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Abstract. We consider L-graphs, that is contact graphs of axis-aligned L-shapes
in the plane, all with the same rotation. We provide several characterizations of L-
graphs, drawing connections to Schnyder realizers and canonical orders of max-
imally planar graphs. We show that every contact system of L’s can always be
converted to an equivalent one with equilateral L’s. This can be used to show a
stronger version of a result of Thomassen, namely, that every planar graph can be
represented as a contact system of square-based cuboids.
We also study a slightly more restricted version of equilateral L-contact systems
and show that these are equivalent to homothetic triangle contact representations
of maximally planar graphs. We believe that this new interpretation of the prob-
lem might allow for efficient algorithms to find homothetic triangle contact rep-
resentations, that do not use Schramm’s monster packing theorem.

1 Introduction

A contact graph is a graph whose vertices are represented by geometric objects (such
as curves, line segments, or polygons), and edges correspond to two objects touching in
some specified fashion. There is a large body of work about representing planar graphs
as contact graphs. An early result is Koebe’s 1936 theorem [18] that all planar graphs
can be represented by touching disks.

In 1990 Schnyder showed that maximally planar graphs contain rich combinato-
rial structure [20]. With an angle labeling and a corresponding edge labeling, Schnyder
shows that maximally planar graphs can be decomposed into three edge disjoint span-
ning trees. This combinatorial structure, called Schnyder realizer, can be transformed
into a geometric structure to produce a straight-line crossing-free planar drawing of
the graph with vertex coordinates on the integer grid. While Schnyder realizers were
defined for maximally planar graphs [20], the notion generalizes to 3-connected planar
graphs [10]. Fusy’s transversal structures [13] for irreducible triangulations of the 4-gon
also provide combinatorial structure that can be used to obtain geometric results. Later,
de Fraysseix et al. [8] show how to use Schnyder realizer to produce a representation of
planar graphs as T-contact graphs (vertices are axis-aligned T’s and edges correspond
to point contact between T’s) and triangle contact graphs.

Recently, a similar combinatorial structure, called edge labeling, was identified for
the class of planar Laman graphs, and this was used to produce a representation of
such graphs as L-contact graphs, with L-shapes in all four rotations [17]. Planar Laman
graphs contain several large classes of planar graphs (e.g., series-parallel graphs, outer-
planar graphs, planar 2-trees) and are also of interest in structural mechanics, chemistry
and physics, due to their connection to rigidity theorys [15].



Planar bipartite graphs can be represented by axis-aligned segment contacts [5, 7,
19]. Triangle-free planar graphs can be represented via contacts of segments with only
three slopes [6]. They can also be represented by contact axis-aligned line segments,
L-shapes, and Γ -shapes [4].

Planar graphs have also been considered as intersection graphs of geometric objects.
One major result is the proof of Scheinerman’s conjecture that all planar graphs are in-
tersection graphs of line segments in the plane [3]. Recently the k-bend Vertex intersec-
tion graphs of Paths in Grids (Bk-VPG)were introduced and it was shown that planar
graphs are B3-VPG [1]. It was recently shown that planar graphs are B2-VPG [4],
where the authors also conjectured that all planar graphs are a intersection graphs of
one fixed rotation of axis-aligned L-shapes (a special case of B1-VPG).

In the 3D case Thomassen [22] shows that any planar graph has a proper contact
representation by touching cuboids (axis-alligned boxes). Felsner and Francis [12] show
that any planar graph has a (not necessarily proper) representation by touching cubes. In
a proper contact representation of cuboids contacts must always have non-zero area and
cubes are special cuboids where all sides have the same length. Recently Bremner et
al. [2] describe two new proofs of Thomassen’s result: one based on canonical orders [9]
and the other based on Schnyder’s realizers [20].

Our Contributions: In this paper we consider contact graphs of L-shapes in only one
fixed rotation, so-called L-graphs. In Section 2 we briefly review Schnyder realizers, T-
contact representations, triangle contact representations, and canonical orders. In Sec-
tion 3 we characterize L-graphs in terms of canonical orders, Schnyder realizers, and
edge labelings. We also show how to recognize L-graphs in polynomial time. In Sec-
tion 4 we show that every L-representation has an equivalent one with only equilateral
L-shapes. Using this we strengthen the result of Thomassen [22] and Bremner et al. [2],
by showing that every planar graph admits a proper contact representation with square-
based cuboids. Finally, we consider a special class of equilateral L-representations,
drawing connections to homothetic triangle contact representations of maximally planar
graphs and contact representations with cubes.

2 Preliminaries
Schnyder realizers for maximally planar graph were originally described in 1990 [20]
and have played a central role in numerous problems for planar graphs.

