
Semantics of Time-Varying Attributes and TheirUse for Temporal Database DesignChristian S. Jensen1 Richard T. Snodgrass21 Department of Mathematics and Computer Science, Aalborg University, FredrikBajers Vej 7E, DK{9220 Aalborg �, DENMARK, csj@iesd.auc.dk2 Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA,rts@cs.arizona.eduAbstract. Based on a systematic study of the semantics of temporalattributes of entities, this paper provides new guidelines for the designof temporal relational databases. The notions of observation and updatepatterns of an attribute capture when the attribute changes value andwhen the changes are recorded in the database. A lifespan describeswhen an attribute has a value. And derivation functions describe howthe values of an attribute for all times within its lifespan are computedfrom stored values. The implications for temporal database design of thesemantics that may be captured using these concepts are formulated asschema decomposition rules.1 IntroductionDesigning appropriate database schemas is crucial to the e�ective use of rela-tional database technology, and an extensive theory has been developed thatspeci�es what is a good database schema and how to go about designing sucha schema. The relation structures provided by temporal data models, e.g., therecent TSQL2 model [13], provide built-in support for representing the tempo-ral aspects of data. With such new relation structures, the existing theory forrelational database design no longer applies. Thus, to make e�ective use of tem-poral database technology, a new theory for temporal database design must bedeveloped.We have previously extended and generalized conventional normalizationconcepts to temporal databases [7, 8]. But the resulting concepts are still lim-ited in scope and do not fully account for the time-varying nature of data.Thus, additional concepts are needed in order to fully capture and exploit thetime-varying nature of data during database design. This paper proposes con-cepts that capture the time-related semantics of attributes and uses these as afoundation for developing guidelines for the design of temporal databases. Theproperties of time-varying attributes are captured by describing their lifespans,their time patterns, and their derivation functions. Design rules subsequently al-low the database designer to use the properties for (view, logical, and physical)schema design.

The paper is structured as follows. Section 2 �rst reviews the temporal datamodel used in the paper. It then argues that the properties of attributes are rela-tive to the objects they describe and then introduces surrogates for representingreal-world objects in the model. The following subsections address in turn dif-ferent aspects of time-varying attributes,namely lifespans, time patterns, andderivation functions. Section 3 is devoted to the implications of the attribute se-mantics for logical schema, physical schema, and view design. The �nal sectionsummarizes and points to opportunities for further research.2 Capturing the Semantics of Time-Varying AttributesThis section provides concepts that allow the database designer to capture moreprecisely and concisely than hitherto the time-varying nature of attributes intemporal relations. The temporal data model employed in the paper is �rstdescribed. Then a suite of concepts for capturing the temporal semantics ofattributes are introduced.2.1 A Conceptual Data ModelWe describe briey the relation structures of the Bitemporal Conceptual DataModel (BCDM) (see [9] for a more complete description) that is the data modelof TSQL2 and which is used in this paper.We adopt a linear, discrete, bounded model of time, with a time line com-posed of chronons. The schema of a bitemporal conceptual relation, R, consistsof an arbitrary number, e.g., n, of explicit attributes and an implicit timestampattribute, T, de�ned on the domain of sets of bitemporal chronons. A bitemporalchronon cb = (ct; cv) is an ordered pair of a transaction-time chronon ct and avalid-time chronon cv. A tuple x = (a1; a2; : : : ; anj tb), in a relation instance rof schema R thus consists of n attribute values associated with a bitemporaltimestamp value. An arbitrary subset of the domain of valid times is associatedwith each tuple, meaning that the information recorded by the tuple is true inthe modeled reality during each valid-time chronon in the subset. Each individ-ual valid-time chronon of a single tuple has associated a subset of the domainof transaction times, meaning that the information, valid during the particularchronon, is current in the relation during each of the transaction-time chrononsin the subset. Any subset of transaction times less than the current time maybe associated with a valid time. Notice that while the de�nition of a bitemporalchronon is symmetric, this explanation is asymmetric, reecting the di�erentsemantics of transaction and valid time.We have thus seen that a tuple has associated a set of so-called bitemporalchronons in the two-dimensional space spanned by transaction time and validtime. Such a set is termed a bitemporal element [4, 6]. We assume that a do-main of surrogate values is available for representing real-world objects in thedatabase.

