
τXSchema: Support for Data- and
Schema-Versioned XML Documents

Faiz Currim, Sabah Currim, Curtis E. Dyreson, Shailesh Joshi, Richard T. Snodgrass,
Stephen W. Thomas, Eric Roeder

September 8, 2009

TR-91

A T IMECENTER Technical Report

Title τXSchema: Support for Data- and Schema-Versioned XML Documents

Copyright © 2009 Faiz Currim, Sabah Currim, Curtis E. Dyreson, Shailesh
Joshi, Richard T. Snodgrass, Stephen W. Thomas, Eric Roeder. All rights
reserved.

Author(s) Faiz Currim, Sabah Currim, Curtis E. Dyreson, Shailesh Joshi, Richard
T. Snodgrass, Stephen W. Thomas, Eric Roeder

Publication History September 2009, a TIMECENTER Technical Report

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), SimonasŠaltenis, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Sudha Ram

Individual participants
Yun Ae Ahn, Chungbuk National University, Korea; Michael H.Böhlen, Free University of Bolzano, Italy;
Curtis E. Dyreson, Utah State University, USA; Dengfeng Gao, IBM Silicon Valley Lab, USA; Fabio
Grandi, University of Bologna, Italy; Vijay Khatri, Indiana University, USA; Nick Kline, Microsoft, USA;
Gerhard Knolmayer, University of Bern, Switzerland; CarmeMartı́n, Technical University of Catalonia,
Spain; Thomas Myrach, University of Bern, Switzerland; Kwang W. Nam, Chungbuk National University,
Korea; Mario A. Nascimento, University of Alberta, Canada;John F. Roddick, Flinders University, Aus-
tralia; Keun H. Ryu, Chungbuk National University, Korea; Dennis Shasha, New York University, USA;
Paolo Terenziani, University of Piemonte Orientale “Amedeo Avogadro,” Alessandria, Italy; Vassilis Tso-
tras, University of California, Riverside, USA; Fusheng Wang, Siemens, USA; Jef Wijsen, University of
Mons-Hainaut, Belgium; and Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as bytheir precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of whichhave angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Contents

Table of Contents i

List of Figures v

List of Tables vii

Listings ix

Abstract xiii

1 Introduction 1

I Supporting Temporal XML Documents 5

2 Motivation 7

3 Background 11
3.1 XML . 11
3.2 Temporal Databases 14

4 Design Goals and Design Decisions 17
4.1 Terminology 17
4.2 Desiderata 18
4.3 Design Goals 18
4.4 Design Decisions 20

4.4.1 General Decisions 20
4.4.2 Temporal Document Decisions 22
4.4.3 Temporal Schema Document Decisions 22
4.4.4 Annotation Document Decisions 23

4.5 Company Example 27
4.5.1 Initial Configuration 29
4.5.2 Adding Temporal Data 31

5 Theoretical Framework 33
5.1 Snapshot Validation Subsumption 33
5.2 Content and Existence Variance 33
5.3 Items .. . 34
5.4 Versions 36

6 Extending Temporal XML Schema Constraints 39
6.1 XML Schema Constraints 39

6.1.1 Identity Constraints 39
6.1.2 Referential Integrity Constraints 40
6.1.3 Cardinality Constraints 41
6.1.4 Datatype Restrictions 41

6.2 Temporal Augmentations to the XML Schema Constraints 42
6.2.1 Identity Constraints 43

i

6.2.2 Referential Integrity Constraints 49
6.2.3 Cardinality Constraints 50
6.2.4 Datatype Restrictions (Constraints) 55

7 Support for Bitemporal Data 57

8 Architecture 75

9 Tools and Algorithms 81
9.1 Implementation Primitives 81

9.1.1 ThepushUp Function . 81
9.1.2 ThepushDown Function . 88
9.1.3 Thecoalesce Function . 88

9.2 SCHEMA MAPPER . 94
9.3 τXMLL INT . 97
9.4 SQUASH . 100
9.5 UNSQUASH . 100
9.6 RESQUASH . 100

10 Example Schema and Instance Documents 105
10.1 WinOlympic Example 105
10.2 Company Example 109

II Supporting Schema Versioning of XML Documents 119

11 Introduction 121

12 Motivation 123
12.1 Company Example Extended 123
12.2 Changing Schemas 123

12.2.1 Introducing Subschemas 125
12.2.2 Adding Logical Annotations 127
12.2.3 Temporal Subschemas 128
12.2.4 Namespace Changes 129
12.2.5 Multiple Conventional Schemas 131

13 Review of Related Work 135

14 Design Decisions 137

15 Approach 139
15.1 Supporting Versioned Schemas 139
15.2 Validating Against a Time-Varying Schema 143

16 Theoretical Framework 149
16.1 Accommodating Evolving Keys 149
16.2 Accommodating Gaps 151
16.3 Semantics for mixed data and schema changes 153
16.4 Non-Sequenced Constraints 154

ii

17 Implementation 157
17.1 Overview 157
17.2 τXMLL INT . 157
17.3 Tool Modifications and Extensions 158

17.4 Schema Versioning 159
17.5 Packages 163

18 Representations 165
18.1 Schema Versioning Considerations 165
18.2 Design Space 165

18.3 Slice-Based Representation 167
18.4 Edit-Based Representation 167

18.4.1 Capturing Namespaces 169
18.4.2 Schema Versioning 169

18.5 Item-Based Representation 170

18.5.1 Capturing Namespaces 170
18.5.2 Schema Versioning 172

18.6 Functionality Placement: Schema vs. Tools 172
18.6.1 Constraints 174
18.6.2 Sequenced Constraints 174

18.6.3 Non-sequenced Constraints 178
18.6.4 Functionality of Other Representation Classes 180
18.6.5 Placement of Functionality 181

18.7 Evaluation of Representation Classes 181
18.7.1 Motivation 181

18.7.2 Methodology 182
18.7.3 Initial Sensitivity to Parameters 183
18.7.4 SQUASH Results . 183
18.7.5 τXMLL INT Results . 186
18.7.6 UNSQUASH Results . 187

18.7.7 Representation Conclusions and Recommendations 187

19 Example Schema and Instance Documents 191
19.1 Conventional Schemas 191
19.2 Annotations 192
19.3 Conventional Documents 194

19.4 Temporal Schema 196
19.5 Representational Schemas 197
19.6 Temporal Document 202

III Common 207

20 Overall Conclusions and Future Work 209

iii

21 τXSchema Reference 215
21.1 Conventions 215
21.2 TSSchema 215
21.3 ASchema 215
21.4 TDSchema 216
21.5 MDSchema 216

Acknowledgements 241

Bibliography 243

A Base Schemas 251
A.1 TSSchema: Schema for Temporal Schema 251
A.2 ASchema: Schema for Annotation Schema 251
A.3 SliceSequenceSchema: Schema for Slice Sequences 256
A.4 TDSchema: Schema for Temporal Document 256

B Evaluation Tools 257
B.1 Slice Generator 257
B.2 Scenario Tester 261

C Initial Sensitivity to Parameters 263

iv

List of Figures

1 An XML document, which references an XML Schema, being validated by XMLLINT.
The solid lines going into XMLLINT indicate that the documents are explicitly input into
the tool. .. 19

2 An overview of the end-state of the Company example. 31
3 Snapshot Validation Subsumption 34
4 Items and Versions 36
5 Mortgage being handled by other company. No customer 58
6 Eva purchased the flat on January 10 59
7 A bitemporal time diagram corresponding to Eva purchasingthe flat, performed on January