Definition 1 ([20]). Let G = (V,E) be a maximally planar graph with a fixed plane
embedding. Let v1, v2, vn be the outer vertices in clockwise order. A Schnyder realizer
of G is an orientation and coloring of the inner edges of G with colors 1 (red), 2 (blue)
and n (green), such that:
(i) Around every inner vertex v in clockwise order there is one outgoing red edge, a

possibly empty set of incoming green edges, one outgoing blue edge, a possibly
empty set of incoming red edges, one outgoing green edge, a possibly empty set of
incoming blue edges.

(ii) All inner edges at outer vertices are incoming and edges at v1 are colored red,
edges at v2 are colored blue, edges at vn are colored green.

Schnyder realizer have several useful properties; see Fig. 1. For example, if S1, S2

and Sn are the sets of red, blue and green edges, then for i = 1, 2, n we have that Si is
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Fig. 1. (a) The Schnyder rules for inner and outer vertices. (b) A maximally planar graph G with
a Schnyder realizer (S1, S2, Sn). (c) A T-contact representation of G w.r.t. (S1, S2, Sn). (d) A
triangle contact representation of G w.r.t. (S1, S2, Sn). (e) A homothetic triangle representation
of G w.r.t. (S1, S2, Sn). (f) A canonical order of G w.r.t. S1, S2.

a directed tree spanning all inner vertices plus vi, where each edge is oriented towards
vi. This way the orientation of edges can be recovered from their coloring and hence
we denote a Schnyder realizer simply by the triple (S1, S2, Sn). For i = 1, 2, n let S−1i
be the set Si with the orientation of every edge reversed. It is well-known that for every
Schnyder realizer S1 ∪ S2 ∪ S−1n is an acyclic set of directed edges.

Schnyder realizers are often used show that planar graphs admit certain contact rep-
resentations. In a T-contact representation of a maximally planar graph G = (V,E) the
vertices are assigned to interior disjoint axis-aligned upside down T-shapes, so that two
T-shapes touch in a point if and only if the corresponding vertices are joined by an edge
in G. For a vertex v ∈ V let Tv be the corresponding T-shape. From every T-contact
representation we get a Schnyder realizer by coloring an edge uv red (respectively blue
and green) if the top (respectively left and right) endpoint of Tu is contained in Tv; see
Fig. 1(c).

Similarly to T-contact representations, de Fraysseix et al. [8] consider triangle con-
tact representations. In a triangle contact representation of a maximally planar graph
G = (V,E) the vertices are assigned to interior disjoint triangles, so that two triangles
touch in a point if and only if the corresponding vertices are joined by an edge in G.
We can indeed assume w.l.o.g. all triangles are isosceles with horizontal bases and the
tip above. For a vertex v ∈ V let ∆v be the corresponding triangle. We again get a
Schnyder realizer by coloring an edge uv red (respectively blue and green) if the top
(respectively left and right) corner of ∆u is contained in ∆v; see Fig. 1(d).

Theorem 1 ([8]). Let G be a maximally planar graph with a fixed embedding. Then:
– Every T-contact representation defines a Schnyder realizer and vice versa.
– Every triangle contact representation defines a Schnyder realizer and vice versa.
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A homothetic triangle representation is a triangle contact representation in which all
triangles are homothetics. It has been noticed by Gonçalves, Lévêque and Pinlou [14],
that a result of Schramm [21] implies the following.

Theorem 2 ([14]). Every 4-connected maximally planar graph admits a homothetic
triangle representation.

Canonical orders were first introduced by De Fraysseix, Pach and Pollack in 1990 [9].
For maximally planar graphs Schnyder realizers and canonical orders are very closely
related, as shown in Lemma 1 below.

Definition 2 ([9]). Let G = (V,E) be a biconnected planar graph with a fixed embed-
ding and some distinguished outer edge v1v2. A canonical order of G is a permutation
(v1, v2, v3, . . . , vn) of the vertices of G, such that:
(i) For each i ≥ 3 the induced subgraph Gi of G on {v1, . . . , vi} is biconnected, and

the boundary of its outer face is a cycle Ci containing the edge v1v2.
(ii) For each i ≥ 4 the vertex vi lies in the outer face of Gi−1, and its neighbors in

Gi−1 form a subpath of Ci \ v1v2.
The outer edge v1v2 of G is then called the base edge of the canonical order.

Lemma 1. If G is a maximally planar graph with Schnyder realizer (S1, S2, Sn), then
every topological ordering of S1 ∪S2 ∪S−1n defines a canonical order of G. Moreover,
every canonical order of G is a topological order of S1 ∪ S2 ∪ S−1n for some Schnyder
realizer (S1, S2, Sn).

