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Abstract. The ability to model the temporal dimension is essential to many applications. Furthermore, the rate
of increase in database size and stringency of response time requirements has out-paced advancements in pro-
cessor and mass storage technology, leading to the need for parallel temporal database management systems.
In this paper, we introduce a variety of parallel temporal aggregation algorithms for the shared-nothing archi-
tecture; these algorithms are based on the sequential Aggregation Tree algorithm. We are particularly interested
in developing parallel algorithms that can maximally exploit available memory to quickly compute large-scale
temporal aggregates without intermediate disk writes and reads. Via an empirical study, we found that the number
of processing nodes, the partitioning of the data, the placement of results, and the degree of data reduction effected
by the aggregation impacted the performance of the algorithms. For distributed result placement, we discovered
that Greedy Time Division Merge was the obvious choice. For centralized results and high data reduction, Pair-
wise Merge was preferred for a large number of processing nodes; for low data reduction, it only performed
well up to 32 nodes. This led us to a centralized variant of Greedy Time Division Merge which was best for
the remaining cases. We present a cost model that closely predicts the running time of Greedy Time Division
Merge.

Keywords: aggregation tree algorithm, cost model, data reduction, parallel temporal aggregation, result place-
ment, temporal declustering

1. Introduction

An aggregate is a query language construct that computes a single value over a set of tuples.
SQL includes five aggregates: COUNT, SUM, MIN, MAX, and AVG. Aggregate functions
partition the input relation according to the value of a column; SQL accomplishes this
through a GROUP BY clause.

Aggregate functions are an essential component of data query languages and are heavily
used in many applications such as data warehousing. Several prominent query benchmarks
contain aggregate operations [18]; all but one of the 17 TPC-D benchmark queries involve
aggregates [16]. Hence, efficient execution of aggregate functions is an important goal.
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Table 1. Sample database and sample temporal aggregations.

(a) Data tuples (b) Result of count (c) Result of max salary

Name Salary Start Stop Count Start Stop Max Start Stop

Richard 40 K 18 ∞ 1 7 8 35 K 7 8

Karen 45 K 8 20 2 8 12 45 K 8 20

Nathan 35 K 7 12 1 12 18 40 K 20 ∞
Nathan 37 K 18 21 3 18 20

2 20 21

1 21 ∞

Unfortunately, aggregate computation is traditionally expensive, especially in a temporal
database where the problem is complicated by having to compute the intervals of time for
which the aggregate value holds. Consider the sample table in Table 1(a), listing the salaries
of employees and when these salaries are valid, indicated by closed-open intervals. Finding
the (time-varying) number of employees (Table 1(b)) involves computing the temporal
extent of each value, which requires determining the tuples that overlap each temporal
instant. Similarly, finding the time-varying maximum salary (Table 1(c)) involves computing
the temporal extent of each resulting value.

In this paper, we present several new parallel algorithms for the computation of temporal
aggregates on the shared-nothing architecture [15], which is the best known and increasingly
prevalent strategy to build a scalable computing platform using off-the-shelf processors.

We start with the (sequential) Aggregation Tree algorithm [10] and propose several ap-
proaches to parallelize it. The performance of the parallel algorithms relative to various
data set and operational characteristics is our main interest. Given the high scalability of the
shared-nothing architecture and rapidly growing memory capacity of computing platforms,
our interest is in developing parallel algorithms that can maximally exploit available re-
sources to quickly compute temporal aggregates that are infeasible when intermediate disk
writes and reads are required, as in other algorithms.

This paper is organized as follows. Section 2 gives a review of related work; the fol-
lowing section presents the sequential algorithm on which we base our parallel algorithms.
Our proposed algorithms to compute parallel temporal aggregates are then described in
Section 4. Sections 5 and 6 present empirical results obtained from the experiments per-
formed on a shared-nothing Pentium cluster. We modify two of the algorithms to exploit
time-partitioning in Section 7. Section 8 summarizes the experiments. The cost model of
Greedy Time Division Merge is given in Section 9. Finally, Section 10 concludes the paper.

2. Related work

Simple algorithms for evaluating scalar aggregates and aggregate functions were intro-
duced by Epstein [5]. A different approach employing program transformation methods
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to systematically generate efficient iterative programs for aggregate queries has also been
suggested [6]. Snodgrass et al. extended Epstein’s algorithms to handle temporal aggre-
gates [14]; these were further extended by Tuma [17] and by Kline [9, 10]. The resulting
algorithms are quite effective in a uniprocessor environment. However, because they are
inherently sequential, they all suffer from poor scale-up performance, indicating the need
to develop parallel algorithms for computing temporal aggregates.

Early research on developing parallel algorithms focused on the framework of general-
purpose multi-processor machines. Bitton et al. proposed two parallel algorithms for pro-
cessing conventional aggregate functions [1]. The Subqueries with a Parallel Merge algo-
rithm computes partial aggregates on each partition and combines the partial results in a
parallel merge stage to obtain a final result. Another algorithm, Project By list, exploits the
ability of the parallel system architecture to broadcast tuples to multiple processors. The
Gamma database machine project [3] implemented similar scalar aggregates and aggregate
functions on a shared-nothing architecture. A few parallel algorithms for handling tem-
poral aggregates were presented [22], but for a shared-memory architecture. Hence, these
algorithms have inherently limited scalability.

Recently, Moon et al. [11] proposed a disk-based algorithm that can compute temporal
aggregates for a database larger than the available memory of a stand-alone or shared-
nothing platform. Yang and Widom [20, 21] proposed an index structure that can be used to
compute temporal aggregates incrementally for an entire database or for a temporal range.
Zhang et al. [23] was concerned with minimizing I/O in a sequential architecture, by using
a new index structure to implement the more general range-temporal aggregation problem,
in which the temporal aggregate is restricted by a time interval and a key range. The parallel
algorithms proposed in this paper aim at exploiting all available memory of a shared-nothing
parallel computing platform to quickly compute large-scale temporal aggregates without
intermediate disk accesses in a scalable manner.

3. The aggregation tree

The parallel temporal aggregation algorithms proposed in this paper are based on the (se-
quential) Aggregation Tree algorithm (SEQ) designed by Kline [10]. An aggregation tree is
a binary tree that tracks the number of tuples whose timestamp periods contain an indicated
time span. Each node of the tree contains a start time, an stop time, and a count.

The tree has several global properties. The leaf nodes partition the time line, ordered
sequentially with no holes. (As before, the periods are closed-open, so equivalently the stop
time of one node must be identical to the start time of the next leaf node.) The period of
a branch node is the union of the periods of its child nodes (hence, the nodes at any level
partition the time line). The single root node contains all of time. When an aggregation
tree is initialized, it begins with a single node containing 〈0, ∞, 0〉 (see the initial tree in
figure 1).

In the example from the previous section, four tuples from the argument relation
(Table 1(a)) are inserted into an empty aggregation tree. If either the start or stop time
is not somewhere in the aggregation tree, a node split occurs. The start time value, 18, of
the first entry to be inserted splits the initial tree, resulting in the updated aggregation tree
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Figure 1. Example run of the sequential (SEQ) aggregation tree algorithm, for count.

shown in figure 1. Because the original node and the new node share the same stop date
of ∞, a count of 1 is assigned to the new leaf node 〈18, ∞, 1〉. The aggregation tree after
inserting the rest of the records in Table 1(a) is shown at the bottom of figure 1. A period
spanning several leaf nodes can update several branch nodes. The algorithm updates only
as deep in the tree as needed. For example, inserting the period [8, 20) would update the
counts for the [8, 18) and [18, 20] branch nodes. As there are six unique timestamps in the
example argument relation, there are six leaf nodes.

It should be noted that the order of tuple insertion into the aggregation tree affects its
performance, though not its aggregated result. If the tuples are sorted via the start time
and inserted in that order, the aggregation tree would look more like a linked list, causing
insertions to be slower than insertions into a balanced binary tree. The aggregation tree is
more balanced if the relation is randomly ordered by time.