10 . 60
8 Peter buys the flat, performed on January 15 60
9 Peter buys the flat, performed on January 15 61
10 Peter sells the flat, performed on January 20 62
11 Peter sells the flat, performed on January 20 63
12 Discovered on January 23: Eva actually purchased the flat on January 3 64
13 Discovered on January 26: Eva actually purchased the flat on January 5 64
14 Discovered on January 23: Eva actually purchased the flat on January 3 65
15 Discovered on January 26: Eva actually purchased the flat on January 5 66
16 January 28: Peter actually purchased the flat on January 12. 67
17 January 28: Peter actually purchased the flat on January 12. 68
18 Transaction Time Regions 69
19 Transaction-time splitting of regions 70
20 Overall Architecture ofτXSchema . 77
21 τXMLL INT: Checking the schemas . 78
22 τXMLL INT: Checking the instance . 78
23 Example ofpushUp . 83
24 Example ofpushUp: Continued . 83
25 Example ofpushUp: Continued . 84
26 Example ofpushUp: Continued . 84
27 Example ofpushUp . 86
28 Algorithm: pushUp . 87
29 Algorithm: pushDown . 89
30 Algorithm: mergeVersions . 90
31 Algorithm: coalesce . 90
32 Example ofpushDown . 91
33 Example ofpushDown: Continued . 92
34 Example ofpushDown: Continued . 92
35 Example ofcoalesce . 93
36 Algorithm: SCHEMA MAPPER . 96
37 Validating a document with Time-Varying Data 97
38 τXMLL INT – Checking the Schema . 98
39 τXMLL INT – Checking the Instance . 98
40 Algorithm: τXMLL INT . 99
41 Algorithm: SQUASH . 101
42 Algorithm: UNSQUASH . 102
43 Algorithm: RESQUASH . 103

v

44 Squash/UnSquash/ReSquash Commutativity Diagram 104
45 An overview of the end-state of the Company example. 123
46 Each conventional schema has a separate corresponding temporal schema. 138
47 Overall Architecture ofτXSchema . 140
48 Validating a Document with Time-Varying Data 142
49 T Diagram of Validation 144
50 Validating a Document with a Time-Varying Schema 145
51 Gluing and Bridging 149
52 Cross Wall Gluing 151
53 Cross-Gap Gluing 153
54 Non-Sequenced Constraints 155
55 Overview class diagram for the tools 158
56 Detailed class diagram fortau.xml . 159
57 Detailed class diagram fortau.time . 160
58 Algorithm: τXMLL INT . 161
59 SQUASH before abstract factory methods were added. 162
60 SQUASH after abstract factory methods were added. 162
61 Validating a document with Time-Varying Data and a Time-Varying Schema. 162
62 The overall architecture ofτXSchema. 173
63 Validating a document with Time-Varying Data:τXMLL INT. 173
64 Time required to squash a temporal document. The three band colors correspond to the

different representation types. Each band stretches across {5, 10, 20, 50} elements per slice. 184
65 Time required to squash a temporal document. Here, the lines correspond to different doc-

ument sizes, shown in number of elements. 184
66 The main methods (in terms of time) entered during the execution of SQUASH. 185
67 Size of the resulting temporal document. Note the different scales on they-axis. 185
68 Time required to validate the temporal document. Note thedifferent scales on the time axis;

the edit-based scheme takes orders of magnitude longer. 186
69 Time required to validate the temporal document. Note thedifferent scales on thex-axis.

The slice-based scheme can handle roughly four times the number of slices within the same
time period. .. . 186

70 The amount of time required to extract all slices from a temporal document. Note the
differentx andy axes. 187

71 Time required to squash 10 slices, each with about 10 elements 263
72 Time required to squash 100 slices, each with about 200 elements (20 slices with 20 ele-

ments in the case of the item-based scheme) 263

vi

List of Tables

1 p1 is constant .27
2 p1 andp2 are “varying without gaps” . 28
3 p1 andp2 are “varying with gaps” . 29
4 The design space of temporal representations and the resulting classes. 165
5 The classes of constraints that can be implemented in a representational schema in the gen-

eral case. .. 174
6 The independent variables considered in the experiments.. 182
7 The dependent variables measured in the experiments. 182
8 The execution times (in seconds) in SQUASH for each task, broken up by representation

type and shown for three different input sets. In these runs,the amount of change was set to
.32 and the type of change was set to(75%, 25%). 185

9 The overall results of the analysis. TheRankcolumns indicate the performance of this rep-
resentation when compared to the other two (e.g., a rank of2 means it was the second best).
TheRatiocolumn indicates how much worse this representation performed compared to the
top ranking representation, measured as the average ratio between the two representations. 188

10 TSSchema: Sub-elements oftemporalSchema . 217
11 SliceSequence: Sub-elements of multiple elements 218
12 TSSchema: Sub-elements ofitemIdentifierCorrespondence 219
13 ASchema: sub-elements ofannotationSet . 220
14 ASchema: Sub-elements oflogical . 221
15 ASchema: Sub-elements ofitem . 222
16 ASchema: Sub-elements ofitem , cont. 223
17 ASchema: Sub-elements ofitemIdentifier . 224
18 ASchema: Sub-elements ofvalidTime element withitem 225
19 ASchema: Sub-elements ofattribute . 226
20 ASchema: Sub-elements ofdefaultTimeFormat . 227
21 ASchema: Attributes and sub-elements fornonSeqUnique 228
22 ASchema: Attributes and sub-elements fornonSeqKey 229
23 ASchema: Attributes and sub-elements foruniqueNullRestricted 230
24 ASchema: Attributes and sub-elements fornonSeqKeyref 231
25 ASchema: Attributes and sub-elements forcardConstraint 232
26 ASchema: Attributes and sub-elements fortransitionConstraint 233
27 ASchema: Sub-elements ofphysical . 234
28 ASchema: Sub-elements ofstamp . 235
29 ASchema: sub-elements oforderBy . 236
30 TDSchema: Sub-elements oftemporalDocument . 237
31 MDSchema: Sub-elements ofmappings . 238
32 MDSchema: Sub-element ofoldValue andnewValue 239

vii

viii

Listings

1 A fragment ofwinter.xml on 2002-01-01 . 7
2 Kjetil won a Silver medal, as of2002-03-01 . 7
3 Kjetil won a Gold medal, as of2002-07-01 . 7
4 Snippet of a Temporal Document 8
5 winOlympic.xsd . 8
6 Conventional XML Schema syntax to include a portion of one schema into another. 19
7 τXSchema syntax to include a portion of one temporal schema into another. 19
8 One way to represent two conventional documents. 19
9 Another way to represent two conventional documents. 19
10 A temporal schema references an annotation document thatis itself temporal. 20
11 The temporal schema should be as simple as possible. 20
12 exampleTemporalDocument.xml . 22
13 Company.A.xsd . 30
14 data.A.0.xml . 30
15 data.A.1.xml . 31
16 temporalDocument.0.1.xml . 32
17 Sample Identity Constraint Definition 40
18 Sample Referential Integrity constraint 40
19 Cardinality definitions using XML Schema 41
20 XML Schema data type definition 42
21 Initial State forproductNo attribute . 44
22 Changed State forproductNo attribute . 44
23 Conventional Uniqueness constraint for employee emails. 45
24 Non-sequenced uniqueness constraint on employee emails. 45
25 Non-sequenced uniqueness constraint within a single employee 45
26 Orders with an optionaldeliveredOn . 51
27 Considering Aggregation Levels for anorder . 51
28 property.xsd . 57
29 property logical annotation.xml . 58
30 property physical annotation.xml . 58
31 Property information, no owner details 58
32 Data corresponding to Valid time of Jan 1 - 10 59
33 Data corresponding to Valid time of Jan 10 onwards 59
34 Transaction Time[01-15, UC) , Valid Time [01-01, 01-10) 61
35 Transaction Time[01-15, UC) , Valid Time [01-10, 01-15) 61
36 Transaction Time[01-15, UC) , Valid Time [01-15, F) 61
53 Transaction Time[01-10, 01-15) . 62
37 Transaction Time[01-20, UC) , Valid Time [01-01, 01-10) 63
38 Transaction Time[01-20, UC) , Valid Time [01-10, 01-15) 63
39 Transaction Time[01-20, UC) , Valid Time [01-15, 01-20) 63
40 Transaction Time[01-20, UC) , Valid Time [01-20, F) 63
41 Transaction Time[01-23, UC) , Valid Time [01-01, 01-03) 65
42 Transaction Time[01-23, UC) , Valid Time [01-03, 01-05) 65
43 Transaction Time 23rd - UC, Valid Time 15th - 20th 65
44 Transaction Time[01-23, UC) , Valid Time [01-20, F) 65
45 Transaction Time[01-26, UC) , Valid Time [01-01, 01-05) 66