We call a canonical order that is a topological order of S1 ∪ S2 ∪ S−1n a canonical
order w.r.t. S1, S2. See Fig. 1(f) for an example. Note that the same Schnyder realizer
may give rise to several canonical orders as for example swapping the order of v4 and
v5 in Fig. 1(f) results in a different canonical order w.r.t. S1, S2.

Another vertex order that can be defined for any graph is the so-called k-degenerate
order. For an n-vertex graph G and a number k ∈ N (v1, . . . , vn) is a k-degenerate
order of G if for each i = 1, . . . , n the vertex vi has no more than k neighbors in the
induced subgraph Gi−1 of G on {v1, . . . , vi−1}. A graph is k-degenerate if it admits
some k-degenerate order, and maximally k-degenerate if for each i ∈ {1, . . . , n} vertex
vi has exactly min{i−1, k} neighbors inGi−1. A very important subclass of maximally
k-degenerate graphs are k-trees. A maximally k-degenerate graph G is a k-tree if in
some k-degenerate order of G the neighborhood of vi is a clique in Gi−1, i = 1, . . . , n.
Equivalently, k-trees are exactly the inclusion-maximal graphs of tree-width k.

3 Contact L-graphs: Characterization and Recognition

An L-contact representation, or L-representation for short, of a graph G = (V,E) is
a set of interior disjoint axis-aligned L-shapes, one for each vertex, such that two L-
shapes touch in a point if and only if the corresponding vertices in G are adjacent.
Unless stated otherwise we allow only one of the four possible rotations of L-shapes
here. An L-representation is degenerate if two endpoints of L-shapes or an endpoint
and a bend coincide, and non-degenerate otherwise. A graph is an L-contact graph or
simply L-graph if it admits an L-representation. Since one can remove any contact in
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Fig. 2. (a) An L-representation with base edge v1v2 and outer staircase S ⊂ Lv1 ∪ Lx1 ∪ Lx2 ∪
Lx3 ∪ Lv2 drawn thick. (b) The corresponding embedded L-graph with the corresponding edge
labeling. (c) A corresponding 2-canonical order of the graph.

an L-representation by shortening one L, L-graphs are closed under taking subgraphs.
Throughout this section we consider maximal L-graphs only, that is, L-graphs (with at
least two vertices), that are not proper subgraphs of another L-graph.

For a fixed L-representation we denote the L-shape corresponding to a vertex v
by Lv . The vertex for the L-shape with topmost horizontal leg and the vertex for the
L-shape with rightmost vertical leg is denoted by v1 and v2, respectively. The edge
v1v2 is called the base edge of the L-representation. Every L-representation defines a
plane embedding of the underlying L-graph G. Each inner face of G corresponds to
a rectilinear polygon whose boundary lies in the union of L-shapes for the vertices
of that face. The L-shapes whose bends lie in at most one such rectilinear polygon
correspond to the outer vertices of G. The maximal rectilinear path S containing all
bends of these L-shapes is called the outer staircase of the L-representation. The L-
shapes appear along S starting with Lv1 and ending with Lv2 in the same order as the
outer vertices of G along the outer face starting with v1 and ending with v2; see Fig. 2.

For a maximally planar graphG and a Schnyder realizer (S1, S2, Sn) ofGwe define
G \ Sn as the graph (V \ vn, E \ Sn).

Lemma 2. For every maximal L-graph G with base edge v1v2 there is a maximally
planar graph H with a Schnyder realizer (S1, S2, Sn), such that G = H \ Sn.

Proof. We consider any L-representation of G with base edge v1v2. We introduce a
T-shape Tvn whose vertical leg lies to the left of Lv1 and whose horizontal leg lies
below Lv2 . We obtain a T-representation by adding a left leg to every L-shape so that
its endpoint touches some vertical leg but is interior disjoint from any other leg. Let
H be the maximally planar graph with that T-representation and (S1, S2, Sn) be the
corresponding Schnyder realizer. Then G = H \ Sn. ut

Recall from Definition 2 that if (v1, . . . , vn) is a canonical order of some bicon-
nected graph G, then for every i ∈ {3, . . . , n} the subgraph Gi = G[v1, . . . , vi] is also
biconnected, which implies that for each i = 3, . . . , n the vertex vi has degree at least
two in G[v1, . . . , vi]. A 2-canonical order is a canonical order for which each vi has
degree exactly two in Gi. In particular a 2-canonical order is a special 2-degenerate or-
der of a planar graph that depends on the chosen embedding. Note that there are planar
maximal 2-degenerate graphs that admit no 2-canonical order; see Fig. 3(a) and (b).
Note also that the graph in Fig. 3(a) admits a 2-degenerate order in which every vertex
is put into the outer face of the graph induced by vertices of smaller index.
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Fig. 3. (a),(b) Planar maximal 2-degenerate graphs that admit no 2-canonical order. (c) A graph
with a 2-canonical order with base edge e = v1v2.