Once this tree is created, we can enumerate the result through a depth-first traversal,
maintaining the intermediate counts along the way (see figure 2). To compute the number
of tuples for the period [8, 12) in this example, we simply take the count from the leaf node
[8, 12) (which is 1), and add its parents’ count values. Starting from the root, the sum of the
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Figure 2. Computing the result given an aggregation tree.

parents’ counts is 0 + 0 + 1 = 1 and adding the leaf count, gives a total of 2. The six leaf
nodes of the aggregation tree correspond to the six tuples in the result of the aggregate (see
Table 1(b)). Aggregates other than Count can be computed by storing other information
in each node of the aggregation tree.

The aggregation tree is useful for computing aggregates over a single time dimension, such
as valid time or transaction time [13]. (Bitemporal aggregates over two-dimensional time
domains [8] are much less prominent, and are not considered here.) Correlated aggregate
functions such as finding the average salary per department (say via a GROUP BY clause
in SQL) can be done by creating a separate aggregation tree for each group-by value or by
creating a modified aggregation tree containing the group-by values, as discussed in detail
by Kline [10]. The result is the aggregate value along with the group-by values(s), which
can then be equi-joined with the original input relations if needed. These extensions can all
be applied to the algorithms we present below to support general aggregate processing.

Though SEQ correctly computes temporal aggregates, it is still a sequential algorithm,
bounded by the resources of a single processor machine. The entire aggregation tree must be
constructed before the result may be computed. This makes a parallel method for computing
temporal aggregates desirable.

4. Parallel processing of temporal aggregates

In this section, we propose five parallel algorithms for the computation of temporal ag-
gregates. We start with two simple parallel extensions to the SEQ algorithm, the Single
Aggregation Tree (abbreviated SAT) and Single Merge (SM) algorithms. We then go on to in-
troduce the Pairwise Merge (PM) and Time Division Merge with Centralization (TDM + C)
algorithms, which both require more coordination but are expected to scale better. After
that, we present the Time Division Merge (TDM) algorithm, a variant of TDM + C, which
distributes the resulting relation across the processors, as differentiated from the centralized
results produced by the other algorithms.

4.1. Single aggregation tree (SAT)

The first algorithm, SAT, extends the Aggregation Tree algorithm by parallelizing disk I/O
and the initial projection operator. For Count, all that are needed are the start and stop times
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from the underlying tuples. For the other aggregates, the value being aggregated over from
the tuple is also needed. Each worker node reads its data partition in parallel, constructs
the valid-time periods for each tuple, sends these periods (along with the column being
aggregated, if relevant) to the coordinator. The central coordinator receives the periods
from all the worker nodes, builds the complete aggregation tree, and returns the final result
to the client.

We note in passing that SM (as well as the algorithms to follow) can be easily generalized
to evaluate range-temporal aggregates [23], in which the temporal aggregate is restricted
by a time interval and a key range, both of which can be accomplished by the worker nodes
in the first part of SAT.

While SAT should have slightly better performance than the sequential version, it is clear
at the outset that this algorithm doesn’t scale. We mention this algorithm only to provide a
starting point for the other algorithms, which are all based on SAT.

4.2. Single merge (SM)

The second parallel algorithm, SM, is more complex than SAT, in that it includes computa-
tional parallelism along with I/O parallelism. Each worker node builds a local aggregation
tree, in parallel. The worker node then traverses its aggregation tree in DFS order, propa-
gating the count values to the leaf nodes. The leaf nodes now contain the full local count for
the periods they represent, and the branch nodes are discarded. (At least half of the nodes
will be branch nodes.) The worker nodes sends its leaf nodes to the coordinator.

Unlike the SAT coordinator, which inserts periods into an aggregation tree, the SM
coordinator merges each of the leaves it receives using a variant of merge-sort that operates
on periods (no aggregation tree is constructed at the coordinator), as indicated in figure 3.
The use of this efficient merging algorithm is possible because the worker nodes send their
leaves in a temporally sorted order. Finally, after all the worker nodes finish sending their
leaves, the coordinator returns the final result to the client.

4.3. Pairwise merge (PM)

The third parallel algorithm, Pairwise Merge (see figure 4), attempts to obtain better per-
formance by replacing the global synchronization step with lg p localized synchronization
steps. Which two worker nodes are paired in each localized synchronization step is deter-
mined dynamically by the query coordinator.

Figure 3. Major steps for the single merge algorithm.
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Figure 4. Major steps for the pairwise merge algorithm.

A worker node is available for merging when its local aggregation tree has been built. The
worker node informs the query coordinator that it has completed its aggregation tree. The
query coordinator then arbitrarily picks another worker node that had previously completed
its aggregation tree, thereby allowing the two worker nodes to merge their leaves, again,
using merge-sort. Then, the query coordinator instructs the worker node with the least
number of leaf nodes to send the leaves to the other node, the “buddy worker node”, which
does the merging of leaves.

Once a worker node finishes transmitting leaves to its buddy worker node, it is no longer
a participant in the query. This buddying-up continues until the query coordinator ascertains
that only one worker node is left, which contains the completed aggregation tree. The query
coordinator then directs the sole remaining worker node to submit the results directly to the
client. Figure 5 provides a conceptual picture of this “buddy” system.

A portion of a PM aggregation tree may be merged multiple times with other aggregation
trees. The merge algorithm is a merge-sort variant operating on two sorted lists as input
(the local list and the received list). This merge is linear in the number of leaf nodes to be
merged.

4.4. Time division merge with centralization (TDM + C)

Like PM, the fourth parallel algorithm, TDM + C, also extends the aggregation tree method
by employing both computational and I/O parallelism (see figure 6). The main steps for this
algorithm are outlined in figure 7.

4.4.1. Overall algorithm. TDM + C starts when the coordinator receives a temporal aggre-
gate request from a client. Each worker node builds a local aggregation tree and propagates
the interior counts to the leaf nodes. The worker nodes then exchange minimum (earliest)
start time and maximum (latest) stop time values to ascertain the overall timeline of the
query.

The leaves of a local aggregation tree are evenly split into p local partitions, consisting
of a period and a tuple count. Because each partition is split to have the same (or nearly the
same) number of tuples, local partitions can have different durations. The local partition set
(containing p partitions) from each processing node is then sent to the coordinator.

The coordinator takes all p local partition sets (a total of p2 local partitions are created
by p worker nodes) and computes a global partition set of the time line, as p partitions
(how this is done is discussed in the next section). Effectively, the local partition sets are
equi-depth histograms [12] approximating the distribution of tuples across the time line;
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Figure 5. Pairwise merge (PM) algorithm.

the global partition set is a global equi-depth histogram across the entire data set. The local
partition set is of size p to enable it to scale as the number of processors increases.

After computing the global time partition set, the coordinator then naively assigns the
period of the i th partition to the i th worker node, and broadcasts the global partition set to
all the nodes. The worker nodes then use this information to decide which local aggregation
tree leaves to send, and to which worker nodes to send them. Note that periods that span
more than one global partition period are split and each part is assigned accordingly (split
periods do not affect the correctness of the result).

Each worker node merges the leaves it receives with the leaves it already has to compute
the temporal aggregate for its assigned global partition. When all the worker nodes finish
merging, the coordinator polls them for their results in sequential order. The coordinator
concatenates the results and sends the final result to the client.
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Figure 6. Time division merge with centralizing step (TDM + C) algorithm.

Figure 7. Major steps for the TDM + C algorithm.

4.4.2. Calculating the global partition set. Recall that the coordinator receives from each
worker node a local partition set, consisting of p contiguous partitions; each partition is
associated with a tuple count. The goal is to temporally distribute the computation of the
final result, with each node processing roughly the same number of leaf nodes to evenly
distribute the second phase of the computation. (We asume a homogeneous architecture,
containing multiple identical processors.)