ix

46 Transaction Time[01-26, UC) , Valid Time [01-05, 01-15) 66
47 Transaction Time[01-26, UC) , Valid Time [01-15, 01-20) 66
48 Transaction Time[01-26, UC) , Valid Time [01-20, F) 66
54 Transaction Time[01-20, 01-23) . 67
49 Transaction Time[01-28, UC) , Valid Time [01-01, 01-05) 68
50 Transaction Time[01-28, UC) , Valid Time [01-05, 01-12) 68
51 Transaction Time[01-28, UC) , Valid Time [01-12, 01-20) 68
52 Transaction Time[01-28, UC) , Valid Time [01-20, F) 68
55 Transaction Time[01-26, 01-28) . 69
56 Transaction Time[01-20, 01-23) . 70
57 Temporal Document along both valid-time and transaction-time 71
58 Temporal Document along both valid-time and transaction-time. Continued 72
59 Temporal Document along both valid-time and transaction-time. Continued 73
60 Sample WinOlympic Logical Annotation 76
61 Sample WinOlympic Physical Annotation 76
62 Conventional Schema 82
63 Logical Annotation 82
64 Physical Annotation 82
65 Conventional schema. 105
66 Conventional document on 1 January 2002. 106
67 Conventional document on 1 March 2002. 106
68 Conventional document on 1 July 2002. 107
69 Temporal schema. 107
70 Annotation document. 107
71 Temporal document. 109
72 Conventional schema. 109
73 Conventional document on 29 March 2004. 110
74 Conventional document on 30 March 2004. 111
75 Conventional document on 31 March 2004. 112
76 Temporal schema. 112
77 Annotation document. 113
78 Temporal document. 114
79 Squashed document. 114
80 Company.B.xsd . 124
81 data.B.1.xml . 124
82 temporalSchema.0.xml . 124
83 temporalDocument.1.1.xml . 125
84 Company.C.xsd . 125
85 Person.C.0.xsd . 125
86 Product.C.0.xsd . 126
87 data.C.2.xml . 126
88 temporalSchema.1.xml . 126
89 temporalDocument.1.2.xml . 126
90 annotations.0.xml . 127
91 temporalSchema.2.xml . 127
92 temporalDocument.2.3.xml . 127
93 Person.D.1.xsd . 128
94 Company.D.xsd . 128

x

95 data.D.3.xml . 128
96 temporalSchema.3.xml . 129
97 temporalDocument.3.3.xml . 129
98 Company.E.xsd . 130
99 Product.E.1.xsd . 130
100 data.E.3.xml . 130
101 temporalSchema.4.xml . 131
102 temporalDocument.4.3.xml . 131
103 ProductTemporalSchema.xml . 132
104 PersonTemporalSchema.xml . 132
105 Company.F.xsd . 132
106 temporalSchema.5.xml . 133
107 temporalDocument.5.3.xml . 133
108 A schema using<include> . 137
109 anno.xml . 137
110 <ExperimentClass> element in version 3.1 . 140
113 A Temporal Schema for PHARMGKB: temporalschema.xml 142
114 An excerpt from the time-varying Temporal Schema for PHARMGKB 143
115 A portion of a temporal document (rep.xml) . 146
116 Slice on 2008-01-01. 166
117 Slice on 2008-03-17. 166
118 Slice-based representation. 166
119 Edit-based representation. 166
120 Item-based representation. 167
121 Reference-based representation. 167
122 diff output. 168
123 Edit-based encoding. 168
124 Original document. 168
125 Parsed and output by DOM. 168
126 Original document. 168
127 After filter and DOM mangling. 168
128 Edit-based representation with schema versioning. 169
129 Slice on 2008-01-01. 170
130 Slice on 2008-03-17. 170
131 Item-based representation of Listings 129 and 130. 170
132 Slice on 2008-01-01. 171
133 Slice on 2008-03-17. 171
134 Item-based representation of Listings 132 and 133. 171
135 Version 1 of a simple schema. 172
136 Version 2 of a simple schema. 172
139 XML Schema<unique> . 175
140 Uniquecode s (slice 1). 175
141 Slice 2 (invalid). 175
142 Slice 3 (valid). 175
143 Squashed version of the three slices. 175
144 XML Schema<unique> with additional fields. 176
146 Squashed document with multiple changes 176
147 A referential constraint. 177

xi

148 Squashed document. 177
149 Conventional schema 1. 178
150 Representational schema 1. 178
151 Conventional schema 2. 178
152 Representational schema 2. 178
153 Datatype conventional schema. 178
154 Datatype rep. schema. 178
155 Squashed version. One day equals one unit of time. 179
156 Item-based temporal representation #1. 179
157 Non-sequenced representational schema #1. 179
158 Item-based temporal representation #2. 180
159 Non-sequenced representational schema #2. 180
137 Representational schema. 189
138 Temporal document. 190
145 Squashed document with multiple changes 190
160 Conventional schema on 1 January 2002. 191
161 Conventional schema on 1 January 2005. 191
162 Annotation document on 1 January 2002. 192
163 Annotation document on 1 January 2005. 193
164 Conventional document on 1 January 2002. 194
165 Conventional document on 1 January 2003. 194
166 Conventional document on 1 January 2005. 195
167 Conventional document on 1 January 2006. 196
168 Temporal Schema. 196
169 Representational schema for 2002-01-01 to 2005-01-01.. 197
170 Representational schema for 2002-01-01 to 2005-01-01.. 199
171 Final Representational schema. 201
172 Temporal Document. 202
173 Squashed document. 202
174 TSSchema.xsd . 251
175 ASchema.xsd . 251
176 SliceSequence.xsd . 256
177 TDSchema.xsd . 256
178 Slice Generator script 257
179 AllRuns script 261

xii

Abstract

The W3C XML Schema recommendation defines the structure and data types for XML documents.
XML Schema lacks explicit support for time-varying XML documents or for time-varying schemas. An
XML document evolves as it is updated over time or as it accumulates from a streaming data source. A
temporal document records the entire history of a document rather than just its current state or snapshot.
Capturing a document’s evolution is vital to providing the ability to recover past versions, track changes
over time, and evaluate temporal queries. Capturing the evolution of a document’s schema is similarly
important. To date, users have to resort to ad hoc, non-standard mechanisms to create schemas for
time-varying XML documents and to deal with evolving schemas.

This report presents a data model and architecture, calledτXSchema, for constructing and validat-
ing temporal XML documents through the use of a temporal schema. A temporal schema guides the
construction of a temporal document and is essential to managing, querying, and validating temporal
documents. The temporal schema consists of a non-temporal (conventional) schema, logical annota-
tion(s), and physical annotation(s). The annotations specify which portion(s) of an XML document can
vary over time, how the document can change, and where timestamps should be placed. These com-
ponents can themselves individually evolve over time. The advantage of using annotations to denote
the time-varying aspects is that logical and physical data independence for temporal schemas can be
achieved while remaining fully compatible with both existing XML Schema documents and the XML
Schema recommendation. This report also describes how to construct a temporal document by “gluing”
individual snapshots into an integrated history.