Lemma 3. If a graph admits a 2-canonical order with base edge v1v2 then it admits
an L-representation with base edge v1v2. Moreover, given a 2-canonical order an L-
representation can be found in linear time.

Proof. We use induction on the number of vertices, where the base case of just two
vertices trivially holds. So let G be a graph on at least three vertices. Assume that G
admits a 2-canonical order and let x be the last vertex in the order. Applying induction
toG\x – a graph with a 2-canonical order in which both neighbors of x lie on the outer
face – we obtain an L-representation of G \ x. The L-shapes for the two neighbors, u
and v, of x appear on the outer staircase S. It is now possible to add an L-shape Lx,
making contact with Lu and Lv , and this way obtain an L-representation of G. ut

For a graph G with a fixed plane embedding and distinguished outer edge v1v2 we
define an edge labeling of G with base edge v1v2 to be an orientation and coloring of
the edges of G different from v1v2 with colors 1 (red) and 2 (blue), such that:
(i) Around every inner vertex v in clockwise order there is one outgoing red edge, one

outgoing blue edge, a possibly empty set of incoming red edges, a possibly empty
set of incoming blue edges.

(ii) All non-base edges at v1 (v2) are incoming at v1 (v2) and colored red (blue).
(iii) Reversing all edges of color 1 gives an acyclic graph.
The labeling defined above is a special case of the edge labeling in [17], which charac-
terizes contact L-representations with L-shapes in all four rotations.

Theorem 3. For every graph G with a plane embedding and distinguished outer edge
v1v2 the following are equivalent:

(C1) G admits an L-representation with base edge v1v2.
(C2) G = H\Sn for some maximally planar graphH and Schnyder realizer (S1, S2, Sn).
(C3) G admits an edge labeling with base edge v1v2.
(C4) G admits a 2-canonical order with base edge v1v2.

Proof. (C1) =⇒ (C2): This is Lemma 2.
(C2) =⇒ (C3): Follows immediately from the definition of a Schnyder realizer.
(C3) =⇒ (C4): Consider an orientation and coloring of E(G) \ v1v2 with the above

properties. We do induction on the number of vertices of G. For |V (G)| = 2 there
is nothing to show. For |V (G)| ≥ 3 consider the path P = x0, x1, . . . , xk, xk+1 on
the outer face of G not containing the edge v1v2, where x0 = v1 and xk+1 = v2.
Since the edges x0x1 and xkxk+1 are oriented towards x0 and xk+1, respectively,
for some i ∈ {1, . . . , k} the edges xi−1xi and xixi+1 are outgoing at xi. Since
every vertex different from v1 and v2 has one outgoing red and one outgoing blue
edge, we find a directed red path from xi to v1 and a directed blue path from xi
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to v2. No vertex v 6= xi lies on both these paths, since otherwise we would have
a directed after reversing all red edges. It follows that xi−1xi is colored red and
xixi+1 is blue. From the local coloring around xi we see that xi has no incoming
edge. Applying induction to G \ xi we obtain a 2-canonical order of G \ xi and
putting xi at the end of this order gives a 2-canonical order of G.

(C4) =⇒ (C1): This is Lemma 3. ut

The remainder of this section deals with the recognition problem of maximal L-
graphs. From Theorem 3, every maximal L-graph is necessarily 2-degenerate and pla-
nar. Moreover, both planarity [16] and 2-degeneracy can be tested in linear time. For
the maximal 2-degeneracy test, we simply iteratively remove a vertex of smallest de-
gree. Clearly, if every vertex removed has degree exactly two, then G is maximal 2-
degenerate. The correctness of this method follows from the fact that no pair of degree
two vertices are adjacent in a maximal 2-degenerate graph. This test is easily imple-
mented in linear time via a pre-processing bucket sort of the vertices by degree and
adjusting the “bucket membership” of each vertex with each vertex deletion. Thus, to
recognize maximal L-graphs we will focus on the planar 2-degenerate graphs.

We now demonstrate a linear time test to determine whether G has a 2-canonical
order with a given base edge e = v1v2. We first the consider 2-degenerate orders of G
from a fixed base edge.

