averaged over a collection of training data.
While we prove that learning an optimal set for an advisor
is NP-complete, we show there is a natural approximation
algorithm for this problem, and prove a tight bound on its
approximation ratio. Experiments with an implementation
of this approximation algorithm on biological benchmarks,
using various accuracy estimators from the literature, show
it finds sets for advisors that are surprisingly close to op-
timal. Furthermore, the resulting parameter advisors are
significantly more accurate in practice than simply aligning
with a single default parameter choice.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures
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1. INTRODUCTION
A key issue in multiple sequence alignment not often ad-
dressed is the choice of parameter values to use for the align-
ment scoring function of an aligner. The standard tools for
multiple sequence alignment all use alignment scoring func-
tions that have many parameters that must be set, such as
the choice of matrix that scores substitutions in the align-
ment, and the penalties that are charged for gaps in the
alignment formed by runs of insertions or deletions. In the
face of the multitude of possible settings for these param-
eters, most users do not vary the parameter values when
computing an alignment of their sequences, simply rely on
the default parameter choice supplied by the aligner. The
multiple alignment computed by an aligner, however, can
change radically as parameter values are varied, and a pa-
rameter setting other than the default could yield a much
higher-quality alignment of the user’s particular sequences.

To give a concrete example, Figure 1 shows a set of bench-
mark protein sequences aligned by the Opal aligner [19, 20]
under two parameter settings: the optimal default setting,
which is the parameter setting that achieves the highest av-
erage true accuracy across a suite of alignment benchmarks,
and a second non-default setting. (Here a parameter setting
is a five-tuple that specifies the substitution scoring matrix
and the values of four gap penalties.) This particular non-
default parameter setting happens to come from the optimal
set of two parameter choices (as discussed in Section 3), and
yields a much more accurate alignment of these sequences.

This begs the question, however, of how can a user in
practice recognize which of these two alignments is more
accurate? In reality, when aligning sequences, the correct
alignment is of course not known, so the true accuracy of
a computed alignment cannot be measured. In this situ-
ation, we rely on an accuracy estimator that is positively
correlated with true accuracy, and we choose the alignment
that has higher estimated accuracy. To provide an illustra-
tion, Figure 2 shows the correlation with true accuracy of
three accuracy estimators from the literature on the same
collection of computed alignments.



(a) Higher-accuracy alignment, non-default parameter choice

(b) Lower-accuracy alignment, default parameter choice

Figure 1: Parameter choice affects the accuracy of com-
puted alignments. (a) Part of an alignment of benchmark
sup_155 from the SABRE [18] suite computed by Opal [19]
using non-default parameter choice (VTML200, 45, 6, 40, 40);
this alignment has accuracy value 75.8%, and Facet [10]
estimator value 0.423. (b) Alignment of the same bench-
mark by Opal using the optimal default parameter choice
(BLSM62, 65, 9, 44, 43); this alignment has lower accuracy
57.3%, and lower Facet value 0.402. In both alignments,
the positions that correspond to core blocks of the reference
alignment, which should be aligned in a correct alignment,
are highlighted in bold.

In the example of Figure 1, under the Facet estimator [10,
4], the alignment of higher true accuracy does in fact have
higher estimated accuracy. So a user armed with Facet

could pick the better parameter choice to use with Opal on
these input sequences.

Combining these ideas of a set of candidate parameter
choices and an accuracy estimator, in an automated proce-
dure, leads to the notion of a parameter advisor that rec-
ommends a parameter setting for an aligner to use on the
given input sequences. In this paper, we study how to learn
the set of parameter choices for a parameter advisor, both
theoretically from the viewpoint of algorithms and complex-
ity, and practically from the standpoint of performance of
an implementation on real biological data.

1.1 Related work
The notion of parameter advising was introduced in Wheeler
and Kececioglu [19] as an often-overlooked stage in multiple
sequence alignment, and was first studied in depth in DeBla-
sio, Wheeler, and Kececioglu [5], both with regard to con-
structing accuracy estimators, and finding parameter sets
for a perfect advisor called an oracle.

Kececioglu and DeBlasio [10] give a broad survey of accu-
racy estimators from the literature. Briefly, estimators can
be categorized as scoring-function-based [15, 17, 1, 5, 3],
which combine local attributes of an alignment into a score,
and support-based [13, 12, 16, 11], which assess the quality
of an alignment in terms of its support from alternate align-
ments. Of these estimators, the most accurate for protein
alignments are Facet (DeBlasio et al. [5]), TCS (Chang et
al. [3], which supersedes COFFEE [15]), MOS (Lassmann and
Sonnhammer [13]), PredSP (Ahola et al. [1]), and GUIDANCE

(Penn et al. [16]). Kececioglu and DeBlasio [10] compare
these estimators, except for TCS and GUIDANCE, and show
that Facet, which is a weighted combination of five real-
valued feature functions, strongly outperforms these other
estimators for the task of parameter advising. Further ex-
periments in this paper show Facet outperforms TCS and
GUIDANCE as well.
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Figure 2: Correlation of estimators with true accuracy. Each
point in a scatterplot corresponds to an alignment whose
true accuracy is on the horizontal axis, and whose value
under a given estimator is on the vertical axis. The scatter-
plots show the same set of over 4,000 alignments under the
accuracy estimators Facet [10], TCS [3], and MOS [13].