Example 1. Consider the relation instance, empDep, shown next.EName Dept TBob Ship f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : : ; (9; 15); (10; 5); : : : ; (10; 20); : : : ;(14; 5); : : : ; (14; 20); (15; 10); : : : ; (15; 15) : : : ; (19; 10); : : : ; (19; 15)gBob Load f(20; 10); : : : ; (20; 15); (21; 10); : : : ; (21; 15)gThe relation shows the employment information for an employee, Bob, and twodepartments, Ship and Load, contained in two tuples. In the timestamps, weassume that the chronons correspond to days and that the period of interest issome given month in a given year, e.g., July 1995. Throughout, we use integersas timestamp components. The reader may informally think of these integers asdates, e.g., the integer 15 in a timestamp represents the date July 15, 1995. Thecurrent time is assumed to be 21.Valid-time relations and transaction-time relations are special cases of bitem-poral relations that support only valid time and transaction time, respectively.For clarity, we use the term snapshot relation for a conventional relation, whichsupports neither valid time nor transaction time.This completes the description of the objects in the bitemporal conceptualdata model|relations of tuples timestamped with temporal elements. An asso-ciated algebra and user-level query language are de�ned elsewhere [13, 14].2.2 Using SurrogatesAn attribute is seen in the context of a particular real-world entity. Thus, whenwe talk about a property, e.g., the frequency of change, of an attribute, thatproperty is only meaningful when the attribute is associated with a particularentity. As an example, the frequency of change of a salary attribute with re-spect to a speci�c employee in a company may reasonably be expected to berelatively regular, and there will only be at most one salary for the employee ateach point in time. In contrast, if the salary is with respect to a department, asigni�cantly di�erent pattern of change may be expected. There will generallybe many salaries associated with a department at a single point in time. Hence,it is essential to identify the reference object when discussing the semantics ofan attribute.We employ surrogates for representing real-world entities in the database.In this regard, we follow the approach adopted in, e.g., the TEER model byElmasri [3]. Surrogates do not vary over time in the sense that two entities iden-ti�ed by identical surrogates are the same entity, and two entities identi�ed bydi�erent surrogates are di�erent entities. We assume the presence of surrogateattributes throughout logical design. At the conclusion of logical design, surro-gate attributes may be either retained, replaced by regular (key) attributes, oreliminated.2.3 Lifespans of Individual Time-Varying AttributesIn database design, one is interested in the interactions among the attributes ofthe relation schemas that make up the database.

Here, we provide a basis for relating the lifespans of attributes. Intuitively, thelifespan of an attribute for a speci�c object is all the times when the object hasa value, distinct from ?i, inapplicable null, for the attribute. Note that lifespansconcern valid time, i.e., are about the times when there exist some valid values.To more precisely de�ne lifespans, we �rst de�ne an algebraic selection oper-ator on a temporal relation. De�ne a relation schema R = (A1; : : : ; AnjT), andlet r be an instance of this schema. Let P be a predicate de�ned on the Ai. Theselection P on r, �BP (r), is de�ned by �BP (r) = fz j z 2 r ^ P (z[A1; : : : ; An])g.It follows that �BP (r) simply performs the familiar snapshot selection, with theaddition that each selected tuple carries along its timestamp, T. Next, we de�nean auxiliary function vte that takes as argument a valid-time relation r andreturns the valid-time element de�ned by vte(r) = fcv j 9s (s 2 r ^ cv 2 s[T])g.The result valid-time element is thus the union of all valid timestamps of thetuples in an argument valid-time relation.De�nition1. Let a relation schema R = (S;A1; : : : ; An jT) be given, where Sis surrogate valued, and let r be an instance of R. The lifespan for an attributeAi, i = 1; : : : ; n, with respect to a value s of S in r is denoted ls(r; Ai; s) and isde�ned by ls(r; Ai; s) = vte(�BS=s^A6=?i (r)).Lifespans are important because attributes are guaranteed to not have anyinapplicable null value during their lifespans. Assume that we are given a relationschema empDep = (EmpS, EName, Dept) that records the names and departmentsof employees (represented by the surrogate attribute EmpS). If employees alwayshave a name when they have a department, and vice versa, this means thatinapplicable nulls are not present in instances of the schema. With lifespans, thisproperty may be stated by saying that for all meaningful instances of EmpSaland for all EmpS surrogates, attributes EName and Dept have the