Lemma 4. Let G be planar 2-degenerate with an edge e = v1v2. For every vertex v of
G, in every 2-degenerate order starting from e, the neighbors of v that precede v are
the same. Let

−→
Ge denote the orientation of G according to the precedence order with

base edge e.

Proof. See appendix. ut

Suppose we are given an edge e = v1v2 and need to determine whether G has a
2-canonical order starting from e. We first construct a 2-degenerate order σ. If no such
order exists, we reject e. Otherwise, by Lemma 4, we use σ to construct

−→
Ge.

We initialize the L-representation L = {Lv1 , Lv2} where Lv1 is the “top-most” L-
shape and Lv2 is the “right-most” L-shape. We also initialize the admissible vertices A
as the vertices that could be added next according to

−→
G (i.e., A contains the vertices

adjacent to both v1 and v2).
We now describe the main loop of our algorithm. Consider any admissible vertex

u1 and let x and y be u′1s neighbors with Lx, Ly ∈ L. Moreover, let u2, ..., uk be the
other admissible vertices adjacent to both x and y. Notice that in order to add every
Lui

, we need an appropriate visibility between Lx and Ly in L. However, we delay
testing this until the end of the algorithm to save time. Observe the following properties
of u1, . . . , uk. The L-shapes corresponding to these vertices will be “stacked” on top
of each other. This means that, if e is the base edge of an L-representation of G, no
pair ui, uj can belong to the same connected component of G \ {x, y}. Thus, we let
Hi be the connected component of G \ {x, y} which contains ui. We now consider
two cases. First, if (wlog) H1 contains v1, then Lu1

must be “lowest” L-shape among
Lu1

, . . . , Luk
in any representation since it requires a path of L-shapes that reaches

Lv1 while avoiding Lx and Ly . In particular, for each i ∈ {2, . . . , k}, we need Gi =
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Fig. 4. (a) The definition ofLv1 and Lv2 . (b) Introducing the L-shape for vi+1 maintaining the in-
variant. (c) A contact L-representation with L-shapes in two different rotations without equivalent
equilateral representation for both L1 and L2.

(G[Hi ∪ {x, y}] together with the edge xy) to have an L-representation Li with xy as
the base edge. Moreover, if H1 does not contain v1, we also need such an L1 for G1.
We recursively construct these Li’s then insert them into L. If any recursive call fails,
we know e was not a good base edge for G. If H1 contained v1, we add the an L-
shape for u1 to L, and update the admissible vertices with respect to u1 (note: we don’t
need to update with respect to u2, . . . , uk since we have already processed their entire
connected components). From here we repeat this main loop until we have exhausted
all vertices or we have found a contradiction. After exhausting the vertices we check
whether our constructed representation is correct. This completes the description of the
algorithm and it is easy to see that it runs in polynomial time.

4 Equilateral L-representations and Related Representations

Every L-representation of G with base edge v1v2 induces an edge labeling of G with
base edge v1v2, by orienting an edge uv from u to v if an endpoint of Lu is contained
in the interior of Lv , and coloring it red (blue) if it is the top (right) endpoint of Lu.
We say that two L-representations are equivalent if they induce the same edge labeling.
An L-shape is equilateral if its horizontal and vertical leg are of the same length. An
equilateral L-representation is one with only equilateral L-shapes.

Theorem 4. Every L-representation has an equivalent equilateral L-representation.

Proof. For a given L-representation with base edge v1v2, consider the induced edge
labeling and fix one corresponding 2-canonical order (v1, v2, . . . , vn). We construct an
equivalent L-representation with equilateral L-shapes along this 2-canonical order, i.e.,
by a variant of the algorithm given in Lemma 3. We maintain the following invariant:

Invariant: There is a line ` of slope −1 that intersects every segment of the outer
staircase in an interior point.

In the beginning we fix the line ` arbitrarily – say ` = {(r,−r) | r ∈ R}. We keep
` fixed throughout the entire construction. In the base case one can easily define the
L-shapes Lv1 and Lv2 so that all four legs intersect ` in an interior point – say Lv1 and
Lv2 have top endpoint (1, 2) and (3,−1), respectively, and right endpoint (4,−1) and
(5,−3), respectively; see Fig. 4(a). In general we have an L-representation of Gi =
G[v1, . . . , vi] in which the invariant is maintained.