This technical report is divided into three parts: concerninginstance versioning, extending toschema
versioning, and reviewing the entireτXSchema language. The first two parts have a parallel struc-
ture. Each begins by discussing relevant related work before providing a motivating example that illus-
trates the challenges of instance and schema versioning, respectively, then lists design decisions made in
τXSchema concerning that challenge. Theoretical considerations (separately for instance and schema
versioning), architectural considerations, and implementation details are discussed in that order in each
of the two parts. Each part ends with full example schema and instance documents. The third part com-
pletes the picture with a discussion of related work and research topics to be considered in the future.

xiii

xiv

1 Introduction

XML is becoming an increasingly popular language for documents and data. XML can be approached
from two quite separate orientations: adocument-centeredorientation (e.g., HTML) and adata-centered
orientation (e.g., relational and object-oriented databases). Schemas are important in both orientations. A
schema defines the building blocks of an XML document, such asthe types of elements and attributes. An
XML document can bevalidatedagainst a schema to ensure that the document conforms to the formatting
rules for an XML document (is well-formed) and to the types, elements, and attributes defined in the schema
(is valid). A schema also serves as a valuable guide for querying and updating an XML document or
database. For instance, to correctly construct a query, e.g., in XQuery, a user will (usually) consult the
schema rather than the data. Finally, a schema can be helpfulin query optimization, e.g., in constructing a
path index [54].

Several schema languages have been proposed for XML [49]. From among these languages, XML
Schema is the most widely used. The syntax and semantics of XML Schema 1.0 are W3C recommenda-
tions [80, 78].

Time-varying data naturally arises in both document-centered and data-centered orientations. Consider
the following wide-ranging scenarios. In a university, students take various courses in different semesters.
At a company, job positions and salaries change. At a warehouse, inventories evolve as deliveries are made
and good are shipped. In a hospital, drug treatment regimes are adjusted. And finally at a bank, account
balances are in flux. In each scenario, querying the current state is important, e.g., “how much is in my
account right now”, but it also often useful to know how the data has changed over time, e.g., “when has
my account been below $200”.

A temporal document records the evolution of a document overtime, i.e., all of the versions of the
document. Capturing a document’s evolution is vital to supporting time travel queries that delve into a past
version [70] and incremental queries that involve the changes between two versions.

In this report we consider how to accommodate time-varying data within XML Schema. An obvi-
ous approach would have been to propose changes to XML Schemato accommodate time-varying data.
Indeed, that has been the approach taken by many researchersfor the relational and object-oriented mod-
els [56, 62, 71]. As we will discuss in detail, that approach inherently introduces difficulties with respect to
document validation, data independence, tool support, andstandardization. So in this report we advocate a
novel approach that retains the non-temporal XML Schema forthe document, utilizing a series of separate
schema documents to achieve data independence, enable fulldocument validation, and enable improved
tool support, while not requiring any changes to the XML Schema standard (nor subsequent extensions of
that standard; XML Schema 1.1 is in development).

We present a system, calledTemporal XML Schema, or τXSchema, for constructing and validating
temporal documents.τXSchema reuses XML Schema while adding the ability to designate which element
types can vary over time. A temporal schema also describes how to associate time-varying elements across
snapshots and provides some temporal constraints that broadly characterize how an element can change
over time.

Coupled with theτXSchema schema specification language is an architecture and associated tools for
constructing schemas for temporal XML documents. A temporal document records the evolution of a
document over time, i.e., all of the versions of the document. τXSchema has a three-level architecture for
specifying a schema for time-varying data . The first level isthe schema for an individual version, called the
conventional schemaor snapshot schema. The snapshot schema is a conventional XML Schema document.
The second level is thelogical annotationsof the conventional schema, which identify which elements
can vary over time. For those elements, the logical annotations also effect a temporal semantics to the
various integrity constraints (such as uniqueness) specified in the conventional schema. The third level is
thephysical annotations. The physical annotations describe how the time-varying aspects are represented.

1

The conventional schema and logical and physical annotations are collected together in an XML document
termed a temporal schema. Similarly, the individual time slices are combined into one XML document,
termed the temporal document, which serves as the XML instance. A temporal validator takes a temporal
schema and a temporal document and validates both.

Each annotation can be independently changed, so the architecture exhibitslogical and physical data in-
dependence[14]. Data independence allows XML documents using one representation to be automatically
converted to a different representation while preserving the semantics of the data.τXSchema is accompa-
nied with a suite of auxiliary tools to manage temporal documents and schemas. There are tools to convert
a temporal document from one physical representation to a different representation, to extract a time slice
from that document (yielding a conventional static XML document), and to create a temporal document
from a sequence of static documents, in whatever representation the user specifies.

As mentioned,τXSchemareusesrather than extends XML Schema.τXSchema is consistent and com-
patible with both XML Schema and the XML data model. InτXSchema, a temporal validator augments
a conventional validator to more comprehensively check thevalidity constraints of a document, especially
temporal constraints that cannot be checked by a conventional XML Schema validator. We describe a means
of validating temporal documents that ensures the desirable property of snapshot validation subsumption.
We show in Section 18.7 how a temporal document can be smallerand faster to validate than the associated
XML snapshots.

τXSchema focuses on bothinstance versioning(representing a time-varing sequence of XML instance
documents) andschema versioning(representing a time-varying schema document [33, 69]). The schema
can describe which aspects of an instance document change over time; this schema can itself be a temporal
(time-varying) document. The temporal schema references or contains these annotations. All three compo-
nents, (1) the conventional schema, (2) the logical annotations, and (3) the physical annotations, can change
over time. The temporal validator and associated tools are able to contend with both instance and schema
versioning.

Intensional XML data(also termed dynamic XML documents [1]), that is, parts of XML documents that
consist of programs that generate data [58], are gaining popularity. Incorporating intensional XML data is
beyond the scope of this report.

While this report concerns temporal XML Schema, we feel thatthe general approach of separate log-
ical and physical annotations is applicable for introducing temporal aspects to other data models, such as
UML [61]. The contribution of this report is two-fold: (1) introducing a three-level approach for logical data
models and (2) showing in detail how this approach works for XML Schema in particular, specifically con-
cerning a theoretical definition of snapshot validation subsumption for XML, validation of temporal XML
documents, and implications for tools operating on realistic XML schemas and data, thereby exemplify-
ing in a substantial way the approach. While we are confident that the approach could be applied to other
data models, designing the annotation specifications, considering the specifics of data integrity constraint
checking, and ascertaining the impact on particular tools for a different data model remain challenging (and
interesting) tasks.

This technical report is divided into three parts. The first part concernsinstance versioning; the second
part extends the approach to supportschema versioning; and the last part summarizes the entireτXSchema
language.

The first two parts have a parallel structure. Each begins by discussing relevant related work before
providing a motivating example that illustrates the challenges of instance and schema versioning, respec-
tively, then lists design decisions made inτXSchema concerning that challenge. Theoretical considerations
(separately for instance and schema versioning), architectural considerations, and implementation details
are discussed in that order in each of the two parts. Each partends with full example schema and instance
documents.

Part III completes the picture with a discussion of related work and research topics to be considered in

2

the future. It ends with a summary of theτXSchema language design, detailing all of the new elements and
attributes defined in the language or in instance documents that are instance- or schema-varying.