As an example, figure 9 presents 9 local partitions from 3 worker nodes. The number
between each hash mark segmenting a local timeline represents the number of leaf nodes
within that local partition. The total number of leaf nodes from the 3 worker nodes is
50 · 3 + 15 · 3 + 30 · 3 = 285. The best plan allocates 285

3 = 95 leaf nodes to each worker
node. Figure 8 illustrates the computation of the global partition set.

We modified the SEQ algorithm to compute the global partition set, using the local
partition information sent by the worker nodes. We treat the worker node local partition
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Figure 8. Timeline divided into p partitions, forming a global partition set.

Figure 9. Local partition sets from three worker nodes.

sets as periods, inserting them into the modified aggregation tree. From figure 9, the first
period to be inserted is [5,9)(50), the fourth is [0,30)(15), the seventh is [0,10)(30), and the
ninth(last) is [1000,5000)(30). This use of the aggregation tree is entirely separate from the
use of this same structure in computing the aggregate. Here we are concerned only with
determining a division of the timeline into p contiguous periods, each with approximately
the same number of leaves.

There are three main differences between our Modified Aggregation Tree algorithm used
in this portion of TDM + C and the original Aggregation Tree [10] used in step 2 of figure 7.
First, the “count” field of this aggregation tree node is incremented by the count value of
the local partition being inserted, rather than by 1. Second, every branch node must have
a count value of 0. When a leaf node is split and becomes a branch node, its count is split
proportionally between the two new leaf nodes based on the durations of their respective



MAIN MEMORY-BASED ALGORITHMS FOR EFFICIENT PARALLEL AGGREGATION 133

Figure 10. Intermediate aggregation tree.

time periods. The count of this new branch becomes 0. Third, during an insertion traversal
for a record, if the search traversal diverges to both subtrees, the record count is split
proportionally between the 2 sub-trees.

As an example, suppose we inserted the first three local partitions, and now we are
inserting the fourth one, [0,30)(15). The current modified aggregation tree before inserting
the fourth local partition is shown in figure 10(a). Notice that for leaf node [5,9)(50), the
count value is set to 50 instead of 1 (first difference).

The second and third differences are exemplified when this fourth local partition is
added. At the root node, we see that the period for this fourth partition overlaps the periods
of the left sub-tree and the right sub-tree. In the original aggregation tree, we simply added
1 to a node’s count in the left sub-tree and the right sub-tree at the appropriate places.
Here, we see the third difference. We split this partition count of 30 in proportion to the
durations of the left and right sub-trees. The root left sub-tree contains a period [0,5) for
a duration of 5 time units. The fourth local partition period is [0,30), or 30 time units. We
compute the left sub-tree’s share of this local time partition’s count as (5−0)

(30−0) · 15 = 2,
while the right sub-tree’s share is 15 − 2 = 13. In this case, the left sub-tree leaf node
[0,5) now has a count of 2 (see figure 10(b)). We now pass 13 down the root right sub-tree,
increasing its right leaf node count from [5,9)(50) to [5,9)(52) as its share of the newly added
partition’s count, 2, is added, by using the same proportion calculation method. At leaf node
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Table 2. Leaf node values and resulting global partition in a tabular format once all 9 partitions from figure 9
are inserted.

(a) Leaf nodes (b) Resulting global partition (p = 3)

Count Start Stop Count Start Stop

17 0 5 95 0 28

64 5 9 95 29 866

3 9 10 95 866 1000

12 10 30

44 30 350

43 350 800

21 800 1000

40 1000 1500

32 1500 5000

9 5000 10000

[9,800)(50), the inserted partition’s count is now down to 11, since 2 was taken by node
[5,9)(52).

Now, the second difference comes into play. Two new leaf nodes are created by splitting
[9,800)(50). The new leaves are [9,30) and [30,800). Leaf [9,30) receives all the remaining
inserted partition’s count of 11. The count of 50 from [9,800)(50) is now divided up amongst
the two new leaf nodes. The left leaf node receives (30−9)

(800−9) ·50 = 1 of the 50, while the right
leaf node receives 49. So the new left leaf node is now [9,30)(12), where 12 comes from
11 + 1, and the new right leaf node shows as [30,800)(49). Again, see figure 10(b) for the
result. Table 2(a) shows the leaf node values once all 9 local time partitions from figure 9
are inserted.

Now that the coordinator has the global span leaf counts and the optimal number of leaf
nodes to be processed by each node, it can figure out the global partition set. For each node
(except the last one), we continue adding the span leaf counts until it matches or surpasses
the optimal number of leaf nodes. When the sum is more than the optimal number, we break
up the leaf node that causes this sum to be greater than the optimal number, such that the
leaf node count division is done in proportion to the period duration.

As an example, refer to Table 2(a). We know that the optimal number of periods per global
partition is 95. We add the leaf node counts from the top until we reach node [10,30)(12).
The sum at this point is 96, or 1 more than optimal. We break up [10,30)(12) into two leaf
nodes such that the first leaf node period should contain a count of 11, and the newly created
leaf node should contain only 1. Using the same idea of proportional count division, we
can see that [10,28)(11) and [28,30)(1) are the two new leaf nodes. So the first global time
partition has the period [0,28) and has a count of 95.

The computation for the second global time partition starts at [28,30)(1). Continuing on,
the global time partitions for this example are shown in Table 2(b).

The reader should be aware that this global time partition resolution algorithm is not
perfect. The actual number of local aggregation tree leaves assigned to each worker node
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may not be identical. The reason is that the algorithm uses the local partition sets, which
are just guides for the global partitioning (as they are equi-depth histograms). When a local
partition has 50 leaf nodes in period [9,800), the global partition scheme assumes a uniform
distribution within that partition, while the actual leaf nodes distribution may be heavily
skewed.

We expect better scalability for TDM + C as compared to the SAT and SM algorithms
because of the data redistribution and its load-balancing effect. However, there are two
global synchronization steps, which may limit the performance obtained. First, all of the
local partition sets must be completed before the global time set partitioning can begin.
Second, all of the worker nodes must complete their merges and send their results to the
coordinator before the client can receive the final result.

4.5. Time division merge (TDM)

The fifth parallel algorithm, TDM, is identical to TDM + C, except that it has distributed
result placement rather than centralized result placement. This algorithm simply eliminates
the final coordinator results collection phase and completes with each worker node having
a distinct piece of the final aggregation tree. A distributed result is useful when the temporal
aggregate operation is a subquery in an enclosing distributed query (such as the correlated
aggregate functions mentioned in Section 3). This allows further localized processing on
the individual node’s aggregation sub-result in a distributed and possibly more efficient
manner.

5. Empirical evaluation

For the purposes of our evaluation, we chose the temporal aggregate operation COUNT,
though the results should hold for all SQL aggregates. We performed a variety of perfor-
mance evaluations on the seven parallel algorithms presented.

In all experiments, we measured wall clock time to finish. The aggregation trees for all
experiments fit into main memory; no swapping of the aggregation tree to disk [9] was
necessary.

5.1. Experimental environment

The experiments were conducted on a 64-node shared-nothing cluster of 200 MHz Pentium
machines, each with 128 MB of main memory and a 2 GB hard disk. Connecting the
machines was a 100 Mbps switched Ethernet network, having a point-to-point bandwidth
of 100 Mbps and an aggregate bandwidth of 2.4 Gbps in all-to-all communication.

Each machine was booted with version 2.4.2-2 of the Linux kernel. For message passing
between the Pentium nodes, we used the LAM implementation of the MPI communication
standard [2]. The version of LAM-MPI was 6.5.1.
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5.2. Experimental parameters

We utilized synthetic data sets, for full control over various parameters, as well as a data set
from a production application, specifically the personnel records system at the University
of Arizona [7].