Consider what happens when we insert a new L-shape for vi+1. Let u and v be the
two neighbors of vi+1 inGi+1. W.l.o.g. u comes before v when going counterclockwise
around the outer face of Gi starting at v1. Let su and sv be the horizontal segment and
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vertical segment of the outer staircase which are contained in Lu and Lv , respectively.
Note that by the invariant, if we would choose the points ` ∩ su and ` ∩ sv as top and
right endpoint of the newly inserted L-shape, then this would be equilateral. However,
we do not insert Lvi+1 exactly there as this would break the invariant. Instead, we insert
a slightly smaller L-shape in such a way that the corresponding two new segments of
the outer staircase intersect ` in the interior; see Fig. 4(b). ut

We remark that the equilateral L-representation constructed in Theorem 4 requires
an exponential sized grid. Finding an equilateral L-representation on a polysize grid
remains open. Further we remark that with more than one of the four possible rotations
in an L-representation, it is no longer true that every L-representation has an equivalent
equilateral one. Consider the L-representation in Fig. 4(c): in every equivalent represen-
tation the horizontal leg of L1 is longer than the horizontal leg of L2 and the vertical leg
of L1 is shorter than the vertical leg of L2. Thus L1 and L2 cannot be both equilateral.

For a maximally planar graph G with Schnyder realizer (S1, S2, Sn) and an inner
vertex v we define σi(v) to be the outgoing neighbor of v in Si, i = 1, 2, n. For conve-
nience, let σn(v1) = σn(v2) = σn(vn) = vn+1 for a dummy vertex vn+1 /∈ V (G).

Definition 3 (cuboid representation). Let G = (V,E) be a maximally planar graph,
(S1, S2, Sn) a Schnyder realizer of G, {Lv | v 6= vn} an L-representation of G \ Sn,
and h(v) a number for every vertex v ∈ V ∪ vn+1. For v 6= vn let (xrv, y

r
v) and (xtv, y

t
v)

be the right and top endpoint of Lv , respectively. Define an L-shape Lvn with right
endpoint (xrvn , y

r
vn) := (xtv2 , y

r
v2) and top endpoint (xtvn , y

t
vn) := (xtv1 , y

r
v1). Then for

every v ∈ V its cuboid is defined as:

Qv := [xtv, x
r
v]× [yrv, y

t
v]× [h(σn(v)), h(v)]

Note that for any v the projection of Qv onto the xy-plane gives a rectangle, two
sides of which form the L-shape Lv . The number h(v) corresponds to the “height”, i.e.,
z-coordinate, of the top side of the cuboid Qv; see Fig. 5. A cuboid representation of
a graph G is a set of interior disjoint cuboids, one for each vertex, so that two cuboids
intersect exactly if the corresponding vertices are adjacent inG. A cuboid representation
is proper if every non-empty intersection of two cuboids is a 2-dimensional rectangle.

Proposition 1. The cuboids given by Definition 3 form a cuboid representation of G
whenever h(vn+1) < h(vn) and for every inner vertex v of G we have

h(σ1(v)) ≥ h(v) and h(σ2(v)) ≥ h(v) and h(σn(v)) < h(v). (1)

Further, a non-degenerate L-representation implies a proper cuboid representation.

Proof. Note that conditions (1) imply that along the edges of S1∪S2∪S−1n the h-values
are non-decreasing. It is easy to show that the cuboids for the outer three vertices are
mutually touching with proper side contacts. So let uv be an inner edge of G. First as-
sume v = σi(u), i.e., uv ∈ Si, for some i ∈ {1, 2}. Looking at the L-representation we
see that projecting Qu and Qv onto the xy-plane gives two rectangles with non-empty
intersection or a proper side contact in the non-degenerate case, which is horizontal
if i = 1 and vertical if i = 2. Projecting Qu and Qv onto the z-axis gives intervals
[h(σn(u)), h(u)] and [h(σn(v)), h(v)], respectively. Since there is a directed path from
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Fig. 5. (a) An equilateral L-representation of G \ Sn together with an L-shape for the vertex vn.
(b)–(c) The cuboids can be defined along a canonical order w.r.t. S1, S2: The projection of each
Qv onto the xy-plane is a rectangle spanned by Lv . The maximum and minimum z-coordinate
of Qv is given by (the negative of) the index in the canonical order of v and σn(v), respectively.

u to σn(v) in S1 ∪ S2 ∪ S−1n we get from (1) that h(σn(v)) > h(u) ≥ h(v). Thus Qu
and Qv overlap non-trivially.

Next assume v = σn(u), i.e., uv ∈ Sn. Looking at the L-representation we see
that projecting Qu and Qv onto the xy-plane gives two rectangles that intersect or
overlap non-trivially in the non-degenerate case. Projecting Qu and Qv onto the z-
axis gives intervals [h(σn(u)), h(u)] = [h(v), h(u)] and [h(σn(v)), h(v)], respectively.
Thus Qu ∩Qv 6= ∅ or is a rectangle parallel to the xy-plane in the non-degenerate case.