same lifespans.The importance of lifespans in temporal databases has been recognized in thecontext of data models in the past (c.f. [1, 2, 3]). Our use of lifespans for databasedesign di�ers from the use of lifespans in database instances. In particular, usinglifespans during database design does not imply any need for storing lifespansin the database.2.4 Time Patterns of Individual Time-Varying AttributesIn order to capture how an attribute varies over time, we introduce the conceptof a time pattern. Informally, a time pattern is simply a sequence of times.De�nition2. The time pattern T is a partial function from the natural numbersN to a domain DT of times: T : N ,! DT . If T (i) is de�ned, so is T (j) forall j < i. We term T (i) the i'th time point.In the context of databases, two distinct types of time patterns are of partic-ular interest, namely observation patterns and update patterns. The observationpattern OsA, for an attribute A relative to a particular surrogate s, is the timeswhen the attribute is given a particular value, perhaps as a result of an observa-tion (e.g., if the attribute is sampled), a prediction, or an estimation. We adopt

the convention that OsA(0) is the time when it was �rst meaningful for attributeA to have a value for the surrogate s. Observation patterns concern valid time.The observation pattern may be expected to be closely related to, but distinctfrom, the actual (possibly unknown) pattern of change of the attribute in themodeled reality. The update pattern U sA is the times when the value of the at-tribute is updated in the database. Thus, update patterns concern transactiontime.Note that an attribute may not actually change value at a time point becauseit may be the case that the existing and new values are the same. The timeswhen changes take place and the resulting values are orthogonal aspects. In thelatter half of Section 3.1, we will return to this distinction.2.5 The Values of Individual Time-Varying AttributesWe proceed by considering how attributes may encode information about theobjects they describe. As the encoding of the transaction time of attributes istypically built into the data model, we consider only valid-time relations.A relation may record directly when a particular attribute value is valid.Alternatively, what value is true at a certain point in time may be computedfrom the recorded values. In either case, the relation is considered a valid-timerelation. An example clari�es the distinction between the two cases.Example 2. Consider the two relations shown below. The �rst, empSal, recordsnames and salaries of employees, and the second, expTemp, records names andtemperature measurements for experiments. Attributes EmpS and ExpS recordsurrogates representing employees and experiments, respectively.EmpS EName Sal Te1 Bob 30k f1; : : : ; 9ge1 Bob 32k f10; : : : ; 19ge1 Bob 36k f30; : : : ; 39ge1 Bob 40k f40; : : : ; 49ge2 Sam 25k f1; : : : ; 19ge2 Sam 30k f20; : : : ; 49g ExpS Exp Temp Tx1 Exp1 75 f5; 65gx1 Exp1 89 f15gx1 Exp1 98 f25gx1 Exp1 90 f35gx1 Exp1 84 f45gx1 Exp1 79 f55gempSal expTempRelation empSal records Bob's and Sam's salaries at all the times they havesalaries. This is clearly consistent with what a valid-time relation is. At �rst sight,relation expTemp is more problematic. It does not appear to record temperaturesfor all the times when there exists a temperature for experiment x1. Speci�cally,we may envision that the temperature of x1 is sampled regularly and that wemay later want to compute x1 temperature values for times with no explicitlyrecorded value.Traditionally, empSal has been considered a state relation and expTemp hasbeen considered an event relation; most data model proposals (with notableexceptions, e.g., [13, 15, 16]) have considered only the �rst type of relation.However, note that the relations are similar in the sense that they both record

when information is true. Due to this observation, we make no fundamentaldistinction between the two types of relations, but instead treat them quitesimilarly.The di�erence between relations such as empSal and expTemp in the exampleabove is solely in what additional, or even di�erent, information is implied byeach of the relations. At the one extreme, relation empSal does not imply anyadditional information at all. No salary is recorded for Bob from time 20 to time29, and the existing tuples do not imply any salary for Bob in that time interval.The other sample relation is di�erent. For example, while no temperature forExp1 at time 40 is recorded, clearly such a temperature exists. Further, we mayeven have a good idea what the temperature may be (i.e., close to 87).Thus, the di�erence is that di�erent derivation functions apply to the salaryand temperature attributes of the two relations. A derivation function fA fora speci�c attribute A of a relation schema R takes as arguments a