In the synthetic datasets, each tuple had three attributes, an SSN attribute (9 bytes) which
was filled with random values, a StartDate attribute (16 bytes), and an StopDate attribute
(16 bytes). The SSN attribute refers to an entry in a hypothetical employee relation. The
StartDate and StopDate attributes were temporal instants which together denote a valid-time
period. The data generation method varied from one experiment to another and is described
later.

The tuple size was fixed at 41 bytes/tuple. The tuple size was intentionally kept small and
unpadded so that the generated datasets could have more tuples before their size made them
difficult to work with. Larger tuples would have increased the initial disk I/O but would not
have affected subsequent processing, since only the timestamps of tuple are exchanged in
all of these algorithms.

NumProcessors depends on the type of performance measurement. Scale-up and speed-
up experiments used 2, 4, 8, 16, 32 and 60 processing nodes, while the variable reduction
experiments used a fixed set of 32 nodes. Four of the 64 processors were experiencing
hardware problems, and so were not used.

To see the effects of data partitioning on the performance of the temporal algorithms,
the synthetic tables were partitioned horizontally either by SSN or by StartDate. The SSN
and StartDate partitioning schemes attempted to model range partitioning [4] based on
non-temporal and temporal attributes, respectively.

The total database size reflects the total number of tuples across all the nodes participating
in a particular experiment run. For scale-up tests, the total database size increased with the
number of processing nodes.

The amount of data reduction is 100 minus the ratio between the number of resulting
leaves in the aggregation tree and the original number of tuples in the dataset,

Reduction(%) =
{

100 if U = 2 and A > 2

100(1 − U/A) otherwise,

where U ≥ 2 is the number of unique timestamps in the input dataset and A ≥ 2 is the
total number of timestamps in the input dataset. A reduction of 100 percent means that a
100-tuple dataset produces 1 leaf in the aggregation tree because all the tuples have identical
StartDates and StopDates. The higher the reduction, the smaller the size of the aggregation
tree, which means lower overhead in insertion.

This reduction can take place independently in each node (termed local reduction), or in
the coordinating node (termed global reduction), or in both. The degree of local reduction
will have a large impact on the performance of many of the algorithms, because it affects
the amount of communication. We conjecture that the degree of global reduction will have a
much smaller impact, as it won’t affect the local processing nor communicating information
either between processing nodes or to the central coordinator. For that reason, the global
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reduction was fixed at 0% (that is, no reduction), with only the local reduction varied. A
local reduction of 0% was achieved by ensuring that all the timestamps were unique.

The value of the hole parameter is the percentage of leaves that have a count of zero in
an aggregation tree,

Hole(%) = 100 × E/L ,

where E is the number of leaves with the count of zero and L is the total number of leaves
in the aggregation tree. Hole is orthogonal to reduction; the value of hole could be nonzero
even if there is no reduction. Unlike reduction, the hole parameter has no impact on the size
of the aggregation tree. Holes in the local aggregation tree affect the volume of the data
transfered on the network. Once the local aggregation tree is built, each worker only needs
to keep the leaves of the aggregation tree. The worker discards the leaves with a count of
zero because these leaves will not contribute to the final result. Removing holes has the
advantage of reducing the number of leaves transfered on the network and thus the number
of leaves to be merged later.

Similar to reduction, holes can occur independently in each node or in the coordinator.
However, a global hole doesn’t have any impact on data transfer. Therefore global holes
are not considered in the rest of this paper. The local hole percentage in all the synthetic
datasets was fixed at 50%.

5.3. Synthetic datasets

We set up our first experiment to compare the scale-up properties of the proposed algo-
rithms on a large dataset with no reduction. We used the measurements taken from this
experiment as a baseline for later comparisons with subsequent experiments. Table 3 gives
the parameters for this particular experiment.

5.3.1. Baseline scale-up performance: No reduction/SSN partitioning. For this experi-
ment, a synthetic dataset containing 3.8 M tuples was generated. Each tuple had a random-
ized SSN attribute and was associated with distinct periods of unit length (i.e., StopDate =

Table 3. Experimental parameters (baseline scale-up, no reduction, SSN partitioning).

Parameters Actual values

Partitioning SSN

Number of processors (p) 2, 4, 8, 16, 32, 60

Tuple size in bytes 41

Tuples per processor 65,536

Total number of tuples p × 65, 536

Local reduction 0 percent

Local hole 50 percent
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Figure 11. Experimental results (baseline scale-up, no reduction, SSN partitioning).

StartDate + 1). The dataset was sorted by SSN, then distributed to the processing nodes.
Since the SSN fields were generated randomly, this had the effect of randomizing the tuples
in terms of StartDate and StopDate fields.

To measure the scale-up performance of the proposed algorithms, a series of six runs
having 2, 4, 8, 16, 32, and 60 nodes, respectively, was carried out. Note that since we fixed
the size of the dataset on each node, increasing the number of processors meant increasing
the total database size. The ideal, unrealizable algorithm would exhibit perfect scale-up: as
the database size tracks the number of processors, the total time remains fixed. However, due
to synchronization and communication costs, the algorithms do not exhibit ideal scale-up.
Timing results from this experiment are plotted in figure 11 and lead us to the following
conclusions.

SM performs better than SAT. Intuitively, since the dataset exhibits no reduction, both SM
and SAT send all periods from the worker nodes to the coordinator. The reason behind SM’s
performance advantage comes from the computational parallelism provided by building
local aggregation trees on each worker node. Aside from potentially reducing the number
of leaves passed on to the coordinator, this process of building local trees sorts the periods
in temporal order. The SM coordinator’s use of a merge-sort variant in compiling the final
result is more efficient than SAT’s strategy of having to insert each valid-time period into
the final aggregation tree.

The performance difference between TDM and TDM + C increases with the number of
nodes. For this observation, it is important to remember that TDM + C is simply TDM plus
an additional result-collection phase that sends all final leaves to the coordinator, one worker
node at a time. The performance difference increases with the number of nodes because
of the non-reducible nature of the dataset and the fact that scale-up experiments work with
more data as the number of nodes increase.
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PM outperforms TDM + C up to 32 nodes. We attributed this to the multiple merge levels
needed by PM. A PM computation needs at least lg p merge levels. On the other hand, the
TDM + C algorithm only merges local trees once but has three synchronization steps, as
described in Section 4.4. With this analysis in mind, we expected PM to perform better or as
well as TDM + C for 2, 4, and 8 nodes, which have 1, 2, and 3 merge levels, respectively. We
then expected TDM + C to outperform PM as more nodes are added, but we were surprised
to realize that PM was still performing better than TDM + C up to 32 nodes.

To find out what was going on behind the scenes, we used the LAM XMPI package [2] to
visually track the progression of messages within the various TDM + C and PM runs. This
led us to the reason why TDM + C performed worse than PM for 2 to 32 nodes: TDM + C
was slowed more by increased waiting time due to load-imbalance (computation skew) as
compared to PM.

SAT exhibits the worst scale-up performance. This result is not surprising, since the only
advantage SAT has over the original sequential algorithm comes from parallelized I/O.
This single advantage does not make up for the additional communication overhead and the
coordinator bottleneck, as all the periods are sent to the coordinator which builds a single,
but large, aggregation tree. Since SAT is not competitive, we will not consider it in the
following experiments.

TDM exhibits the best scale-up performance. The difference between the performance
of TDM and the ideal line is stable before 32 nodes, and it gets larger after 32 nodes. This is
caused partially by the limitation of our network environment. We will discuss this in detail
in Section 9.2. This network limitation impacts the performance when the algorithm runs
on 32 and 60 processors in all test cases. We will see this impact in almost all the figures in
the rest of this paper. Even under this situation TDM shows a good scale-up performance.
For 60 nodes, that is, a data set 60 times larger than the sequential data set, the total time
was only 5 times that of the much smaller sequential data set.