Finally let u and v be non-adjacent. If the rectangles defined by Lu and Lv do not
overlap, i.e., can be separated by a horizontal or vertical line, then in 3-space Qu and
Qv are separated by a plane parallel to the yz-plane or xz-plane. If the rectangles do
overlap, there is a path on at least two edges in Sn starting and ending in u and v,
respectively. From (1) and the definition of the z-component of cuboids follows that
Qu and Qv can separated by a plane parallel to the xy-plane. ut

Theorem 5. Planar graphs have proper contact representation by square-based cuboids.

Proof. As every planar graph is an induced subgraph of some maximally planar graph
we may assume w.l.o.g. that G = (V,E) is a maximally planar graph. We fix any
Schnyder realizer (S1, S2, Sn) of G, consider any non-degenerate equilateral L-repre-
sentation of G \ Sn, which exists by Theorem 4. Further we let (v1, v2, . . . , vn) be
any canonical order of G w.r.t. S1, S2 and define h(vi) = −i for i = 1, . . . , n and
h(vn+1) = −(n+1). Clearly, (1) holds for these h-values. Hence by Proposition 1 the
cuboids given by Definition 3 form a proper cuboid representation of G, and since the
L-representation is equilateral every cuboid has a square base. ut

We remark that a square-based cuboid representation can be found efficiently with
an iterative approach, when the L-representation and the cuboids are defined along a
single sweep of the chosen canonical order. This approach is illustrated in Fig. 5.

Next we address the question when the cuboids from Definition 3 are actually cubes.
This is clearly the case exactly if the chosen L-representation is equilateral and for
every vertex v we set h(v) = h(σn(v)) + |Lv|, where |Lv| is the length of a leg of Lv .
For a given equilateral L-representation we call this set of h-values the cubic heights.
We remark that in any L-representation we can choose the vertical leg of Lv1 and the
horizontal leg of Lv2 (keeping the rest unchanged), so that Lv1 and Lv2 are equilateral.
The cubic heights clearly satisfy h(σn(v)) < h(v), but in general (1) is not satisfied and
we are not guaranteed by Proposition 1 to obtain a cuboid representation. However, as
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we show next we can sometimes choose the equilateral L-representation (and implicitly
the Schnyder realizer) more carefully so that (1) is satisfied for the cubic heights.

Consider a fixed L-representation and let P be the set of all endpoints and bends of
L-shapes. For a vertex v let `v be the line through the top and right endpoint of Lv . A
segment s of an L-shape Lv is a connected component of Lv \ P , i.e., s ⊂ Lv , each
endpoint of s is a point from P and no further point from P is contained in s. LetC ⊂ P
be the set of contact points between any two L-shapes. We call an L-representation
Square-L, or SL-representation if for every p ∈ C the vertical segment whose right end
is p and the horizontal segment whose top end is p have the same length; see Fig. 6(a).

Lemma 5. Consider a maximally planar graph G, a Schnyder realizer (S1, S2, Sn),
and an SL-representation of G \ Sn. Then for every v ∈ V (G) the line `v has slope −1
and contains the bends of L-shapes corresponding to vertices w with σn(w) = v.

Proof. Consider any vertex v 6= v1, v2 and the corresponding L-shape Lv . Let Sv be
the staircase that connects the top and right endpoint of Lv and contains the bends of
L-shapes corresponding to vertices w with σn(w) = v. If s1, . . . , s2k are the segments
along Sv , then by assumption s2i−1 and s2i are of the same length, i = 1, . . . , k.
Equivalently, all bends on Sv lie on `v , and `v has slope −1. ut

Corollary 1. Let {Lv | v ∈ V } be an SL-representation. Then it is equilateral and
{∆v := conv(Lv) | v ∈ V } is a homothetic triangle representation of G. Further, the
cubic heights satisfy (1) and Proposition 1 yields a contact cube representation of G.

Proof. See Appendix. ut

Not every L-representation has an equivalent SL-representation, since not every
planar graph admits a homothetic triangle representation. But homothetic triangle rep-
resentations exist for 4-connected maximally planar graphs (Theorem 2) and planar
3-trees. Felsner and Francis [12] observed that from Theorem 2 one obtains a cube
representation for every planar graph. However, the only proof of Theorem 2 relies on
Schramm’s result [21], which gives no efficient computation of such representations.
We believe that our interpretation may help to find homothetic triangle representations
and hence cube representations efficiently; see discussion in the Appendix.