The emphasis of our prior work [5, 10] is mainly on ac-
curacy estimation for parameter advising, resulting in the
Facet estimator [4]. Our prior work presented a class of esti-
mators that are polynomials in alignment feature functions,
and gave two techniques for efficiently learning optimal co-
efficients for these polynomials via linear and quadratic pro-
gramming. This work introduced new feature functions for
protein multiple sequence alignments that make use of pre-
dicted secondary structure, including a feature called Sec-
ondary Structure Blockiness, whose evaluation involves effi-
ciently computing an optimal packing of blocks of common
secondary structure. Our prior work also showed that op-
timal sets of parameter choices for a perfect advisor called
an oracle (that knows the true accuracy of an alignment)
could be found by integer linear programming, which made
the computation of optimal oracle sets feasible in practice,
even for very large cardinalities.

1.2 Our contributions
In this paper we focus on learning sets of parameter choices
for a realistic advisor, where these sets are tailored to the
actual estimator used by the advisor (as opposed to finding
parameter sets for a perfect but unattainable oracle advi-
sor), and we formalize for the first time this new problem
of learning an optimal parameter set for an imperfect advi-
sor. We prove that while learning such sets is NP-complete,
there is an efficient greedy approximation algorithm for this
learning problem, and we derive a tight bound on its worst-
case approximation ratio. Experiments show that the greedy
parameter sets found by the approximation algorithm for an
advisor, that uses Facet, TCS, MOS, PredSP, or GUIDANCE as
its estimator, outperform optimal oracle sets at all cardinal-
ities. Furthermore, on the training data, for some estimators
these suboptimal greedy sets perform surprisingly close to
the optimal exact sets found by exhaustive search, and more-
over, these greedy sets actually generalize better than exact
sets. As a consequence, on testing data, for some estimators
the greedy sets output by the approximation algorithm can
actually give superior performance to exact sets for param-
eter advising.

1.3 Plan of the paper
Section 2 next reviews the concepts of accuracy estimators
and parameter advisors. Section 3 then defines the new
problem of learning optimal parameter sets for an advi-
sor. Section 4 presents a greedy approximation algorithm
for learning parameter sets, and proves a tight bound on its
approximation ratio. Section 5 proves that learning optimal



parameter sets is NP-complete. Section 6 presents results
from experiments with our learning algorithms on real align-
ment benchmarks. Finally Section 7 gives conclusions and
provides directions for further research.

2. ESTIMATORS AND ADVISORS
We first briefly review the concepts of accuracy estimators
and parameter advisors.

2.1 Accuracy estimation
In our approach to estimating the unknown accuracy of an
alignment, we assume we have a collection of t real-valued
feature functions g1(A), . . . , gt(A) on alignments A, where
these functions gi are positively correlated with true accu-
racy. The alignment accuracy estimators E(A) we consider
are linear combinations of these functions,

∑
1≤i≤t ci gi(A),

where the coefficents c1, . . . , ct specify the estimator E(A).
Alignment accuracies are usually measured as real values in
the range [0, 1], such as the so-called Q-score, which is the
fraction of substitutions in the ground-truth alignment that
are recovered by a computed alignment A. We assume the
feature functions have range [0, 1], so when the coefficients
form a convex combination, the resulting estimator E(A)
will also have range [0, 1]. Our prior work [5, 10] showed
that this class of linear estimators is as general as polyno-
mial estimators, as any estimator that is a higher-degree
polynomial in the gi(A) can always be reduced to a linear
estimator by appropriately defining new feature functions
that are products of the original feature functions.

Given the feature functions gi, the coefficients of an esti-
mator E(A) can be learned by fitting to true accuracy val-
ues on alignment benchmarks for which the “correct” align-
ment, also called a reference alignment, is known. Our prior
work [5, 10] presented two techniques for fitting an estima-
tor, called difference fitting and value fitting, and reduced
these techniques to linear and quadratic programming.

2.2 Parameter advising
Given an accuracy estimator E, and a set P of parame-
ter choices, a parameter advisor tries each parameter choice
p ∈ P , invokes an aligner to compute an alignment Ap us-
ing parameter choice p, and then “selects” the parameter
choice p∗ that has maximum estimated accuracy E(Ap∗).
Since such an advisor runs the aligner |P | times on a given
set of input sequences, a crucial aspect of parameter advis-
ing is finding a small set P for which the true accuracy of
the output alignment Ap∗ is high. Our prior work [5, 10]
presented a technique for finding a small set P that maxi-
mizes the true accuracy of a perfect advisor called an oracle.
An oracle has access to the true accuracy of computed align-
ments (while an advisor does not, and only has an accuracy
estimator), and always selects the parameter choice from P
that has highest true accuracy. In contrast to finding such an
oracle set, here we consider how to learn the optimal set P
of a given cardinality that maximizes the true accuracy of
an imperfect advisor that uses a given estimator, averaged
over a training set of alignment benchmarks.

3. LEARNING OPTIMAL ADVISOR SETS
We now define the computational problem of learning an op-
timal set of parameter choices for an advisor using a given

accuracy estimator. We assume throughout that the fea-
tures used by the advisor’s estimator are specified and fixed.

From a machine learning perspective, our problem formu-
lation seeks an advisor with optimal accuracy on a collection
of training data. The underlying training data is

• a suite of benchmarks, where each benchmark Bi in the
suite consists of a set of sequences to align, together
with a reference alignment Ri for these sequences that
represents their “correct” alignment, and

• a collection of alternate alignments of these benchmarks,
where each alternate alignment Aij results from align-
ing the sequences in benchmark i using a parameter
choice j that is drawn from a given universe U of pa-
rameter choices.