5.3.2. Speed-up performance: No reduction/SSN partitioning. Unlike the scale-up ex-
periment, the data size was fixed in this experiment at 60 × 65536 tuples = 3932160 tuples.
This data set is partitioned by SSN and distributed evenly to a varying number of nodes
participating in the experiment. As in the last experiment, the local reduction here is also
0%. The experimental parameters for this are given in Table 4 (we don’t repeat the tuple
size, as it is constant over all experiments, unless stated otherwise). We hoped that the
overall time would drop by half when going from 8 to 16 processors, then by half again to

Table 4. Experimental parameters (speed-up, no reduction, SSN partitioning).

Parameters Actual values

Partitioning SSN

Number of processors (p) 8, 16, 32, 60

Tuples per processor 491,520/245,760/122,880/65,536

Total number of tuples 60 × 65, 536

Local reduction 0 percent
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Figure 12. Experimental results (speed-up, no reduction, SSN partitioning).

32 processor and again by almost half in going to 60 processors. Timing results from this
experiment are given in figure 12.

All but SM have good speedup property. As the number of processing nodes increased,
the performance of all the algorithms was improved. We observed the performance was
improved significantly when the number of nodes changed from 8 to 16 and from 16 to
32. However, when the number of nodes increased to 60, the performance didn’t improve
significantly. One reason is there are more workers to be synchronized. Another reason is
the network limitation we have mentioned in the last section. Although, the performance
improvement is still observed, it is not as much as that in the previous cases.

5.3.3. Scale-up performance: 100% reduction/SSN partitioning. This experiment was
designed to measure the effect of a significant amount of reduction (100% in this case) on
the scale-up properties of the proposed algorithms. Table 5 gives the parameters for this
experiment. This experiment was modeled after the first one but with a synthetic dataset
having 100% (local) reduction. This dataset was generated by associating all tuples on

Table 5. Experimental parameters (scale-up, 100% reduction, SSN partitioning).

Parameters Actual values

Partitioning SSN

Number of processors (p) 2, 4, 8, 16, 32, 60

Tuples per processor 327,680

Total number of tuples p × 327,680

Local reduction 100 percent
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Figure 13. Experimental results (scale-up, 100% reduction, SSN partitioning).

each node with the same period (for complete local reduction); the SSN attribute values
were random. The high reduction gives us the opportunity to use a larger data set and still
guarantee that the aggregation trees fit in the main memory. Here we use 327,680 tuples
per node. The results are shown in figure 13.

All algorithms benefit from the 100% data reduction. Comparing results from the baseline
experiment with results from the current experiment lead us to this observation. Because of
the high degree of data reduction, the aggregation trees do not grow as large as in the first
experiment. With smaller trees, insertions of new periods take less time because there are
fewer branches to traverse before reaching the insertion points. Because all of the presented
algorithms use aggregation trees, they all experience increased performance.

With 100% reduction, PM and TDM + C catch up to TDM. Aside from constructing
smaller aggregation trees, a high degree of data reduction decreases the number of aggrega-
tion tree leaves exchanged between nodes. TDM does not send its leaves to a central node
for result collection, so it does not transfer as many leaves as its peers. Because of this,
TDM is not improved by the amount of data reduction as much as either PM or TDM + C
which end up performing as well as TDM.

Note that even in the worst case, 4 M tuples on 60 processors using TDM-C takes only
2.5 times longer than 650 K tuples on two processors.

5.3.4. Speed-up performance: 100% reduction/SSN partitioning. This experiment was
designed to measure the effect of high data reduction on the speed-up properties of the
proposed algorithms. The data size was fixed in this experiment at 60 × 327,680 tuples =
19,660,800 tuples. The local reduction is 100%. This data set is distributed evenly to a
varying number of nodes participating in the experiment. The experimental parameters for
this are shown in Table 6. Timing results from this experiment are plotted in figure 14.
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Table 6. Experimental parameters (speed-up, 100% reduction, SSN partitioning).

Parameters Actual values

Partitioning SSN

Number of processors (p) 8, 16, 32, 60

Tuples per processor 2,457,600/1,228,800/614,400/327,680

Total number of tuples 60 × 327,680

Local reduction 100 percent

Figure 14. Experimental results (speed-up, 100% reduction, SSN partitioning).

With 100% reduction, all the algorithms show good speedup property up to 32 nodes.
The performance of all the algorithms is slightly worse at 60 nodes than that at 32 nodes.
The results of the last section illustrate the cost of synchronization is relatively high when
the data reduction is high. Again, the degradation of the performance at 60 nodes is caused
partially by the network limitation.

5.3.5. Performance with variable reduction/SSN partitioning. This experiment was de-
signed to measure the effect of a varying amount of data reduction on the scale-up properties
of the proposed algorithms. Six datasets with different reduction were generated. The ex-
periment setting is provided in Table 7 and timing results are plotted on figure 15. Note
that the values plotted for a reduction of 0% correspond to those plotted in figure 11 for 32
nodes.

As the reduction increases, the performance improves. Since the reduction implies the
amount of tuples with same timestamp in datasets, as the reduction increases, so does
the number of identical tuples. Hence, the aggregation tree does not grow as much and
performance improves.
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Table 7. Experimental parameters (variable reduction, SSN partitioning).

Parameters Actual values

Partitioning SSN

Number of processors (p) 32

Tuples per processor 65,536

Total number of tuples 32 × 65,536 = 2,097,152

Local reduction 0/20/40/60/80/100 percent

Figure 15. Experimental results (variable reduction, SSN partitioning).

5.3.6. Scale-up performance: No reduction/time partitioning. The previous experiments
all assumed SSN partitioning (note however that the algorithms don’t know of this parti-
tioning). We now turn our attention to timestamp partitioning.

This first experiment was designed to measure the effect of time partitioning on the scale-
up properties of the proposed algorithms. The dataset for this experiment was generated in a
manner similar to the baseline experiment, but with StartDate rather than SSN partitioning.
This was done by sorting the dataset by the StartDate attribute and then distributing it to
the processing nodes. The experimental settings are summarized in Table 8 and the timing
results are provided in figure 16.

Time Partitioning did not significantly help any of the algorithms. We originally expected
TDM and TDM + C to benefit from the time partitioning but we also realized that for this to
happen, the partitioning must closely match the way the global time divisions are calculated.
Because we randomly assigned partitions to the nodes, TDM did not benefit from the time
partitioning. Sometimes it performed a little bit better while in other cases it performed
a little bit poorer (compare with figure 11). We attribute the small performance gaps to
differences in how the partitioning strategies interacting with the number of nodes made
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Table 8. Experimental parameters (scale-up, no reduction, time partitioning).

Parameters Actual values

Partitioning Time

Number of processors (p) 2, 4, 8, 16, 32, 60

Tuples per processor 65,536

Total number of tuples p · 65,536

Local reduction 0 percent

Figure 16. Experimental results (scale-up, no reduction, time partitioning).

TDM redistribute mildly varying numbers of leaves across the runs. As for SM and PM, they
exhibited no conclusive improvement because they were simple enough to work without
considering how tuples were distributed across the various partitions.

5.3.7. Speed-up performance: No reduction/time partitioning. The experimental param-
eters for this are shown in Table 9 and results from this experiment are plotted in figure 17.
Like scale-up performance, the speed-up performance in this section is very similar to that
in Section 5.3.2. Time partitioning simply doesn’t make much difference.

5.3.8. Performance with variable reduction/time partition. For this experiment, six sets of
partitions were generated. Each set had 32 partitions, one for each of the 32 processing nodes
participating in the six runs. The partitions were generated having 0, 20, 40, 60, 80 and 100
percent reduction. The settings for this experiment, provided in Table 10, summarizes the
parameters for this experiment. Timing results for this experiment are plotted on figure 18.

Increasing the amount of data reduction improved the performance of the proposed algo-
rithms. Like in Section 5.3.5, increasing the amount of reduction improved the performance
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Table 9. Experimental parameters (speed-up, no reduction, time partitioning).