5 Conclusions and Open Problems

We investigated L-graphs, provided a characterization, showed relations to Schnyder
realizers and canonical orders, and described a recognition algorithm. Moreover, we
showed that every L-representation can be transformed into an equivalent equilateral
one, thus proving that every planar graph admits a proper contact representation with
square-based cuboids, strengthening results by Thomassen [22] and Bremner et al. [2].
Finally, we showed that a more restrictive version of equilateral L-representations is
equivalent to contact representations with homothetic triangles. Many problems remain:

– Characterizing contact L-graphs with L’s in two or three rotations is open.
– Can L-graphs be recognized in linear time?
– Is there always an equilateral L-representation on a polynomial grid?
– Does every planar graph admit a proper contact representation with cubes?
– Can SL-representations help find homothetic triangle representations efficiently?
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Appendix

Proof of Lemma 4: We prove this constructively. Clearly this is true for v1 and v2.
Thus, we consider these vertices as marked. Now, for any vertex v with exactly two
marked neighbours, we know that these two vertices must precede v in any 2-degenerate
order. Notice that if some vertex has more than two marked neighbours then we know
that this graph is not 2-degenerate since it contains a subgraph H with more than
2|V (H)|−3 edges. Similarly, if every unmarked vertex has less than two marked neigh-
bors, then we know that e is not the first edge of any 2-degenerate order. ut

Proof of Corollary 1: Since `v has slope −1 and contains both endpoints of Lv , Lv
is equilateral for every v. For every vertex v the sides of ∆v are formed by Lv and `v .
Since `v contains the bend of Lw for every w with σn(w) = v, ∆w and ∆v touch in
a unique point. Moreover, any two triangles are interior disjoint and for any v 6= w
the top (right) corner of ∆w touches ∆v if σ1(w) = v (σ2(w) = v). Thus {∆v | v ∈
V (G)} is a triangle representation of G and since the L-shapes are homothetic, so are
the triangles. See Fig. 6(b) for an example.

Finally, we consider the cubic heights, i.e., h(v) = h(σn(v)) + |Lv|, and show
that for any inner vertex v of G (1) is satisfied. Consider for any inner vertex v the
path P (v) in Sn from v to vn. Then h(v) = h(vn) +

∑
w∈V (P (v)) |Lw|. On the other

hand the distance between `vn and `v is exactly 1√
2

∑
w∈V (P (v))\vn |Lw|. Since for

i = 1, 2 we have that `v is closer to `vn than `σi(v) it follows h(σi(v)) ≥ h(v). With
h(σn(v)) = h(v)− |Lv| < h(v) we conclude that (1) is satisfied. ut

Discussion

Another approach for proving Theorem 2 was proposed by Felsner [12]: The idea is
to guess a Schnyder realizer, compute a contact triangle representation, and set up a sys-
tem of linear equations whose variables are the side lengths of triangles. The system has
a unique solution and if it is non-negative it gives homothetic triangles. If the solution
contains negative entries then from these one can read off a new Schnyder realizer and
iterate. In practice, this always produces a homothetic triangle representation. However,
there is no formal proof that this iterative procedure terminates.

Felsner’s approach can be directly translated into our setting with L-representations.
Guessing a Schnyder realizer we obtain an L-representation and an equation system
whose variables are the lengths of segments. It has a unique solution and if it is non-
negative we obtain an SL-representation. We believe that our interpretation may help
to find homothetic triangle representations and hence cube representations efficiently.
For example, the solution of the new equation system can be seen as two flows fh and
fv in the visibility graph Gh of horizontal and Gv of vertical segments, respectively.
Both, Gh and Gv are planar graphs, there is a vertex of Gh in every face of Gv and
vice versa, and every edge of Gh is crossed by a corresponding edge of Gv . However,
Gh, Gv are not a primal-dual pair of graphs; see Fig. 6(c). The edges of Gh and Gv
correspond to the horizontal and vertical segments, respectively. The solution to the
equation system corresponds to an sh − th flow in Gh and at the same time to an
sv − tv flow in Gv . A variable is positive if the flow through the corresponding edge
in Gh and Gv goes bottom-up and left-to-right, respectively. A similar approach works
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(a) (b)

sh
th

sv

tv

(c)

Fig. 6. (a) An SL-representation. (b) The corresponding homothetic triangle representation. (c)
Graphs Gh, drawn thick on black vertices, and Gv , drawn thin on white vertices. The gray boxes
indicate which pairs of edges correspond to each other, i.e., the corresponding variables receive
the same value in the sh − th flow in Gh and the sv − tv flow in Gv .

for squarings of rectangular duals [11], where Gv , Gh is indeed a primal-dual pair of
graphs. Considerations similar to those in [11] may give more insight to the problem.
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