An appendix gives the four XML schemas that in concert with the tools compriseτXSchema. A sum-
mary of these schemas and the semantics of their items is in the τXSchema Reference.

3

4

Part I

Supporting Temporal XML Documents
In this part, we consider how to supportdataversioning, that is, a time-varying XML document. The next
part will considerschema versioning, in which the schema also varies over time.

We first provide a motivating example, that of the history of the Winter Olympic games. Such a doc-
ument changes through the adding of new information valid ata later time and the correction of previous
information.

We then consider prior work in schemas for XML and in temporaldatabases.
Section 4 provides terminology, design desiderata and goals, and comprehensive discussion of the over-

arching design decisions, illustrated with a Company XML document.
We then turn to a deeper discussion of the language design, first through a theoretical framework and

then through a detailed examination of extending constraints in XML schemas into temporal constraints.
Section 7 considers adding transaction time to the mix and the following sections describe the overall
architecture and the various tools that supportτXSchema and the spectrum of possible representations
of time-varying data.

We end with full listings of the WinOlympic and Company examples.

5

6

2 Motivation

Over a decade of work has been invested in the development of XML Schema. Before we undertake the
task of presenting an approach to extend XML Schema, we feel it is important to consider its ability to
support temporal data. In this section, we discuss whether conventional XML Schema is appropriate and
satisfactory for time-varying data. We present an example that illustrates how a time-varying document
differs from a conventional XML document. We then pinpoint some of the limitations of the XML Schema
in supporting temporal documents and data. This allows us tomotivate desired properties of schemas for
time-varying documents. We end with a discussion of some real world applications that would benefit from
document and schema versioning supported by theτXSchema framework.

Assume that the history of the Winter Olympic games is described in an XML document calledwinter -
.xml . The document has information about the athletes that participate, the events in which they participate,
and the medals that are awarded. Over time the document is edited to add information about each new Win-
ter Olympics and to revise incorrect information. Assume that information about the athletes participating
in the 2002 Winter Olympics in Salt Lake City, USA was added on2002-01-01 . On 2002-03-01
the document was further edited to record the medal winners.Finally, a small correction was made on
2002-07-01 .

To depict some of the changes to the XML in the document, we focus on information about the Nor-
wegian skier Kjetil Andre Aamodt. On2002-01-01 it was known that Kjetil would participate in the
games and the information shown in Listing 1 was added towinter.xml . Kjetil won a medal; so on
2002-03-01 the fragment was revised as shown in Listing 2. The edit on2002-03-01 incorrectly
recorded that Kjetil won a silver medal in the Men’s Combined; Kjetil won a gold medal. Listing 3 shows
the correct medal information.

Listing 1: A fragment ofwinter.xml on 2002-01-01
...

<athlete>
<athName>Kjetil Andre Aamodt </ athName>

</ athlete>
...

Listing 2: Kjetil won a Silver medal, as of2002-03-01
...

<athlete>
<athName>Kjetil Andre Aamodt </ athName> won a medal in
<medal mtype ="silver">Men 's Combined </ medal>

</ athlete>
...

Listing 3: Kjetil won a Gold medal, as of2002-07-01
...

<athlete>
<athName>Kjetil Andre Aamodt </ athName> won a medal in
<medal mtype ="gold">Men 's Combined </ medal>

</ athlete>
...

A time-varying document records aversion history, which consists of the data in each version, along
with the timestamps indicating the lifetime of that version. Listing 4 shows a fragment of the time-varying
document that captures the history of Kjetil. The fragment iscompactin the sense that each edit results in a
small, localized change to the document. In Listing 4 thetransaction-timelifetimes of each element are rep-
resented with an optional<tv:timestamp TransExtent> sub-element. If the timestamp is missing,

7

the element has the same lifetime as its enclosing element. For example, there are two<athlete> ele-
ments with different lifetimes since the content of the element has changed. The last version of<athlete>
has two<medal> elements because the medal information is revised. There are many different ways to
represent the versions in a time-varying document; the methods differ in which elements are timestamped,
how the elements are timestamped, and how changes are represented (e.g., perhaps only differences between
versions are represented).

Listing 4: Snippet of a Temporal Document
...
<athlete_RepItem>

<athlete_Version>
<tv : timestamp_TransExtent begin ="2002-01-01" end ="2002-03-01"/>

<athlete>
<athName>Kjetil Andre Aamodt </ athName>

</ athlete>
</ athlete_Version>
<athlete_Version>

<tv : timestamp_TransExtent begin ="2002-03-01" end ="9999-12-31"/>
<athlete>

<athName>Kjetil Andre Aamodt </ athName>won a medal in
<medal_RepItem >

<medal_Version >
<tv : timestamp_TransExtent begin ="2002-03-01" end ="2002-07-01"/>
<medal mtype ="silver">Men 's Combined </ medal>

<medal_Version >
<medal_Version >

<tv : timestamp_TransExtent begin ="2002-07-01" end ="9999-12-31"/>
<medal mtype ="gold">Men 's Combined </ medal>

<medal_Version >
</medal_RepItem >

</ athlete>
</ athlete_Version>

</ athlete_RepItem>
...

Keeping the history in a document or data collection is useful because it provides the ability to recover
past versions, track changes over time, and evaluate temporal queries [36]. But it also changes the nature of
validation against a schema. Assume that the filewinOlympic.xsd contains theconventional schema
for winter.xml . The conventional schema is the schema for an individual version. The conventional
schema is a valuable guide for editing and querying individual versions. A fragment of the schema is given
in Listing 5. Note that the schema describes the structure ofthe fragment shown in Listing 1, Listing 2,
and Listing 3. The problem is that although individual versions conform to the schema, the time-varying
document does not. SowinOlympic.xsd cannot be used (directly) to validate the time-varying document
of Listing 4.

Listing 5: winOlympic.xsd
...
<element name="athlete">

<complexType mixed ="true">
<sequence>

<element name="athName" type ="string"/>
<element ref ="medal" minOccurs ="0" maxOccurs ="unbounded"/>
<element name="birthPlace" type ="string" minOccurs ="0"

maxOccurs ="1"/>
</ sequence>
<attribute name="age" type ="nonNegativeInteger" use ="optional"/>

</ complexType>
</ element>
...

8

The conventional schema could be usedindirectly for validation by individually reconstituting and val-
idating each version. But validating every version can be expensive if the changes are frequent or the
document is large (e.g., if the document is a database). While the Winter Olympics document may not
change often, contrast this with, for instance, a Customer Relationship Management database for a large
company. Thousands of calls and service interactions may berecorded every day. This would lead to a very
large number of versions, making it expensive to instantiate and validate each individually. The number of
versions could further be increased by the presence of both valid and transaction time.

To validate a time-varying document, a new, different schema is needed. The schema for a time-varying
document should take into account the elements (and attributes) and their associated timestamps, specify the
kind(s) of time involved, provide hints on how the elements vary over time, and accommodate differences
in version and timestamp representation. Since this schemawill express how the time-varying information
is represented, we call it therepresentational schema. The representational schema will be related to the
underlying conventional schema (Listing 5), and will allowthe time-varying document to be validated
using a conventional XML Schema validator (though not fully, as discussed in the further sections). The
representational schema will also be important in constructing, evaluating, and optimizing temporal queries.
Both the person who is formulating a query and the database need to know which elements in the document
are time-varying elements since additional operations, like temporal slicing, are applicable to the temporal
elements. Thus the schema language should have some capability of designating time-varying elements.

Finally, time-varying elements can have additional constraints. For instance, it might be important to
stipulate that an athlete can win only a single medal in an event, although the existence and/or type of medal
may change over time (for instance if the athlete is disqualified). Thevalid timecomponent of this constraint
is that only one medal appears in an<athlete> element at any point in time. But thetransaction time
component of the constraint is that multiple versions can bepresent (as the element is modified). A schema
language for a temporal document needs to have some way of specifying and enforcing such constraints.