Parameters Actual values

Partitioning Time

Number of processors (p) 8, 16, 32, 60

Tuples per processor 491,520/245,760/122,880/65,536

Total number of tuples 60 × 65,536

Local reduction 0 percent

Figure 17. Experimental results (speed-up, no reduction, time partitioning).

Figure 18. Experimental results (variable reduction, time partitioning).
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Table 10. Experimental parameters (variable reduction, time partitioning).

Parameters Actual values

Partitioning Time

Number of processors 32

Tuples per processor 65,536

Total number of tuples 32 × 65,536 = 2,097,152

Local reduction 0/20/40/60/80/100 percent

of the parallel algorithms. With higher degrees of data reduction, aggregation trees became
increasingly smaller with fewer leaves to exchange between nodes.

Varying data reduction doesn’t significantly affect TDM. The flat slope of TDM’s per-
formance curve in figure 18 as compared with figure 15 shows us that this is the algorithm
that is least affected by variations in local reduction. The reason for this is that, among the
presented algorithms, TDM exchanges the least number of leaves as discussed when we
observed that the performance for TDM + C and PM caught up with TDM for 100% local
reduction.

6. A real-world dataset

Tuples in the synthetic datasets used in the experiments to this point have timelines of unit
length, which is not realistic. For this next set of experiments, we applied the count aggregate
to a salary table drawn from the University of Arizona’s personnel system, termed the UIS
dataset [7]. For this dataset, the reduction, tuple size, and database size was necessarily fixed,
at 83,857 tuples and 7.8 Mbytes. For this reason, we used a maximum of 32 processors. Also,
the UIS dataset used in this experiment has tuples with timelines of variable length. Note
that this data set exhibited quite high reduction, at 80.76%, indicating that many timestamps
are duplicates. For example, an employee changing jobs would have a starting time for the
new position identical to the ending time of the old position.

6.1. Scale-up performance: SSN partitioning

This experiment was designed to measure the scale-up properties of the proposed algorithms
on the UIS dataset partitioned by SSN. The dataset was sorted by SSN and distributed to the
processing nodes. A varying number of nodes was used, thus applying the aggregate over
a varying percentage of the database size (for example, for two nodes, only one-sixteenth
of the data was used). The experimental parameters for this are shown in Table 11, and the
results are plotted in figure 19.

Since the data set is quite small, the absolute difference between the performance of
different algorithms is also small. However, we can see SM and PM behaves better than
TDM and TDM + C at 32 nodes. With high degree of data reduction and small data set, the
algorithms that need less synchronization cost perform better.
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Table 11. Experimental parameters (scale-up, SSN partitioning).

Parameters Actual values

Partitioning SSN

Number of processors (p) 2, 4, 8, 16, 32

Tuple size in bytes 93

Tuples per processors 2,620

Total number of tuples p · 2,620

Local reduction 80.76 percent

Figure 19. Experimental results (scale-up, SSN partitioning).

6.2. Scale-up performance: Time partitioning

The experimental parameters for this are shown in Table 12, with the results given in
figure 20. We can observe analogous results to the same experiment on dataset partitioned
by SSN (cf. figure 19). Just like the results of several experiments on synthetic datasets parti-
tioned by time, these experiments with realistic data continue to show that time partitioning
doesn’t greatly affect the scale-up of the proposed algorithms.

7. Better node assignment

We initially expected that the performance of TDM would improve markedly when the data
was partitioned by time, but that performance advantage did not materialize. The reason is
that TDM arbitrarily assigns partitions to processors and so doesn’t exploit any clustering
of the data by time.
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Table 12. Experimental parameters (scale-up, time partitioning).

Parameters Actual values

Partitioning Time

Number of processors (p) 2, 4, 8, 16, 32

Tuples per processor 2,620

Total number of tuples p · 2,620

Local reduction 80.76 percent

Figure 20. Experimental results (scale-up, time partitioning).

Specifically, in TDM and TDM + C we assign global partitions to worker nodes in a naive
manner. This assignment policy may cause large data movements among workers especially
when the partitioning doesn’t match the way the global time divisions are calculated. For
illustration, consider a dataset partitioned into p workers in two different ways. In the first
partitioning, each time division i matches exactly the timeline of the dataset of worker i . In
the second partitioning, time division i doesn’t match the timeline of the dataset of worker
i . If we run TDM on these two cases, the performance will be different because of the
assignment policy of TDM. There will be no data movement in the first case, and large data
movement in the second.

We now turn to two new algorithms, Greedy Time Division Merge (GTDM) and Greedy
Time Division Merge with Centralization (GTDM + C), which are improved versions of
TDM and TDM + C, respectively.

7.1. Greedy time division merge with centralization (GTDM + C)

This algorithm is another variant of TDM + C, improving the performance by utilizing
a better global partitioning assignment policy that attempts to minimize the number of
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leaves redistributed. In Greedy Time Division Merge the coordinator receives the local
division from each worker and calculates the global division. For each global division, the
coordinator computes the number of overlaped tuples in each worker. The worker node
that has the maximal number of overlaped tuples is assigned to this division, and is not
considered for the remaining global divisions. This greedy allocation is repeated until every
global division is assigned.

The performance gap between TDM and GTDM on the two kinds of partitioning is shown
in figure 21. Timeline match means the assignment of TDM and the assignment of GTDM
are the same. Everything will be same except that GTDM has an extra overhead on the
greedy assignment. However, this overhead is less than 3% of the total time as shown in
Section 9. Timeline mismatch indicates TDM has to exchange all the data on the network

Figure 21. Performance gap between GTDM and TDM.
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and merge the data later, while GTDM doesn’t need to do any of them. Since exchanging
data and merging this data take the majority of the total time as shown in Section 9, GTDM
pays much less than it gains in the overall performance.

GTDM is identical to GTDM + C except that it doesn’t collect final results; in this way,
it is analogous to TDM.

We now compare GTDM and TDM, and their centralized counterparts, by performing
the same experiments as those done previously. We expected little improvment on SSN
partitioned data, but increased performance on time-partitioned data.

GTDM + C performs slightly better than TDM + C when running on SSN partitioned data
with no local reduction. When data is partitioned by randomly generated SSN, the timeline
covered by each worker may overlap in many places. So, even if we apply the greedy
assignment policy, we can’t avoid data movements. However, as shown in figure 22(a),

Figure 22. Experimental results (synthetic dataset with SSN partitioning, no reduction).
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we can observe slight performance improvement even in this case because of minimized
network traffic caused by the greedy assignment policy.

GTDM and TDM show similar speedup property for SSN partitioning with no reduction.
The results are show in figure 22(b). As the number of nodes decreases, the difference
between the performance of GTDM + C and that of TDM + C becomes bigger.

GTDM also benefits from 100% data reduction for SSN partitioning. Since number of
leaves in the aggregation tree in each worker is small because of 100% reduction, GTDM
also takes advantage of this (figure 23(a)).

With 100% reduction, results are similar. See figure 23(b).
As the reduction increases, the performance improves. Since the reduction implies the

amount of tuples with same timestamp in datasets, as the reduction increases, so does the
number of identical tuples (figure 24).

Figure 23. Experimental results (synthetic dataset with SSN partitioning, 100% reduction).
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Figure 24. Experimental results (synthetic dataset with variable reduction, SSN partitioning).

We now turn to time partitioning.
GTDM can outperform TDM when the dataset is time partitioned. The dataset used in

this experiment is partitioned by time and there is no reduction in it. So, there is no overlap
among timelines covered by each worker. Since we assigned each partition of the dataset to
each worker in a random manner, the timeline of worker i is not equal to the time division
i of global partition. Consequently, data movement among workers happened in TDM, but
in GTDM such data movement didn’t occur because of the balanced assignment policy
(figure 25(a)). In the case of 60 processors, the overall time for GTDM was only 2.9 times
optimal.