Here a parameter choice is an assignment of values to all the
parameters of an aligner that may be varied when computing
an alignment. Typically an aligner has multiple parameters
whose values can be specified, such as the substitution scor-
ing matrix and gap penalties for its alignment scoring func-
tion. We represent a parameter choice by a vector whose
components assign values to all these parameters. (So for
protein sequence alignment, a typical parameter choice is a
3-vector specifying the (i) substitution matrix, (ii) gap-open
penalty, and (iii) gap-extension penalty.) The universe U of
parameter choices specifies all the possible parameter choices
that might be used for advising. A particular advisor will
use a subset P ⊆ U of parameter choices that it considers
when advising. In the special case |P | = 1, the single pa-
rameter choice in set P that is available to the advisor is
effectively a default parameter choice for the aligner.

Note that since a reference alignment Ri is known for each
benchmark Bi, the true accuracy of each alternate align-
ment Aij for benchmark Bi can be measured by comparing
alignment Aij to the reference Ri. Thus for a set P ⊆ U of
parameter choices available to an advisor, the most accurate
parameter choice j ∈ P to use on benchmark Bi can be de-
termined in principle by comparing the resulting alternate
alignments Aij to Ri and picking the one of highest true
accuracy. When aligning sequences in practice, a reference
alignment is not known, so an advisor will instead use its es-
timator to pick the parameter choice j ∈ P whose resulting
alignment Aij has highest estimated accuracy.

In the problem formulations below, this underlying train-
ing data is summarized by

• the accuracies aij of the alternate alignmentsAij , where
accuracy aij measures how well the computed align-
ment Aij agrees with the reference alignment Ri, and

• the feature vectors Fij of these alignments Aij , where
each vector Fij lists the values for Aij of the estimator’s
feature functions.

For an estimator that uses t feature functions, each feature
vector Fij is a vector of t feature values,

Fij = (gij1 gij2 · · · gijt),

where each feature value gijh is a real number satisfying
0 ≤ gijh ≤ 1. Feature vector Fij is used by the advisor to
evaluate its accuracy estimator E on alignment Aij . Let the
coefficients of the estimator E be given by vector

c = (c1 c2 · · · ct).



Then the value of accuracy estimator E on alignment Aij is
given by the inner product

Ec(Aij) = c · Fij =
∑

1≤h≤t

ch gijh. (1)

Informally, the objective function that the problem formu-
lations seek to maximize is the average accuracy achieved by
the advisor across the suite of benchmarks in the training
set. The benchmarks may be nonuniformly weighted in this
average to correct for bias in the training data, such as the
over-representation of easy benchmarks that typically occurs
in standard benchmark suites.

A subtle issue that the formulations must take into ac-
count is that when an advisor is selecting a parameter choice
via its estimator, there can be ties in the estimator value, so
there may not be a unique parameter choice that maximizes
the estimator. In this situation, we assume that the advisor
randomly selects a parameter choice among those of maxi-
mum estimator value. Given this randomness, we measure
the performance of an advisor on an input by its expected
accuracy on that input.

Furthermore, in practice any accuracy estimator inher-
ently has error (otherwise it would be equivalent to true
accuracy), and a robust formulation for learning an advisor
should be tolerant of error in the estimator. Let ε ≥ 0 be a
given error tolerance, and P be the set of parameter choices
used by an advisor. We define the set Oi(P ) of parameter
choices that the advisor could potentially output for bench-
mark Bi as

Oi(P ) =
{
j ∈ P : Ec(Aij) ≥ e∗i − ε

}
, (2)

where e∗i := max
{
Ec(Ai̃) : ̃ ∈ P

}
is the maximum estima-

tor value on benchmark Bi. The parameter choice output by
an advisor on benchmark Bi is selected uniformly at random
among those in Oi(P ). Note that when ε = 0, set Oi(P ) is
simply the set of parameter choices that are tied for max-
imizing the estimator. A nonzero tolerance ε > 0 can aid
in learning an advisor that has improved generalization to
testing data.

The expected accuracy achieved by the advisor on bench-
mark Bi using set P is then

Ai(P ) =
1

|Oi(P )|
∑

j ∈Oi(P )

aij . (3)

In learning an advisor, we seek a set P that maximizes the
advisor’s expected accuracy Ai(P ) on the training bench-
marks Bi.

Formally, we want an advisor that maximizes the following
objective function,

fc(P ) =
∑
i

wi Ai(P ) , (4)

where i indexes the benchmarks, and wi is the weight placed
on benchmark Bi. (The benchmark weights are to correct
for possible sampling bias in the training data.) In words,
objective fc(P ) is the expected accuracy of the parameter
choices selected by the advisor averaged across the weighted
training benchmarks, using advisor set P and the estima-
tor given by coefficients c. We write the objective function
as f(P ) without subscript c when the estimator coefficient
vector c is fixed or understood from context.

We now define the problem of finding an optimal set of
parameter choices for advising with a given estimator. The
running time of an advisor grows with the number of param-
eter choices it considers, so the problem formulation bounds
the allowed cardinality of the set that it finds, and seeks the
best set within this cardinality bound.

In the definitions, Q denotes the set of rational numbers.