valid-timechronon cv and a relation instance r and returns a value in the domain of at-tribute A. For the salary attribute, a discrete derivation function applies; and forthe temperature, a nearest-neighbor derivation function may satisfy some userswhile other users may need a more sophisticated function.De�nition3. A derivation function f is a partial function from the domains ofvalid times DV T and relation instances r with schema R to a value domain Din the universal set of domains DD, i.e., f : DV T � r(R) ,! D.The importance of derivation functions in data models has previously beenargued convincingly by, e.g., Klopprogge [10], Cli�ord [1] and Segev [16]. Theyshould thus also be part of a design methodology.2.6 Summary of Attribute SemanticsIn summary, the database designer is expected to initially identify and modelentity types using surrogates. Then, the notions of lifespans, time patterns, andderivation functions are used for capturing the semantics of attributes.Elsewhere, we have generalized conventional functional dependencies to tem-poral databases [7]. Essentially, a temporal dependency holds on a temporal re-lation if the corresponding snapshot dependency holds on each snapshot relationcontained in the temporal relation. With this generalization, conventional rela-tional dependency theory applies wholesale to temporal databases. For example,temporal keys may be de�ned. Such keys are generally time-varying. As a basisfor de�ning time-invariant attributes and keys, we have also de�ned so-calledstrong temporal functional dependencies and strong temporal key [8]. While notdiscussed here, the designer is also expected to identify temporal and strongtemporal functional dependencies.3 Temporal Relational Database Design GuidelinesIn this section, we discuss how the properties of schemas with time-varyingattributes as captured in the previous section are used during database design.Emphasis is on the implications of the properties for design of the logical schema,but implications for view design and physical design are touched upon as well.

3.1 Logical-Design GuidelinesTwo important goals of logical database design are to design a database schemathat does not require the use of inapplicable nulls and avoids representation ofthe same information. We de�ne two properties that illuminate these aspects ofrelation schemas and guide the database designer.Database designers are faced with a number of design criteria which aresometimes conicting, making database design a challenging task. So, while wediscuss certain design criteria in isolation, it is understood that there may beother criteria that should be taken into consideration during database design,such as minimizing the impact of joins required on relations that have beendecomposed.Lifespan Decomposition RuleOne important design criterion in conven-tional relational design is to eliminate the need for inapplicable nulls in tuples ofdatabase instances. In the context of temporal databases, we use the notion oflifespans to capture when attributes are de�ned for the objects they are intro-duced in order to describe. Briey, the lifespan for an attribute|with respectto a particular surrogate representing the object described by the attribute|isall the times when a meaningful attribute value, known or unknown, exists forthe object.Inapplicable nulls may occur in a relation schema when two attributes havedi�erent lifespans for the same object/surrogate. To identify this type of situa-tion, we introduce the notion of lifespan equal attributes. Examples follow thethe de�nition.De�nition4. Let a relation schema R = (S;A1; : : : ; An jT) be given where S issurrogate valued. Two attributes Ai and Aj in R are termed lifespan equal withrespect to surrogate S, denoted AiLS=SAj, if for all meaningful instances r of R,8s 2 dom(S) (ls(r; Ai; s) = ls(r; Aj; s)).To exemplify this de�nition, consider a relation schema Emp with attributes EmpS(employee surrogates), Dept, Salary, and MgrSince. The schema is used by acompany where each employee is always assigned to some department and has asalary. In addition, the relation records when an employee in a department �rstbecame a manager in that department.For this schema, we have Dept LS=EmpS Salary because an employee has a salary(it might be unknown or zero) exactly when associated with a department. Thus,no instances of Emp will have tuples with an inapplicable-null value for one ofDept and Salary and not for the other. Next, it is not the case that Dept LS=EmpSMgrSince and (by inference) not the case that Salary LS=EmpS MgrSince. This isso because employees often are associated with a department where they havenever been a manager. Thus, instances of Emp may contain inapplicable nulls.Speci�cally, the nulls are associated with attribute MgrSince as the lifespan ofthis attribute is shorter than that of Dept and Salary.