As the number of nodes decreases, the performance of the greedy algorithms improves
significantly with time partitioning. When the number of nodes decreases, the number
of tuples in each node increases. The greedy assignment policy benefit the most from
time partitioning, while TDM probably need to exchange all the tuples on one node with
all on another. At 8 and 16 nodes, the centralized GTDM + C even outperforms TDM
(figure 25(b)).

Varying data reduction doesn’t significantly affect GTDM under time partitioning. The
gentle slope of GTDM’s performance curve in figure 26 shows us that it is the algorithm
least affected by variations in local reduction.

Increasing the amount of data reduction improves the performance of GTDM. As we’ve
already observed in the previous experiment, increasing the amount of reduction im-
proved the performance of the parallel algorithms. With higher degrees of data reduc-
tion, aggregation trees became increasingly smaller with fewer leaves to exchange between
nodes.

GTDM outperforms TDM slightly with the real dataset and SSN partitioning. Since the
real dataset is too small, the greedy assignment doesn’t show an obvious improvement on
the performance (figure 27(a)).

GTDM outperforms TDM with the real dataset with time partitioning. The results shown
in figure 27(b) are similar to the results with synthetic data.



MAIN MEMORY-BASED ALGORITHMS FOR EFFICIENT PARALLEL AGGREGATION 153

Figure 25. Experimental results (synthetic dataset with time partitioning, no reduction).

8. Summary of experiments

The empirical observations confirm that dataset partitioning, result placement, data reduc-
tion effected by the aggregation, and the number of processing nodes all affect the perfor-
mance of the proposed algorithms, in different ways. SAT and SM, as seen in figures 11
and 16, were affected most by the number of processing nodes. Figure 18 shows that SM,
SAT, PM and TDM + C were significantly slowed by low data reduction while TDM was
the least affected. Also, figures 11, 13, and 16 show that TDM has the best performance
under all situations, but only if distributed result placement is desired. On the other hand,
PM has centralized result placement but is superior to TDM + C only in two small areas of
the parameter space: high reduction and large configurations (figure 13) and low reduction
and small configurations (figures 11 and 16). Dataset partitioning only affected the TDM
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Figure 26. Experimental results (synthetic dataset with variable reduction, time partitioning).

Figure 27. Experimental results (scale-up with real dataset).
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Table 13. Time of major steps of GTDM.

Steps Time (secs) Time/total time (%)

Build local aggreation tree tL 1.6 22

Calculate local partition set 0.017 0.23

Calculate global partition set 0.20 2.8

Assign global partition set 0.030 0.41

Exchange data tE 3.1 43

Merge data locally tM 2.3 32

variants, and even then, not substantially (compare figure 11 with figure 8). These results
parallel those for the real-world dataset (figures 19 and 20).

GTDM (and GTDM + C) has virtually the same performance as TDM (and TDM + C)
for SSN partitioning (figure 22). For time partitioning, GTDM differs from TDM with low
reduction. GTDM + C differs from TDM + C with low reduction and small to medium
configurations. GTDM (and GTDM + C) performs much better than TDM (and TDM + C)
when the data set size on each node is large. In all cases, the greedy variant was
superior.

9. Cost model

We now introduce a cost model to predict the performance of GTDM. The major com-
ponents of the response time in GTDM are listed in Table 13. The data set used in
Table 13 is the same synthetic data set used in Table 3 with the number of processors set
at 60.

The times to calculate the local partition set, to calculate the global partition set, and to
assign the global partition set are all less than 3% of the total time, and are thus negligable.
In Section 9.1, we will discuss the cost of the other three components, which comprise the
bulk of the total response time. This is shown in the following formula,

t = tL + tE + tM ,

where t is the total response time while tL , tE , and tM are the time of building local
aggregation tree, exchanging data, and merging data, respectively.

9.1. The cost of each step

The cost of building the local aggregation tree tL includes three components: reading tuples
from the disk, insert tuples in the aggregation tree, and propagating the aggregation values
to the leaves. The time to read tuples from the disk is tr · s · n/B, where tr is the time per
sequential read, s is the tuple size, n is the number of tuples in each worker, and B is the
block size in bytes. The time to insert tuples in the aggregation tree depends on the data set.
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The number of leaves in the aggregation tree is

l =
{

2n(1 − R) if R < 1

3 if R = 1,

where R is the local reduction of the data set. In the worst case, where the timestamps are
sorted, the aggregation tree is a linear list. The time complexity of building the aggregation
tree is O(n · l). However, when the time stamps are in random order, the tree is balanced and
the time complexity of building aggregation tree is O(n lg l). To propagate the aggregation
values to the leaf nodes, the whole tree is traversed once. The time complexity is O(n(1−R)).
Hence, the cost formula of building local aggregation tree is as follows.

tL =




tr sn

B
+ c1n lg l + c2n(1 − R) if time is in random order

tr sn

B
+ c′

1nl + c2n(1 − R) otherwise

c1, c′
1 and c2 are constants in units of seconds. We will show how these constants are

calculated in the next section.
The cost of exchanging data tE depends on two parameters: the amount of data transfered

and the data transfer speed. Since GTDM uses a greedy strategy to assign partitions to
nodes, in each worker at most (p − 1)/p of the total leaves of the local aggregation tree
need to be sent to other workers. Each worker receives the same amount of data it sends out.
The cost of exchanging data is 2sll(1 − H )(p − 1)/(p · T ), where sl is the size of a leaf of
the aggregation tree, H is the fraction of local holes (the leaves representing the holes are
thrown away before exchanging data), and T is the throughput per worker. In the algorithm,
each worker sends a fixed size of data (sp leaves as one packet) to another worker at one
time. So the cost of exchanging data is

tE = 2slsp

T

⌈
l(1 − H )

p · sp

⌉
(p − 1).

The last component tM is the cost of merging the leaves. The leaves sent from one
worker are sorted by time. The most efficient method is multiway merge, which has the
time complexity of O(

∑m
i=1 ni lg m), where ni is the number of leaves in each list and m

is the number of lists. However, our program merges the lists one by one, for simplicity,
which has the cost of

tM = c3

(
n1(m − 1) +

m∑
i=2

ni (m + 1 − i)

)
,

where c3 is a constant in units of second. Each worker sends sp leaves to another worker at
one time. These sp leaves make up one list in the destination worker. The first list in each
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worker comes from itself with the length of l(1 − H )/p. So, we have

ni =



l(1 − H )

p
if i = 1

sp otherwise

m = (p − 1)

⌈
l(1 − H )

p · sp

⌉
+ 1.

When the data set is time-partitioned, the assignment of GTDM guarantees there is no
data transferred. Therefore, the cost of merging data is zero.

9.2. The parameters and constants

The values of some of the parameters appearing in the cost model depend on the data set
used in different experiments. These parameters have been described in Section 5. Other
parameters depend only on the experimental environment and the implementation. The
values of these parameters in our experiments and implementation are shown in Table 14.

Why do we have a function over the number of processors, T (p), for the network through-
put? The throughput is determined by the network equipment connecting the processors. In
Section 5.1, we mentioned that the network connecting the processors has a point-to-point
bandwidth of 100 Mbps and an aggregate bandwidth of 2.4 Gbps in all-to-all communica-
tion. Theoretically, when there are less than 24 processors sending data to the network, the
throughput per processor is stable. The bandwidth available to each processor goes down
along with the increasing of the number of processors when more than 24 processors send
data to the network at the same time. Since our programs are running on MPI, we expect
that the actual throughput of transfering useful data in our program can’t reach the ideal
maximum bandwidth.

To find out the value of T for our configuration (a Cisco ethernet switch and the MPI
runtime library), we ran two programs that transfer data in different styles. In the first
program, the i th processor sends 600 big packets to the (i + 1) processor, and then receives
the same amount of data from the (i − 1) processor. The pth processor sends to the first
processor and then receives the same amount of data from the p − 1 processor. The size of
each packet is 12.8 KB. All processors send the data at the same time. We ran this program
on different number of processors. The results are shown by the pt2pt line in figure 28. As
we expected, the throughput per processor is stable before the network is saturated. After

Table 14. Some of the parameters in the cost formula.