Definition 1. The Advisor Set problem is the following.
The input is

• cardinality bound k ≥ 1,
• universe U of parameter choices,
• weights wi ∈ Q on the training benchmarks Bi, where

each wi ≥ 0 and
∑

i wi = 1,
• accuracies aij ∈ Q of the alternate alignments Aij ,

where each 0≤aij≤1,
• feature vectors Fij ∈ Qt for the alternate alignments
Aij , where each feature value gijh in vector Fij satisfies
0≤gijh≤1,
• estimator coefficient vector c ∈ Qt, where each coeffi-

cient ci in vector c satisfies ci ≥ 0 and
∑

1≤i≤t ci = 1,
and
• error tolerance ε ∈ Q where ε ≥ 0.

The output is

• set P ⊆ U of parameter choices for the advisor, with
|P | ≤ k,

that maximizes objective fc(P ) given by equation (4). 2

As Section 5 shows, Advisor Set is NP-complete, so finding
an optimal solution is hard. As we show next, however, a
natural greedy approach will find a near-optimal solution.

4. AN APPROXIMATION ALGORITHM
FOR LEARNING ADVISOR SETS

As Advisor Set is NP-complete, it is unlikely we can effi-
ciently find advisor sets that are optimal, but we can effi-
ciently find advisor sets that have a guarantee on how close
they are to optimal. An α-approximation algorithm for a
maximization problem, where α ≤ 1, is a polynomial-time
algorithm that finds a feasible solution whose value under
the objective function is at least factor α times the value of
an optimal solution. Factor α is called the approximation
ratio. In this section we show there is a simple approxima-
tion algorithm for Advisor Set that for any constant ` ≤ k
achieves approximation ratio at least `/k when error toler-
ance ε = 0.

For any constant `, the optimal advisor set of cardinality
at most ` can be found in polynomial time by exhaustive
search (since when ` is a constant there are polynomially-
many subsets of size at most `). The following natural ap-
proach to Advisor Set builds on this idea, by starting with an
optimal advisor set of size at most `, and greedily augment-
ing it to one of size at most k. The procedure Greedy(k, `)
given below, which finds an approximate solution to Advisor
Set, treats as global variables the universe U of parameter
choices and the estimator coefficient vector c, and assumes
1 ≤ ` ≤ k. Since augmenting an advisor set by adding a
parameter choice can worsen its value under the objective
function, even if augmented in the best possible way, Greedy
outputs the best advisor set found across all cardinalities.



procedure Greedy(`, k) begin

Find an optimal subset P ⊆ U of size |P | ≤ `
that maximizes f(P ).

P̃ := P˜̀ := |P |
for cardinalities ˜̀+1, . . . , k do begin

Find parameter choice j∗ ∈ U−P̃ that

maximizes f(P̃ ∪ {j∗}).
P̃ := P̃ ∪ {j∗}
if f(P̃ ) ≥ f(P ) then

P := P̃

end

output P

end

We now show this natural greedy procedure is an approx-
imation algorithm for Advisor Set. While Greedy finds an
advisor set for any error tolerance ε ≥ 0, the proof of the
approximation ratio we give below requires ε = 0.

Theorem 1. Greedy is an (`/k)-approximation algorithm
for Advisor Set for constant ` and tolerance ε = 0.

Proof. To prove the approximation ratio, let

• P ∗ be the optimal advisor set of size at most k,

• P̃ be the optimal advisor set of size at most `,
• P be the advisor set output by Greedy,
• S be the set of all subsets of P ∗ that have size `,

• k̃ be the size of P ∗, and

• ˜̀be the size of P̃ .

Note that if k̃ < `, then the greedy advisor set P is actu-
ally optimal (in which case the approximation ratio holds).

So assume k̃ ≥ ` (in which case S is nonempty). Then

f(P ) ≥ f(P̃ )

≥ max
Q∈S

f(Q) (5)

≥ 1

|S|
∑
Q∈S

f(Q)

=
1

|S|
∑
Q∈S

∑
i

wiAi(Q)

=
1

|S|
∑
Q∈S

∑
i

∑
j ∈Oi(Q)

wi aij
|Oi(Q)|

=
1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij
|Oi(Q)|

≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P∗)

wi aij
|Oi(Q)| (6)

≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P∗)

wi aij
|Oi(P ∗)|

(7)

=
1

|S|
∑

j ∈P∗

∑
Q∈S : j ∈Q

∑
i : j ∈Oi(P∗)

wi aij
|Oi(P ∗)|

=

(
k̃−1
`−1

)(
k̃
`

) ∑
j ∈P∗

∑
i : j ∈Oi(P∗)

wi aij
|Oi(P ∗)|

=
(
`
/
k̃
)
f(P ∗)

≥
(
`
/
k
)
f(P ∗) ,

where inequality (5) holds because P̃ is an optimal set of
size at most `; inequality (6) holds because Q ⊆ P ∗ implies{
i : j ∈ Oi(P

∗)
}
⊆
{
i : j ∈ Oi(Q)

}
for j ∈ Q, and the

terms that are lost are nonnegative; and inequality (7) holds
as ε = 0, Q ⊆ P ∗, j ∈ Q, and j ∈ Oi(P

∗) together imply
|Oi(P

∗)| ≥ |Oi(Q)|. Thus Greedy achieves approximation
ratio at least `/k.

Finally observe that Greedy runs in O(tk2nm`) time for
t features, n benchmarks, and a universe U of m parameter
choices. For constant `, this is polynomial time.

We next show it is not possible to prove a greater approx-
imation ratio than in Theorem 1, as that ratio is tight.

Theorem 2. Approximation ratio `/k for Greedy is tight.