Next, observe that Dept and Salary being lifespan equal with respect to EmpSdoes not mean that all employees have the same lifespan for their department(or salary) attribute. Employees may have been hired at di�erent times, and thelifespans are thus generally di�erent for di�erent employees. Rather, the equalityis between the department and the salary lifespan for individual employees.The following de�nition then characterizes temporal database schemas withinstances that do not contain inapplicable nulls.De�nition5. A relation schema R = (S;A1; : : : ; An j T) where S is surrogatevalued is lifespan homogeneous if 8A;B 2 R (ALS=SB).These concepts formally tie the connection between the notion of lifespansof attributes with the occurrence of inapplicable nulls in instances. With them,we are in a position to formulate the Lifespan Decomposition Rule.De�nition6. Lifespan Decomposition Rule. To avoid inapplicable nulls in tem-poral database instances, decompose temporal relation schemas to ensure life-span homogeneity.It is appropriate to briey consider the interaction of this rule with the theexisting temporal normal forms that also prescribe decomposition of relationschemas. Speci�cally, while the decomposition that occurs during normalizationdoes, as a side e�ect, aid in eliminating the need for inapplicable nulls, a databaseschema that obeys the temporal normal forms may still require inapplicable nullsin its instances. To exemplify, consider again the Emp schema (and think of thetemporal dependencies on temporal relations as regular dependencies on thecorresponding snapshot tables). Here, EmpS is a temporal key, and there are noother non-trivial dependencies. Thus, the schema is in temporal BCNF. It isalso the case that Emp has no non-trivial temporal multi-valued dependencies,and it is thus also in temporal fourth normal form. In spite of this, we saw thatthere are inapplicable nulls. The solution is to decompose Emp = (EmpS, Dept,Salary, MgrSince) into Emp1 = (EmpS, Dept, Salary) and Emp2 = (EmpS,MgrSince). Both resulting relations are lifespan homogeneous.Synchronous Decomposition Rule The synchronous decomposition rule isbased on the notion of observation pattern, and its objective is to eliminate aparticular kind of redundancy. We initially exemplify this type of redundancy.Then we de�ne the notion of synchronous attributes, which leads to a de�nitionof synchronous schemas and an accompanying decomposition rule that are aimedat avoiding this redundancy. Finally, we view synchronism in a larger context, byrelating it to existing concepts, and discuss the decomposition rule's positioningwith respect to logical versus physical design.Example 3. Consider the relation instance, empDepSal, that follows next, record-ing departments and salaries for employees. The schema for the relation is intemporal BCNF, with the surrogate-valued attribute EmpS being the only min-imal key and no other non-trivial dependencies. Yet, it may be observed that

the salary 30k and the departments A and B are repeated once, once, and fourtimes in the instance, respectively. These repetitions are due to attributes Deptand Salary having di�erent observation patterns. Speci�cally, the instance isconsistent with the patterns shown to the right of the instance.EmpS Dept Salary Te1 A 30k f1; : : : ; 5ge1 B 30k f6; : : : ; 9ge1 B 32k f10; : : : ; 14ge1 B 36k f15; : : : ; 27ge1 B 40k f28; : : : ; 42ge1 A 50k f43; : : : ; 49g Oe1Dept =< [0 7! 1]; [1 7! 6]; [2 7! 43]; [3 7! 50] >Oe1Salary =< [0 7! 1]; [1 7! 10]; [2 7! 15]; [3 7! 28];[4 7! 43]; [5 7! 50] >In combination, these observation patterns imply the redundancy that may beobserved in the sample instance. Thus, capturing during database design whichattributes of the same relation schema have di�erent observation patterns is ameans of identifying this type of redundancy.To capture precisely the synchronism of attributes, de�ne T jt to be the re-striction of time pattern T to the valid-time element t, that is, to include onlythose times also contained in t.De�nition7. De�ne relation schema R = (S;A1; : : : ; An jT) where S is surro-gate valued. Two attributes Ai and Aj in R, with observation patterns OSAi andOSAj , are synchronous with respect to S, denoted Ai S=SAj , if for all meaningfulinstances r of R and for all surrogates s,OSAi jls(r;Ai;s)\ls(r;Aj ;s) = OSAj jls(r;Ai;s)\ls(r;Aj ;s) :Thus, attributes are synchronous if their lifespans are identical when restrictedto the intersection of their lifespans. With this de�nition, we can characterizerelations that avoid the redundancy caused by a lack of synchronism and thenstate the Synchronous Decomposition Rule.De�nition8. De�ne relation schema R = (S;A1; : : : ; An jT) where S is surro-gate valued. Relation R is synchronous if 8Ai; Aj 2 R (Ai S=SAj).De�nition9. Synchronous Decomposition Rule.To avoid repetition of attributevalues in temporal relations, decompose relation schemas until they are syn-chronous.Alternative notions of synchronism have previously been proposed for data-base design by Navathe and Ahmed [12], Lorentzos [11], and Wijsen [18]. Whilethese notions are stated with varying degrees of clarity and precision and arede�ned in di�erent data-model contexts, they all seem to capture the same ba-sic idea, namely that of value-based synchronism which is di�erent from thesynchronism proposed in this paper.