The conventional XML Schema validator is alsoincapableof fully validating a time-varying document
using the representational schema. First, XML Schema is notsufficiently expressive to enforcetemporal
constraints. For example, XML Schema cannot specify the following (desirable) schema constraint: the
transaction-time lifetime of a<medal> element should always be contained in the transaction-timelife-
time of its parent<athlete> element. Second, a conventional XML Schema document augmented with
timestamps to denote time-varying data cannot, in general,be used to validate a snapshot of a time-varying
document. A snapshot is an instance of a time-varying document at a single point in time. Consider a
temporal document with timestamps for the lifespan of the parent and child elements. If the schema asserts
that a child element is mandatory (minOccurs=1), there is no way to ensure that the element is in every
snapshot given that the element’s timestamp may indicate that it has a shorter lifetime than its parent (re-
sulting in times during which the element is not present, violating this integrity constraint); XML Schema
provides no mechanism for reasoning about the timestamps.

Even though the representational and conventional schemasare closely related, there are no existing
techniques to automatically derive a representational schema from a conventional schema (or vice-versa).
The lack of an automatic technique means that users have to resort to ad hoc methods to construct a rep-
resentational schema. Relying on ad hoc methods limits dataindependence. The designer of a schema
for time-varying data has to make a variety of decisions, such as which elements should be time-varying,
whether to timestamp with periods or withtemporal elements[76] (which are sets of non-overlapping pe-
riods). By adopting a tiered approach, where the snapshot XML Schema, logical annotations, and physical
annotations are separate documents, individual schema design decisions can be specified and changed, often
without impacting the other design decisions, or indeed, the processing of tools. For example, a tool that
computes a snapshot should be concerned primarily with the conventional schema; the logical and physical
aspects of time-varying information should only affect (perhaps) the efficiency of that tool, not its correct-
ness. With physical data independence, only a few applications that are concerned with representational

9

details would need to be changed.
To summarize, an improved tool support for representing andvalidating time-varying information is

needed. Creating a time-varying XML document and representational schema for that document is poten-
tially labor-intensive. Currently a user has to manually edit the time-varying document to insert timestamps
indicating when versions of XML data are valid (for valid time) or are present in the document (for trans-
action time). The user also has to modify the conventional schema to define the syntax and semantics of
the timestamps. The entire process would be repeated if a newtimestamp representation were desired. It
would be better to have automated tools to create, maintain,and update time-varying documents when the
representation of the timestamped elements changes.

10

3 Background

Our work considers XML documents that are validated againsta schema, specifically an XML Schema
document. In providing temporal augmentations with theτXSchema approach, we consider the rich tradi-
tion of research in temporal data management, particularlyin the relational field. This section provides an
introduction to both XML Schema and key concepts from temporal databases.

3.1 XML

The extensible markup language XML has emerged as a standardfor information exchange over the In-
ternet. Its usage of plain text provides a platform-independent means to represent data. It has gained
popularity across many classes of data including structured documents, heterogeneous and semi-structured
records, data from scientific experiments and simulations,digitized images, and protocol exchange for web
services. Since XML data is self-describing, XML is considered one of the most promising means to define
semi-structured data, which is expected to be ubiquitous inlarge volumes from diverse data sources and
applications on the web. XML allows users to make up any new tags for descriptive markup for their own
applications. Such user-defined tags on data elements can identify the semantics of data. The relationships
between elements can be defined by nested structures and references.

In the relational data model, aschemadefines the structure of each relation in a database. Each relation
has a very simple structure: a relation is a list of attributes, with each attribute having a specified data type.
The schema also includes integrity constraints, such as thespecification of primary and foreign keys. In a
similar manner, an XML Schema document defines the valid structure for an XML document. But an XML
document has a far more complex structure than a relation. A document is a (deeply) nested collection of
elements, with each element potentially having (text) content and attributes.

There are various XML schemas that have been proposed in the literature and in the commercial arena.
We chose to extend XML Schema [81] inτXSchema because it is backed by the W3C and supports most
major features available in other XML schemas [49]. It wouldbe relatively straightforward to apply the
concepts in this paper to develop time support for other XML schema languages; less straightforward but
possible would be to apply our approach of temporal and physical annotations to other data models, such as
UML [61] (to produce temporally augmented class diagrams, for example). Previously, we have extended
the Unifying Semantic Model, a conceptual model that extends the ER Model, to utilize annotations [48],
very similar to what we propose here.

An XML schema is a description of a type of XML document, typically expressed in terms of con-
straints on the structure and content of documents of that type, beyond the basic syntax constraints imposed
by XML itself. Thus an XML schema provides a view of the document type at a relatively high level of
abstraction. The XML Schema language is also referred to as XML Schema Definition (XSD). The Docu-
ment Type Definition (DTD) language [83], which is native to the XML specification, was being used as a
schema language before XML Schemas were introduced. XML Schema language was introduced in order
to overcome some of the limitations of DTDs like a different syntax from that of XML, limited data type
capability, and limited type compatibility with databases.

XML Schema has many advancements over DTDs. Schemas are written in the same syntax as the
instance documents. They have more than 44 built-in data types available, compared to only 10 data types
for DTDs. A schema designer can also create his/her own data types if required. XML 1.1 introduced
object-oriented data types that support inheritance and can extend or restrict a type. It also has a support for
different keys like primary key and referenced key as opposed to only ID and IDREF support in DTDs.

The process of checking to see if an XML document conforms to aschema is calledvalidation, which is
separate from XML’s core concept of syntactic well-formedness. All XML documents must be well-formed,
but it is not required that a document be valid unless the XML parser is “validating”, in which case the

11

document is also checked for the conformance with its associated schema. A well formed document obeys
the basic rules of XML established for the structural designof a document. Moreover a valid document also
respects the rules dictated by its corresponding XML Schema.

The parser provides an interface to an XML document, exposing its contents through a well-specified
API. At present, two major API specifications define how XML parsers work: SAX [64] and DOM [82].
The DOM specification defines a tree-based approach to navigating an XML document. It processes XML
data and creates an object-oriented hierarchical representation of the document that can be navigated at
run-time. The tree-based W3C DOM parser creates an internaltree based on the hierarchical structure of
the XML data. It can be navigated and manipulated from the software, and it stays in memory until it is
released. DOM uses functions that return parent and child nodes, giving programmer full access to the XML
data and providing the ability to interrogate and manipulate these nodes.

The SAX specification defines an event-based approach whereby a parser scans through XML data,
calling handler functions whenever certain parts of the document (e.g., text nodes or processing instructions)
are found. In SAX’s event-based system, the parser does not create any internal representation of the
document. Instead, the parser calls handler functions whencertain events (defined by the SAX specification)
take place. These events may include the start and the end of the document, finding a text node, finding
child elements, or hitting a malformed element.