Proof. Since the ratio is obviously tight for ` = k, as-
sume ` < k. For any arbitrary constant 0 < δ < 1−(`/k),
and for any error tolerance 0 ≤ ε < 1, consider the following
infinite class of instances of Advisor Set with n benchmarks,
weights wi = 1/n, cardinality bound k = n, and universe
U = {0, 1, . . . , n} of n+1 parameter choices. The estimator
values (which can be achieved by appropriate feature vec-
tors Fij) are: E(Ai0) = 1 for all i; E(Aij) = (1−ε)/2 for
i = j > 0; and E(Aij) = 0 otherwise. The alternate align-
ment accuracies are: ai0 = (`/k)+δ for all i; aij = 1 for
i=j>0; and aij = 0 otherwise.

For such an instance of Advisor Set, an optimal set of size
at most k is P ∗ = {1, . . . , n}, which achieves f(P ∗) = 1. Ev-

ery optimal set P̃ of size at most ` < k satisfies P̃ ⊇ {0},
and hence has value f(P̃ ) = (`/k) + δ. Every greedy aug-

mentation P ⊇ P̃ also has this same value f(P ) = f(P̃ ).
Thus on this instance the advisor set P output by Greedy

has approximation ratio exactly f(P )/f(P ∗) = (`/k) + δ.
Now suppose the approximation ratio from Theorem 1 is

not tight, in other words, that an even better approximation
ratio α > `/k holds. Then take δ =

(
α− (`/k)

)
/2, and

run Greedy on the above input instance. On this instance,
Greedy only achieves ratio (`/k)+δ =

(
(`/k)+α

)
/2 < α, a

contradiction. So the approximation ratio is tight.

5. THE COMPLEXITY OF LEARNING
OPTIMAL ADVISOR SETS

We now prove that Advisor Set, the problem from Section 3
of learning an optimal parameter set for an advisor, is NP-
complete, and hence is unlikely to be efficiently solvable in
the worst-case. As is standard, we prove NP-completeness
for a decision version of this optimization problem, which is
a version whose output is a yes/no answer (as opposed to a
solution that optimizes an objective function).

The decision version of Advisor Set has an additional
input ` ∈ Q, which will lower bound the objective func-
tion. The decision problem is to determine, for the input
instance k, U,wi, aij , Fij , c, ε, `, whether or not there exists
a set P ⊆ U with |P | ≤ k for which the objective function
has value fc(P ) ≥ `.

Theorem 3. The decision version of Advisor Set is NP-
complete.

Proof. We use a reduction from the Dominating Set
problem, which is NP-complete [7, problem GT2]. The in-
put to Dominating Set is an undirected graph G = (V,E)
and an integer k, and the problem is to decide whether or



not G contains a vertex subset S ⊆ V with |S|≤k such that
every vertex in V is in S or is adjacent to a vertex in S.
Such a set S is called a dominating set for G.

Given an instance G, k of Dominating Set, we construct
an instance U,wi, aij , Fij , c, ε, ` of the decision version of Ad-
visor Set as follows. For the cardinality bound use the same
value k, for the number of benchmarks take n= |V |, and
index the universe of parameter choices by U = {1, . . . , n};
have only one feature (t=1) with estimator coefficients c=1;
use weights wi =1/n, error tolerance ε=0, and lower bound
` = 1. Let the vertices of G be indexed V = {1, . . . , n}.
(So both the set of benchmarks and the universe of param-
eter choices in essence correspond to the set of vertices V
of graph G.) Define the neighborhood of vertex i in G to be
N(i) :=

{
j : (i,j) ∈ E

}
∪ {i}, which is the set of vertices

adjacent to i, including i itself. For the alternate alignment
accuracies, take aij = 1 when j ∈ N(i); otherwise, aij = 0.
For the feature vectors, assign Fij = aij .

We claim that G, k is a yes-instance of Dominating Set
iff k, U,wi, aij , Fij , c, ε, ` is a yes-instance of Advisor Set.
To show the forward implication, suppose G has a domi-
nating set S ⊆ V with |S| ≤ k, and consider the advisor
set P = S. With the above construction, for every bench-
mark, set Oi(P ) = N(i) ∩ S, which is nonempty (since S
is a dominating set for G). So Ai(P ) = 1 for all bench-
marks. Thus for this advisor set P , the objective function
has value fc(P ) = 1 ≥ `. For the reverse implication, sup-
pose advisor set P achieves objective value ` = 1. Since
P achieves value 1, for every benchmark it must be that
Ai(P ) = 1. By construction of the aij , this implies that in G
every vertex i ∈ V is in P or is adjacent to a vertex in P .
Thus set S = P , which satisfies |S|≤k, is a dominating set
for G. This proves the claim.

This reduction shows Advisor Set is NP-hard, as the in-
stance of Advisor Set can be constructed in polynomial time.
Furthermore, it is in NP, as we can nondeterministically
guess an advisor set P , and then check whether its cardi-
nality is at most k and its objective value is at least ` in
polynomial time. Thus Advisor Set is NP-complete.

Note that the proof of Theorem 3 shows Advisor Set is
NP-complete for the special case of a single feature, and
when the accuracies and feature values are all binary and
benchmarks are uniformly weighted.

6. EXPERIMENTAL RESULTS
We evaluate the performance of our approach to learning pa-
rameter sets through experiments on a collection of bench-
marks that are protein multiple sequence alignments. A full
description of the benchmark collection, and the construc-
tion of a universe U of parameter choices that is appropriate
for protein alignment, is given in [10], and is briefly summa-
rized below. In the experiments we compare parameter ad-
visors that use five different estimators from the literature:
MOS [13], PredSP [1], GUIDANCE [16], Facet [10], and TCS [3].