To explain the di�erence, consider the relation instance shown next.S Ai Aj Ts a1 a2 f1; : : : ; 5gs a1 a3 f6; : : : ; 10gIn value-based synchronism, value-changes of attributes must occur synchronous-ly for attributes to be synchronous. Consequently, the relation instance impliesthat the attributes Ai and Aj in its schema are not value synchronous, and(value-based) decomposition is thus prescribed. Next, it may be that the at-tributes in the relation have identical observation patters and that it just (acci-dentally!) happened that the new value ofAi when both attributes were observedat time 6 was the same as its old value. This means that the relation is consis-tent with attributes Ai and Aj being (observation-pattern based) synchronous,and the synchronous decomposition rule does then not apply. To conclude, thevalue-based and pattern-based synchronisms are quite unrelated.Further, it is our contention that using the concept of value-based synchro-nism during database design is problematic. Speci�cally, it seems quite rare thatthe database designer can guarantee that, at all times in the future, when twoattributes in a tuple of relation are updated, one of them does not get a new valuethat is identical to its old value. Thus, it appears that decomposition based onvalue-based synchronism e�ectively (and unnecessarily) leads to a binary datamodel, in which all relations have just two attributes, a time invariant attributeand a single time-varying attribute. This is in contrast to the pattern-baseddecomposition prescribed in this paper.This study is carried out in the context of TSQL2. It is our contention thatin this context, the synchronous decomposition rule is relevant only to physicaldatabase design. Surely, the redundancy that may be detected using the syn-chronism concept is important when storing temporal relations. At the sametime, this type of redundancy is of little consequence for the querying of logical-level relations using the TSQL2 query language [8, 13]. Indeed, it will oftenadversely a�ect the ease of formulating queries if logical-level relations are de-composed solely based on a lack of synchronism. In conclusion, the presence ofsynchronous attributes in a relation may a�ect performance (positively or neg-atively), but it does not negatively a�ect correctness or the ease of formulatingqueries, and it is thus a non-issue at the logical level.The widespread presence of asynchronous attributes in relation schemas hasbeen used for motivating various attribute-value timestamped data models wherein relations, time is associated with attribute values rather than with tuples, be-cause these models avoids the redundancy (see, e.g., [2, 4, 5]). Since this redun-dancy is not a problem in TSQL2, which employs tuple-timestamped relations,asynchronous attributes is not strictly an argument for attribute-value times-tamped models.Finally, the need for synchronism at the logical level has previously beenclaimed to make normal forms and dependency theory inapplicable (e.g., [5]).The argument is that few attributes are synchronous, meaning that relation

schemas must be maximally decomposed, which leaves other normalization con-cepts irrelevant. This claim does not apply to our data model.For completeness, it should be mentioned that while the synchronism con-cepts presented in this section have concerned valid time, similar concepts thatconcern transaction time and employ update patterns rather than observationpatterns, may also be de�ned.3.2 Implications for View DesignThe only concept from Section 2 not covered so far is derivation functions. Theserelate to view design, as outlined next.For each time-varying attribute, we have captured a set of one or more deriva-tion functions that apply to it. It is often the case that exactly one derivationfunction applies to an attribute, namely the discrete interpolation function [8]that is a kind of identity function. However, it may also be the case that severalnontrivial derivation functions apply to a single attribute.The problem is then how to apply several derivation functions to the basedata. We feel that there should be a clear separation between recorded data anddata derived from the stored data via some function. Maintaining this separationmakes it possible to later modify existing interpolation functions.The view mechanism provides an ideal solution that maintains this separa-tion. Thus, the database designer �rst identi�es which sets of derivation func-tions that should be applied simultaneously to the attributes of a