Description Parameter Value

Leaf size sl 16 bytes

Packet size sp 800 values

Block size B 1 Kbyte

Sequential block read tr 0.148 msecs

Throughput per processor T T (p)
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Figure 28. Throughput per processor.

the number of processors is greater than 22, the thoughput per processor goes down by the
factor of 1/p. The elbow is 22 instead of 24 because there are some overhead added by the
software and network protocol between MPI program and the low level network.

However, when the data transfer style is changed, the network throughput changes, some-
times significantly. In the second program, each processor sends 600/(p − 1) packets to
every other processor and receives the same amount of data from every other processor. For
example, the i th processor sends 600/(p − 1) packets to the (i + 1) processor and receives
data from the (i − 1) processor. The i th processor next sends 600/(p − 1) packets to the
(i + 2) processor and receives data from the (i − 2) processor, and so on. The results are
shown by the all2all line in figure 28. The throughput for the second program tracks that
of the point-to-point program up through 32 processors. After this point, the throughput
drops faster than in the first case. This indicates there are some other resource limitations
in the network that caused the network congestion. One fact is the first half of our cluster is
configured to be able to communicate in full duplex, and the second half are configured to
be able to communicate only in half duplex (due to limitations with our switch). When the
number of processors passed 32, more and more half duplexed processors participated in
the communication. In the point-to-point transfer style, since each processor only talks to its
neighbor, a half-duplexed processor only impacts the throughput of two communications.
While in the all-to-all transfer style, since each processor talks to every other processors,
a half-duplexed processor will impact the throughput of all the communications. Another
possible limitation is the size of the buffer inside the switch. When the buffer is full, con-
gestion occurs. In all-to-all communication, when the number of processors increases, the
possibility of congestion increases.

The GTDM algorithm uses the all-to-all communication style, so we employ that mea-
sured throughput in our cost model, as T (p).

This fall-off in network throughput as the number of processors increases can explain
why the performance of our algorithms was not as effective when the number of processors
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Table 15. Constants in the cost formula.

Constants Values (usecs) R2

c1 0.896 0.9995

c2 2.30 0.9995

c3 0.525 0.9751

increased from 32 to 64. This is the reality of the network environment the algorithms ran on.
The behavior of the network may not be the same if the execution environment is different.
For example, a switched Ethernet network with the nonblocking architecture won’t have
the limitation of the aggregated bandwidth. The throughput between any two processors
doesn’t change along with the changes of the number of processors. This would cause our
algorithms to perform better when the number of processors is higher.

The remaining constants in the cost model are determined by studying the architecture
of the processors. We compute these constants by doing linear regressions of the time and
the parameters. For example, c1 appears as an coefficient in the cost of inserting tuples to
the local aggregation tree. We ran a number of tests each of which has different value of n.
The times of inserting tuples to the local aggregation tree were collected. The coefficient
c1 was computed by doing linear regression of the time and the corresponding n lg l. Other
constants are computed in the same way. Table 15 shows the value of the constants and the
corresponding coefficient of determination R2. A covariance very close to one indicates that
tree insertion is indeed n lg n. We didn’t compute c′

1 since the time stamps are in random
order in the synthetic data set in our experiments.

9.3. Estimating the performance

All the parameters and constants in our environment are now available. We can use the
cost formula to estimate the performance of GTDM. The estimated results for scale-up
experiments on SSN partitioned data set are shown in figure 29.

The estimated time matches the actual time of GTDM well when the number of processors
is less than 32. The difference between the estimated time and the actual time at 60 processors
is 2.09 seconds. To find out the reason, we ran some tests to calculate the actual throughput of
our program. The results show the actual throughput of our program is lower than the all-to-
all throughput shown in figure 28, but the behavior of the throughput in the two situations
are similar. The reason is when we test network throughput, the program only involves
communication, while the program of GTDM has to prepare the data before sending them
out and allocate memory for the newly arrived data after each receiving. Therefore, the
actual throughput of our program is lower than the all-to-all throughput. The gap between
the estimated time and the real time is mainly due to this.

The estimated results are similar to the actual results in all the other cases. We show
some of the results in figures. Figure 30 shows the results for speed-up experiments on SSN
partitioned data set. Figure 31 shows the results for variable reduction experiments on SSN
partitioned data set.
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Figure 29. Scale-up, no reduction, SSN partitioning, synthetic dataset.

Figure 30. Speed-up, no reduction, SSN partitioning, synthetic dataset.

Figure 31. Variable reduction, SSN partitioning, synthetic dataset.
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Table 16. Matrix of recommendations.

Data Node Distributed Centralized
reduction count result result

HI Small GTDM GTDM + C

Large GTDM PM

LOW Small GTDM PM (SSN), GTDM + C (Time)

Large GTDM GTDM + C

10. Conclusions

Temporal aggregate computations are important operations in a temporal database system.
Traditionally, this has been an expensive operation in sequential database systems, which
don’t, as yet, use the aggregation tree. Therefore, the question arises as to whether par-
allelism is a cost-effective approach for improving the efficiency of temporal aggregate
computations.

The main contribution of this paper is a collection of novel algorithms that parallelize the
computation of temporal aggregates. We ran these algorithms through a series of experi-
ments to observe how different properties affected their performance. Finally, we developed
and validated a cost model for GTDM that closely predicts the running time of this algorithm.

From these observations, we provide the following conclusions which should help in
the design of a parallel database system’s query optimizer that selects the right temporal
algorithm for a particular situation. Our recommendations are summarized in the matrix in
Table 16.

1. Use GTDM whenever distributed result placement suffices, regardless of any other pa-
rameter. (This only applies when the manner in which the result is distributed is appro-
priate. Otherwise, it is probably best to go with a centralized result, which can then be
redistributed as desired.) As discussed in Section 3, distributed result placement is useful
for distributed sub-queries which are parts of larger distributed queries. Also, distributed
result placement suffices when the aggregation results are not required for the entire time
line (e.g., finding the (time-varying) salaries of all employees for the last year).

2. For centralized result placement, use PM only when there is a high degree of data
reduction and large configuration or when there is a relatively low data reduction, a
small configuration and the data is time partitioned.

3. Otherwise, for centralized result placement, use GTDM + C.

If one were to implement only one algorithm, our recommendation would be to choose
GTDM, with an optional collection step.

Our experimental observations lead us to the following issues for future research. In a
temporal aggregate query with tuple placement and/or selection skew, some worker nodes
will complete their local aggregation tree faster than other nodes. We expect PM to out-
perform TDM + C in queries with heavy tuple placement skew and/or selection skew [19].
However, the specific impact of skew should be investigated.
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Uneven computing time on the processing nodes as caused by dataset characteristics and
system load make nodes unnecessarily wait idly for more loaded nodes. Strategies such as
the opportunistic merging in PM for balancing the loads among the nodes would help reduce
idle-waiting and improve the performance of the other algorithms. Several of the algorithms
used equi-depth histograms to attempt to estimate the workload at each processing node;
perhaps this estimate can be improved. In addition, we assume a homogenous architec-
ture. Load balancing is more challenging on a heterogeneous parallel machine containing
processors of different capability and performance.

Our proposed algorithms rely solely on main memory for storing runtime information,
which include merged lists, aggregation trees and, message queues. A disk-paging strategy
that is aware of how the parallel algorithms work [9] would allow the algorithms to handle
larger dataset sizes.

We have studied the effects of different parameters on the proposed algorithms. Other
factors such as long-lived tuples and data distribution may affect the performance of the
algorithms.

Finally, we have focused here on scalar aggregates, which return a single result at each
point in time. It would be interesting to extend these approaches to accommodate grouping,
such as “the (time-varying) maximum salary per department.”
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