The benchmarks suites used in our experiments consist of
reference alignments that are mainly induced by performing
structural alignment of the known three-dimensional struc-
tures of the proteins. Specifically we use the BENCH suite of
Edgar [6], supplemented by a selection of benchmarks from
the PALI suite [2]. The entire benchmark collection consists
of 861 reference alignments. A subset of this collection was

also used, consisting of the 605 reference alignments with at
least four sequences, in order to evaluate the GUIDANCE esti-
mator, which requires this many sequences in its alignments.

As is common in benchmark suites, easy-to-align bench-
marks are highly over-represented in this collection com-
pared to hard-to-align benchmarks. To correct for this bias
when evaluating average advising accuracy, we binned the
861 benchmarks in our collection by difficulty ; we mea-
sured the difficulty of a benchmark by the true accuracy
of the alignment of its sequences computed using the mul-
tiple alignment tool Opal [19, 20] under its optimal default
parameter choice. We then divided the full range [0, 1] of
accuracies into 10 bins with difficulties [(i− 1)/10, i/10] for
i = 1, . . . , 10. The weight wj of benchmark Bj falling in bin i
that we used for training is wj = (1/10)(1/ni), where ni is
the number of benchmarks in bin i. These weights wj are
such that each hardness bin contributes equally to the advis-
ing accuracy objective f(P ). Note that when the advising
set P consists only of this single default parameter choice,
the average advising accuracy f(P ) will be roughly 50%.

For each benchmark in our collection, we generated alter-
nate alignments of its sequences using the Opal aligner in-
voked with each parameter choice from our universe U . Each
parameter choice for Opal is a five-tuple (σ, γI , γE , λI , λE)
of parameter values, where σ specifies the amino acid sub-
stitution scoring matrix, pair γE , λE specifies the gap-open
and gap-extension penalties for external gaps in the align-
ment (also called terminal gaps), and γI , λI specifies the gap
penalties for internal gaps (or non-terminal gaps).

The universe U of parameter choices we consider in our
experiments consists of eight substitution matrices from the
BLOSUM [8] and VTML [14] families combined with over 2,100
four-tuples of gap penalties that are in a range surrounding
each of the default parameter values for Opal. This initial set
of roughly 16,900 parameter choices (a substitution matrix
combined with a gap-penalty assignment) was then reduced
by selecting the 25 most accurate parameter choices for each
of the 10 hardness bins. Unioning these top choices from
all hardness bins (and removing duplicates) gave our final
universe U , which consists of 243 parameter choices.

To generate training and testing sets for our experiments
on learning advisor sets, we used 12-fold cross validation.
For each hardness bin, we evenly and randomly partitioned
the benchmarks in the bin into twelve groups; we then formed
twelve different splits of the entire collection of benchmarks
into a training class and a testing class, where each split
placed one group in a bin into the testing class and the
other eleven groups in the bin into the training class; finally,
for each split we generated a testing set and a training set
of example alignments by generating |U | alignments from
each benchmark B in a training or test class by running
Opal on B using each parameter choice in U . An estimator
learned on the examples in the training set was evaluated
on the examples in the associated test set. The results that
we report are averages over twelve folds, where each fold is
one of these training and testing set pairs. (Note that across
these twelve folds, every example alignment is tested on ex-
actly once.) For each fold, over 190, 000 training examples
were considered over the 243 parameters.

For the reduced benchmark collection used to evaluate the
GUIDANCE estimator, we used 4-fold cross validation, per-
formed using the same procedure described above. Each of
these folds has over 109, 000 training examples.



50% 

51% 

52% 

53% 

54% 

55% 

56% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A
dv

is
in

g 
A

cc
ur

ac
y 

Cardinality 

Facet (Greedy, ε = 0%) 
Facet (Oracle) 
Facet (Exact, ε = 0%) 
Default 

Facet!
Testing 

50% 

51% 

52% 

53% 

54% 

55% 

56% 

57% 

58% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A
dv

is
in

g 
A

cc
ur

ac
y 

Cardinality 

Facet (Greedy, ε = 0%) 
Facet (Oracle) 
Facet (Exact, ε = 0%) 
Default 

Facet!
Training 

Figure 3: Advising using exact, greedy, and oracle sets with
Facet. The plots show advising accuracy using the Facet

estimator with parameter sets learned by the optimal exact
algorithm and the greedy approximation algorithm for Ad-
visor Set, and using oracle sets. The horizontal axis is the
cardinality of the advisor set, and the vertical axis is the
advising accuracy averaged across the benchmarks. Exact
sets are known only for cardinalities k ≤ 5; greedy sets are
augmented from the exact set of cardinality ` = 1. The top
and bottom plots show accuracy on the testing and train-
ing data, respectively, where accuracies are averaged over all
testing or training folds.

6.1 Estimator features
The choice of feature functions is crucial for the accuracy of
the estimator, and hence the accuracy of the resulting advi-
sor. Estimator features should correlate with true accuracy,
be efficiently computable, and be bounded in value. In prac-
tice, the strongest features use predicted secondary structure
that is computed for the protein sequences; in our experi-
ments we predicted secondary structure using PSIPRED [9].
Our accuracy estimator Facet [5, 4] uses the following five
feature functions, which we briefly summarize. (Full details
on the features used by Facet are in [10].)