We now turn to time-varying XML documents.
Methods to represent temporal data and documents on the web have been actively researched. This

research has covered a wide range of issues that include architectures for collecting document versions [31],
strategies for storing versions [19], studies on the frequency of data change [19], temporal query lan-
guages [36, 60] and using events to trigger actions [39]. Techniques to capture the semantics of variants
(alternatives of an element that can co-exist at a point in time) are orthogonal to our work, but have also been
discussed [38, 87, 16]. The logical representation of deltas between the versions and the aspects of physical
storage policy for storing those versions have been proposed so as to maximize the space utilization [53].
Grandi and Mandreoli [42] sketch an infrastructure for adding valid-time timestamps to a web document,
and formatting timeslices from the document using XSLT. They give an XML Schema definition for the tim-
stamps, as we do inτXSchema for our timestamps. Temporal and physical annotations are not discussed,
nor are temporal constraints. Grandi has created a bibliography of previous work in this area [40]. More re-
cent papers on version control include [44, 86, 85]. Iwaihara et al. [44] discuss a versioned temporal model
in the context of access control. The model represents changes between versions with a “delta graph,” which
logically induces a “version graph” (essentially a timeslice-based representation). The focus of the paper is
an access control language for versions, unlikeτXSchema, there is no ability to specify which elements are
to be versioned, the time domain of the versioning, or the (logical) representation of the versions. Wond and
Lam [86] present a version management system for XML data. The system stores a document’s history as a
combination of some complete versions and deltas. The deltas are edit scripts, and can be used to construct
a version from a nearby complete version. They also present part of a query language to retrieve desired
versions. The focus of the paper is on efficient storage and retrieval of versions, whereas our focus is on
fine-grained control of versioning. Wang and Zaniolo [85] present a comprehensive system for concisely
representing a temporally-grouped XML version history. They also give a query language to retrieve past
versions. Their extensions, like ours, require no changes to current standards to support versioning. Un-
like τXSchema, everything is versioned and there is no support fortemporal constraints in the versioning.
Temporal and physical schema annotations are not discussed.

In context of time-varying documents, Garcia-Molina and Cho [20] provide evidence that some web
resources change frequently (though not specifically XML resources). Nguyen et al. [59] describe how to
detect changes in XML documents that are accessible via the web. In the Xyleme system [90], the XML
Alerter module periodically (with a periodicity specified by the user) accesses the XML document and
compares it with a cached version of the document. The resultis a sequence of static documents, each with

12

an associated existence period. Dyreson [27] describes howa web server can capture some of the versions
of a time-varying document, by caching the document as it is served to a client, and comparing the cached
version against subsequent requests to see if anything has changed. Amagasa et al. [2] classify the methods
used to access XML documents into two general categories: (i) using specialized APIs for XML documents,
such as DOM, and (ii) directly editing documents, e.g., withan editor. In the former case, to access and
modify temporal XML documents, DOM can be extended to automatically capture temporal information
(and indeed, we have implemented such functionality inτDOM). Franceschet et al. [32] have also adopted
this approach, but their approach requires the user to specify a valid ER schema and it only supports limited
temporal data validation. It is also possible to capture transaction time information in the documents through
change analysis, as discussed above and elsewhere [7, 22, 91]. Inconsistencies arise when the documents
can be edited directly and methods need to be designed to resolve them [15]. Issues related to checking the
validity of temporal documents (e.g., not allowing a child element or attribute to exist outside the lifespan
of its parent) have been brought up [67]. We address this in more depth in Section 4 where we lay out our
design goal regarding document validity.

Most previous approaches, irrespective of their methods toaccess XML documents, assume that time-
stamps are present on every time-varying element [51, 32, 43] (whereas our approach enables the schema
designer to specify the physical location of the timestamps). There has been a lot of interest in the repre-
sentation schemes for time-varying documents. Some version control tools have been developed for data
varying XML documents (e.g., [53, 52]). Chien, Tsotras and Zaniolo [19] have researched techniques for
compactly storing multiple versions of an evolving XML document. Chawathe et al. [18] described a model
for representing changes in semi-structured data and a language for querying over these changes. A related
option, the diff based approach [7, 22] focuses on an efficient way to store time-varying data and can be
used to help detect transaction time changes in the documentat the physical level. Buneman et al. [12, 13]
provide another means to store a single copy of an element that occurs in many snapshots. Grandi and
Mandreoli [41] propose a<valid > tag to define a validity context that is used to timestamp partof a
document. Mandreoli et al. [51] utilize native support, in which an XML document is encoded using in-
verted lists of tuples with additional position and level numbers. Assuming a data document were stored in
this representation, their slicing implementation could be used to implement unsquash efficiently. Finally,
Chawathe et al. [18], Dyreson et al. [30], Mendelzon et al. [57] and Tang et al. [75] discuss timestamps on
edges (instead of document nodes) in a semi-structured datamodel.

Recently there has been interest in incremental validationof XML documents [5, 63, 9, 4]. These
consider validating a snapshot that is the result of updateson the previous snapshot, which has already
been validated. In a sense, this is the dual to the problem we consider, which is validating a (compressed)
temporal document all at once, rather than once per snapshot(incrementally or otherwise).

None of the approaches above focus on the extensions required in XML Schema to adequately specify
the nature of changes permissible in an XML document over time, and the corresponding validation of the
extended schema. In fact, some of the previous approaches that attempt to identify or characterize changes
in documents do not consider a schema. As our emphasis is on logical and physical data modeling, we
assume that a schema is available from the start, and that thedesire is for that schema to capture both the
static and time-varying aspects of the document. If no schema exists, tools can derive the schema from the
base documents [6], but the details of that is beyond the scope of this paper. Our research applies at the
logical view of the data, while also being able to specify thephysical representation. Since our approach is
independent of the physical representation of the data, it is possible to incorporate the diff-based approach
and other representational approaches [13] in our physicalannotations.

13

3.2 Temporal Databases

Most applications of database technology are temporal in nature [46]. Some examples include financial
applications such as banking and accounting; record-keeping applications such as personnel, and inventory
management; scheduling applications such as airline, train, and hotel reservations; and scientific applica-
tions such as weather monitoring and forecasting. Applications such as these rely on temporal databases,
which record time-referenced data.

A temporal database is a database with built-in support for time aspects, e.g., a temporal data model and
a temporal version of a structured query language. In a regular database, there is no concept of time. The
database has a current state, and that’s all that can be queried. In a temporal database, the database includes
information about when things happened.

More specifically the temporal aspects usually include two orthogonal time dimensions: valid time and
transaction time. These two kinds together formbitemporal data[45].

Valid Time : Valid time associates with a fact the time period during which the fact is true with respect
to the real world. Valid time thus captures the time-varyingstates of the mini-world. All facts have
a valid time by definition. However, the valid time of a fact may not necessarily be recorded in the
database, for any of a number of reasons.

Transaction Time: Transaction time associates with the fact the time period during which the fact is
stored in the database. This enables queries that show the state of the database at a given time. Unlike
valid time, transaction time may be associated with any database entity, not only with facts. Thus,
all database entities have a transaction-time aspect. Thisaspect may or may not, at the database
designers discretion, be captured in the database. The transaction-time aspect of a database entity has
a duration: from insertion to deletion, with multiple insertions and deletions being possible for the
same entity. Transaction time captures the time-varying states of the database, and applications that
demand accountability or ”traceability” rely on databasesthat record transaction time.

Bitemporal Relation: A bi-temporal relation contains both valid and transaction time. Thus, it provides
both temporal rollback and historical information.

Consider the following example emphasizing the use of both valid time and transaction time in a
database table:

Name ValidBegin ValidEnd TransactionStart TransactionStop
Joe 1/1/2002 Forever 1/2/2002 UntilChanged

Joe was born on Jan 1st, 2002. His father happily registered his son’s birth-date on Jan 2nd, 2002. In the Cit-
izen table, two columnsValidBegin andValidEnd would be present to record the date when a citizen
is alive. Although the registration was done on Jan 2nd, the database states that the information is valid since
Jan 1st. SoValidBegin contains Jan 1st. Joe’s record is valid while he is alive. So,ValidEnd contains
an infinity value. To keep a track of the date when the record was inserted into the table two more fields are
added to the Citizen table:TransactionStart andTransactionStop . TransactionStart is
the time a transaction inserted that data, andTransactionStop is the time that a transactionsuperseded
that data (or “until changed” if it has not yet been superseded). For this record, theTransactionStart
would contain Jan 2nd while TransactionStop would contain “until changed”.