logical relationinstance and then, subsequently, de�nes a view for each such set. Although in-terpolation functions have previously been studied, we believe they have neverbefore been associated with the view mechanism.4 Summary and Research DirectionsIn order to exploit the full potential of temporal relational database technology,guidelines for the design of temporal relational databases should be provided.This paper has presented concepts for capturing the properties of time-varying attributes in temporal databases. These concepts include surrogatesthat represent the real-world objects described by the attributes, lifespans ofattributes, observation and update patterns for time-varying attributes, andderivation functions that compute new attribute values from stored ones. Itwas subsequently shown how surrogates and lifespans play an role during designof the logical database schema. In particular, the notion of lifespans led to theformulation of a lifespan decomposition rule. The notion of observation (andupdate) patterns led to a synchronous decomposition rule; it was argued thatthis rule should ideally apply to physical database design. Finally, it was shownhow derivation functions are relevant for view design.We feel that several aspects merit further study. An integration of the vari-ous existing contributions to temporal relational database design into a coherentframework has yet to be attempted. Likewise, a complete design methodology, in-cluding conceptual (implementation-data-model independent) design and logicaldesign, for temporal databases is warranted. Finally, a next step is to adopt the

concepts provided in this paper in richer, entity-based (or semantic or object-based) data models.AcknowledgementsThis work was supported in part by NSF grant ISI-9202244. In addition, the �rstauthor was supported in part by the Danish Natural Science Research Council,grants 11{1089{1, 11{0061{1, and 9400911.References1. J. Cli�ord and A. Croker. The Historical Relational Data Model (HRDM) andAlgera Based on Lifespans. In Proceedings of ICDE, pp. 528{537, February 1987.2. J. Cli�ord and A. U. Tansel. On an Algebra for Historical Relational Databases:Two Views. In Proceedings of ACM SIGMOD, pp. 247{265, May 1985.3. R. Elmasri, G. Wuu, and V. Kouramajian. A Temporal Model and Query Lan-guage for EER Databases. In [17], pp. 212{229.4. S. K. Gadia. A Homogeneous Relational Model and Query Languages for Tempo-ral Databases. ACM TODS, 13(4):418{448, December 1988.5. S. K. Gadia and J. H. Vaishnav. A Query Language for a Homogeneous TemporalDatabase. In Proceedings of ACM PODS, pp. 51{56, March 1985.6. C. S. Jensen, J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia (eds).A Glossary of Temporal Database Concepts. SIGMOD Record, 23(1):52{64, March1994.7. C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending Normal Forms to Tem-poral Relations. Technical Report TR-92-17, Department of Computer Science,University of Arizona, Tucson, AZ, July 1992.8. C. S. Jensen and R. T. Snodgrass. Semantics of Time-Varying Attributes andTheir Use for Temporal Database Design. Technical Report R-95{2012, Depart-ment of Math. and Computer Science, Aalborg University, Denmark, May 1995.9. C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Models via aConceptual Model. Information Systems, 19(7):513{547, 1994.10. M. R. Klopprogge and P. C. Lockemann. Modelling Information Preserving Data-bases: Consequences of the Concept of Time. In Proceedings of VLDB, pp. 399{416,1983.11. N. A. Lorentzos. Management of Intervals and Temporal Data in the RelationalModel. Technical Report 49, Agricultural University of Athens, 1991.12. S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Lan-guage. Information Sciences, 49:147{175, 1989.13. R. T. Snodgrass, editor, The TSQL2 Temporal Query Language. Kluwer AcademicPublishers, 1995, 674+xxiv pages.14. M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An Algebra for TSQL2. In [13],chapter 27, pp. 505{546.15. R. T. Snodgrass. The Temporal Query Language TQuel. ACM TODS, 12(2):247{298, June 1987.16. A. Segev and A. Shoshani. A Temporal Data Model based on Time Sequences. In[17], pp. 248{270.17. A.U. Tansel, J. Cli�ord, S.K. Gadia, A. Segev, and R.T. Snodgrass, eds, TemporalDatabases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.18. J. Wijsen. Extending Dependency Theory for Temporal Databases. Ph.D. Thesis.Department Computerwetenschappen, Katholieke Universiteit Leuven, 1995.

This article was processed using the LaTEX macro package with LLNCS style