• Secondary Structure Blockiness measures the fraction
of substitutions in the alignment that are in an optimal
packing of disjoint blocks, where a block is a subset of
the alignment’s rows and a consecutive interval of its
columns such that all residues in the block have the
same predicted secondary structure.

• Secondary Structure Agreement is the probability that
residues paired by the substitutions in the alignment
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Figure 4: Advising accuracy of Facet within benchmark
bins. In the bar chart on the left, the horizontal axis shows
all ten benchmark bins, and the vertical bars show advis-
ing accuracy averaged over just the benchmarks in each bin.
Black bars give the accuracy of the optimal default parame-
ter choice, while red bars give the accuracy of advising with
Facet using the greedy set of cardinality k = 10. The dashed
line shows the limiting performance of a perfect advisor: an
oracle with true accuracy as its estimator using an optimal
oracle set of cardinality k = 10. The numbers in parenthe-
ses above the bars are the number of benchmarks in each
bin. The bar chart on the right shows advising accuracy
uniformly averaged over the bins.

share the same secondary structure, based predicted
secondary structure for the surrounding sequence.

• Secondary Structure Identity measures the fraction of
residue pairs in substitutions that share the same pre-
dicted secondary structure.

• Gap Open Density counts the number of runs of null
characters (or dashes) in the rows of the alignment, nor-
malized by the total length of the runs.

• Average Substitution Score is the average score of all
substitutions in the alignment under BLSM62 [8].

6.2 Learning advisor sets via different
algorithms

We first study the accuracy of advisor sets learned by differ-
ent algorithms for the Facet estimator. An optimal oracle
set is constructed for cardinalities 1 ≤ k ≤ 15 for each train-
ing instance. A coefficient vector is then found for the advi-
sor’s estimator for each of these sets by the difference-fitting
method described in [10]. Using this estimator learned for
the training data, exhaustive search was done to find optimal
exact advisor sets for cardinalities k ≤ 5. The optimal set
of size 1 (the most accurate single parameter choice) is then
used as the starting point to find near-optimal greedy advisor
sets for k ≤ 15. Each of these advisors is then used for pa-
rameter advising in Opal, returning the computed alignment
with the highest estimator value. The set-finding methods
are compared based on the average accuracy across bins of
the alignment chosen by the advisor.

Figure 3 shows the performance of these advisor sets using
twelve-fold cross validation. The top plot shows advising
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Figure 5: Greedily augmenting exact advisor sets. The
plot shows advising accuracy using Facet with advisor sets
learned by procedure Greedy, which augments an exact set
of cardinality ` to form a larger set of cardinality k > `.
Each curve is for greedily augmenting from a different exact
cardinality `; the horizontal axis is the cardinality k of the
augmented set. The vertical axis is advising accuracy on the
testing data, averaged over all benchmarks and all folds.

accuracy on the testing data averaged over benchmarks and
folds, while the bottom plot shows this on the training data.

Notice that while there is a drop in accuracy when an
advising set learned using the greedy and exact methods is
applied to the testing data, the drop in accuracy is greatest
for the exact sets. The value of ε shown was chosen to max-
imize the accuracy of the resulting advisor on the testing
data. Notice also that for cardinality k ≤ 5 (for which exact
sets could be computed), on the testing data the greedy sets
are essentially performing as well as the optimal exact sets.

Figure 4 shows the performance within each benchmark
bin when advising with Facet using greedy sets of cardinal-
ity k = 10. Notice that for many bins, the performance is
close to the best-possible accuracy attainable by any advisor,
shown by the dashed line for a perfect oracle advisor. The
greatest boost over the default parameter choice is achieved
on the bottom bins that contain the hardest benchmarks.

6.3 Varying the exact set for the greedy
algorithm

To find the appropriate cardinality ` of the initial exact solu-
tion that is augmented within the approximation algorithm
Greedy, we tested the advising accuracy of the resulting
greedy sets learned using cardinalities 1 ≤ ` ≤ 5. Figure 5
shows the accuracy of the resulting advisor using the greedy
sets of cardinalities ` < k ≤ 15 augmented from exact sets
of cardinalities 1 ≤ ` ≤ 5. The points with circles show
the accuracy of the optimal exact set that is used within
procedure Greedy for augmentation.

Notice that this initial optimal set size ` has little effect on
the accuracy of the resulting advisor; at most cardinalities,
starting from the single best parameter choice (correspond-
ing to ` = 1) has highest advising accuracy. This is likely
due to the behavior noted earlier in Figure 3 that exact sets
do not generalize as well as greedy sets.
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Figure 6: Advising using exact, greedy and oracle sets with
TCS and MOS. The plots show advising accuracy on testing
data using the TCS and MOS estimators with parameter sets
learned for these estimators by the exact and greedy algo-
rithms for Advisor Set, and using oracle sets, as in Figure 3.
The top and bottom plots are for the TCS and MOS estima-
tors, respectively.

6.4 Learning advisor sets for other estimators
We also learned advisor sets for other accuracy estimators
besides Facet: namely TCS, MOS, PredSP, and GUIDANCE. The
scoring-function-based accuracy estimators TCS, PredSP, and
GUIDANCE do have any dependence on the advisor set cardi-
nality or the training benchmark sets used. The support-
based estimator MOS, however, requires a set of alternate
alignments in order to compute its estimator value or an
alignment. For each experiment, an alignment’s MOS value
was computed using alternate alignments generated by align-
ing under the parameter choiceds in the oracle set; if the
parameter choice being tested is in the oracle set, it was
removed from this collection of alternate alignments.

After computing the values of these estimators, exhaustive
search was used to find optimal exact sets of cardinality
` ≤ 5 for each estimator, as well as greedy sets of cardinality
k ≤ 15 (which augmented the exact set for ` = 1).

The tendency of exact advisor sets to not generalize well
is even more pronounced when accuracy estimators other
than Facet are used. Figure 6 shows the performance on
testing data of the greedy, exact, and oracle advisor sets
learned for the best two other estimators, TCS and MOS. The
results of finding a greedy advisor set for TCS for cardinalities
larger than 5 are similar to those seen for Facet (there is a
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Figure 7: Comparing estimators on greedy advisor sets. The
plots show advising accuracy on greedy sets learned for the
following estimators from the literature: Facet [10], TCS [3],
MOS [13], PredSP [1], and GUIDANCE [16]. The vertical axis
is advising accuracy on the testing data, averaged over all
benchmarks and all folds. The horizontal axis is the car-
dinality k of the greedy advisor set. Greedy sets are aug-
mented from the exact set of cardinality ` = 1. The top
plot uses the full suite of 861 benchmarks. The bottom plot
includes the GUIDANCE estimator, which requires alignments
with at least four sequences; this plot uses a reduced suite
of the 605 benchmarks satisfying this requirement.

roughly 1% accuracy improvement over the oracle set), but
surprisingly with TCS its exact set always has lower testing
accuracy than its greedy set. Interestingly, for MOS its exact
set rarely has better advising accuracy then the oracle set.

In addition to TCS and MOS, performance of the greedy ad-
visor sets learned for the PredSP and GUIDANCE estimators
are shown in Figure 7. The bottom plot shows advising ac-
curacy for Facet, TCS, and GUIDANCE on the subset of bench-
marks that have at least four sequences. Notice that while
advising with each of these estimators tends to eventually
reach a plateau of advising accuracy, the advising perfor-
mance does always improve when using advising sets with
more than simply a single default parameter choice. Notice
also that the plateau for Facet (the topmost curve in the
plots) occurs at the greatest cardinality and accuracy.

6.5 Varying the error tolerance
In all preceding experiments, an error tolerance ε was al-
ways used that gave the most accurate advisor on the testing
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Figure 8: Effect of error tolerance on advising accuracy. The
plots show advising accuracy on testing data using greedy
sets learned for the two best estimators, at various error
tolerances ε≥0. The top and bottom plots are for the Facet

and TCS estimators, respectively. For comparison, both plots
include a curve showing performance using the estimator on
oracle sets, drawn with a dashed line. The solid curves with
circles or diamonds highlight the best overall error tolerance.

data. Prior to conducting these experiments, our intuition
was that increasing the tolerance ε should improve the gen-
eralization of an advisor set. Figure 8 shows the effect of
different ε values on the testing accuracy of an advisor. No
clear relationship between testing accuracy and tolerance ε
is evident, though for the Facet and TCS estimators, setting
ε = 0 does generally give the best overall advising accuracy.

6.6 Parameter sets
Table 1 gives sets of parameter choices for the Opal aligner
for cardinalities k ≤ 10, found by the greedy approximation
algorithm for the Facet estimator, for one fold of training
data. In the table, The greedy set of cardinality i is the
parameter choices at rows 1 through i. Here a parameter
choice is 5-tuple (σ, γI , γE , λI , λE), where γI and γE are
gap-open penalties for non-terminal and terminal gaps re-
spectively, and λI and λE are corresponding gap-extension
penalties. The scores in the substitution matrix σ are dis-
similarity values scaled to the range [0, 100]. The accuracy
column gives the advising accuracy using the greedy set (in
Opal with Facet) on the training data, uniformly averaged
over the benchmark bins. This averaging will tend to yield
accuracies close to 50%.



Table 1: Greedy Parameter Sets for Opal Using Facet

Parameter choice Average
Cardinality (σ, γI , γE , λI , λE) advising accuracy

1
(
VTML200, 50, 17, 41, 40

)
51.2%

2
(
VTML200, 55, 30, 45, 42

)
53.4%

3
(
BLSUM80, 60, 26, 43, 43

)
54.5%

4
(
VTML200, 60, 15, 41, 40

)
55.2%

5
(
VTML200, 55, 30, 41, 40

)
55.6%

6
(
BLSUM45, 65, 3, 44, 43

)
56.1%

7
(
VTML120, 50, 12, 42, 39

)
56.3%

8
(
BLSUM45, 65, 35, 44, 44

)
56.5%

9
(
VTML200, 45, 6, 41, 40

)
56.6%

10
(
VTML120, 55, 8, 40, 37

)
56.7%

7. CONCLUSION
We have introduced the new problem of learning optimal
parameter sets for an advisor, and have shown that while
this problem is NP-complete, an efficient greedy approxi-
mation algorithm for learning parameter sets is remarkably
close to optimal in practice. Moreover, these parameter sets
significantly boost the accuracy of an aligner compared to
a single default parameter choice, when advising using the
best accuracy estimators from the literature.

7.1 Further research
The main frontier to next explore for further improving pa-
rameter advisors is whether new, easily-computable feature
functions on multiple alignments can be discovered that
have stronger correlation with true accuracy. Improving the
accuracy estimator through better feature functions is likely
to give the greatest boost in advising accuracy. Finally, it
may be worth noting that the advising framework presented
here is actually independent of multiple sequence alignment,
and might be fruitfully applied beyond alignment to param-
eter advising problems in other contexts as well.
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