What happens if the data entry operator enters Joe’s birth date as Jan 1st, 2001 instead of Jan 1st, 2002?
When this is realized e.g., on Jan 10th, 2002, the old transaction that started on Jan 2nd, 2002 containing
ValidBegin date as Jan 1st, 2001 would be terminated and a new record containing correct birth date in

14

ValidBegin column would be inserted. TheTransactionStop column for this record would have a
value Jan 10th, 2002.

Name ValidBegin ValidEnd TransactionStart TransactionStop
Joe 1/1/2001 Forever 1/2/2002 1/10/2002
Joe 1/1/2002 Forever 1/10/2002 UntilChanged

In the above example, the Citizen table is a bitemporal table, since it maintains both valid and transaction
times for a every record. Thus, it is possible to rollback a particular record to a past date. In addition, it
also provides all historical information about a record. Wediscuss bitemporal support forτXSchema in
Section 7.

15

16

4 Design Goals and Design Decisions

This section provides the overarching design decisions related to time-varying data within theτXSchema
system, and the desiderata and design goals that motivated those decisions.

We start out with some terminology that will be used throughout this document, including conventional
and temporal (XML) documents, and conventional and temporal (XML) schemas (which are also XML
documents themselves). Also defined is the annotation document and slice (which are also XML docu-
ments themselves). We then present some high level design desiderata and goals that motivate the specific
decisions listed in Section 4.4. This includes decisions relevant to the temporal schema, annotations, and the
temporal document. We conclude by presenting a brief example to illustrates the usage of theτXSchema
language.

4.1 Terminology

This section defines terms relevant toτXSchema.

Conventional Document1 A standard XML document that has no temporal aspects.

Temporal Document2 A standard XML document that represents a sequence of conventional documents
(i.e., slices). It may be user-created or the result of theSQUASH tool and has the root element
<temporalRoot> .

Conventional Schema3 A standard XML Schema document that describes the structureof the conven-
tional document(s). The root element is<schema> .

Temporal Schema4 A standard XML document that ties together the conventionalschemas and the anno-
tations. In our temporal system, the temporal schema is the logical equivalent to the XML Schema of
the conventional world; it describes the rules and format ofthe temporal documents. The root element
is <temporalSchema> .

Annotation Document A standard XML document that specifies a variety of characteristics (e.g., logical,
physical, etc.) of a conventional document. For example,logical characteristics specify whether an
element or attribute varies over valid time or transaction time, whether its lifetime is described as a
continuous state or a single event, whether the element itself may appear at certain times (and not
at others), and whether its content changes;physicalcharacteristics specify the timestamp options
for the representation, such as where the timestamps are placed and their kind (e.g., valid time or
transaction time) and the kind of representation.

Slice A version of a temporal document at a given point in time. For example, if a temporal document is
comprised of two conventional documentsd1 andd2, which occur at timet1 andt2, respectively, then
the slice at timet2 is d2.

1We also considered the terms “non-temporal document” (dismissed since this term focuses only on the absence of one aspect
(temporal), but it could lack other aspects), “slice document” (dismissed since the term “slice” could refer to any typeof document),
and “base document” (dismissed since the term “base” could be confused with other contexts.

2We also considered “time-varying document,” but dismissedit since the term “temporal” is more consistent with the restof
the terminology.

3We also considered the terms “non-temporal schema” (dismissed for the same reason as non-temporal document) and “base
schema” (dismissed since a schema could really be composed of several base schemas.

4We also considered “temporal bundle” but dismissed since this term doesn’t capture as cleanly the idea that this document acts
as the schema for a temporal document.

17

4.2 Desiderata

In augmenting XML Schema to accommodate time-varying data,we had several goals in mind. At a
minimum, we desired that our approach exhibit the followingbenefits.

• Simplify the representation of time for the user.

• Support a three-level architecture to provide data independence, so that changes in the logical and
physical level are isolated.

• Retain full upward compatibly with existing standards andnot require any changes to these standards.

• Augment existing tools such as validating parsers for XML in such a way that those tools are also
upward compatible. Ideally, any off-the-shelf validatingparser (for XML Schema) can be used for
(partial) validation.

• Support both valid time and transaction time.

• Accommodate a variety of physical representations for time-varying data.

• Accommodate different kinds of time, such as indeterminate times, unknown times, the current time,
and times at a variety of temporal granularities.

• Support instance versioning.

• Support schema versioning. Different versions of a document may conform to different versions of a
schema, as both a document and schema are modified over time. Support for schema versioning will
ensure that the schema’s history can be kept and correctly utilized.

Note that while ad hoc representational schemas may meet thelast five desiderata, they certainly don’t meet
the first four.

In the following sections, we refine these desiderata intodesign goalsand then intodesign decisions.

4.3 Design Goals

This section defines a set of high-level goals for the structure and organization of the documents and
τXSchema language.

(a) Upward compatibilitywith established XML designs, techniques, and tools is the most important
goal that drives the rest of the design. Conventional documents and conventional schemas should
work within τXSchema. As an example, Figure 1 shows a conventional document and conventional
schema being validated by XMLLINT [50]. τXMLL INT should be able to produce the same output
as the conventional tool given the same input.

(b) No changesshould be required for conventional documents. That is, conventional documents and
schemas should not be aware of the fact that they are being used in τXSchema; instead, they should
have standard syntax and be valid with conventional tools. Although this goal is just an expansion of
goal (a), it is worth mentioning specifically for emphasis.

(c) Convenienceandintuition should be stressed. It is important to make migrating from a conventional
system toτXSchema as easy as possible. Whenever possible, we should adopt existing XML formats,
naming schemes, and methodologies; see Listings 6 and 7 for examples.

18

Figure 1: An XML document, which references an XML Schema, being validated by XMLLINT. The solid
lines going into XMLLINT indicate that the documents are explicitly input into the tool.

Listing 6: Conventional XML Schema syntax to include a portion of one schema into another.
<include schemaLocation ="otherSchema.xsd">

Listing 7: τXSchema syntax to include a portion of one temporal schema into another.
<include schemaLocation ="otherTemporalSchema.xml">

(d) Adding temporal documents and schemas should beeasy. Specifying that one or more documents
vary over time should require little effort from the user. Further, the impact to the entire design and
organization should be small.

(e) Substitutabilityof the various artifacts of the system is another primary goal. If there is more than
one way to describe a temporal artifact, then each way shouldbe permitted anywhere any other way
is permitted. For example, both Listings 8 and 9 below contain the same information; the former lists
a sequence of conventional documents and their lifetimes while the latter is the squashed version of
these same documents.

Listing 8: One way to represent two conventional documents.
<temporalRoot>

<sliceSequence>
<slice location ="version1.xml" begin ="2008-01-02">
<slice location ="version2.xml" begin ="2008-03-17">

</ sliceSequence>
</ temporalRoot>

Listing 9: Another way to represent two conventional documents.
<temporalRoot begin ="2008-01-02">

<Company_RepItem isItem ="y" originalElement ="Company">
<Company_Version>

<Company name="International Business Machines" />
...

</ Company_Version>
<Company_Version>

<Company name="IBM" />
...

</ Company_Version>
</ Company_RepItem>

</ temporalRoot>

Thus, either method should be allowed to appear in place of the other.

19

(f) Temporal data can occur atany levelof the system. This includes the temporal schema and annotation
document. For example, temporal schemas should be allowed to reference other temporal schemas,
which in turn reference other temporal (or conventional) schemas. The schemas for these schemas
should be allowed to be temporal or conventional. Eventually a conventional document or schema is
reached, and the process completes; however, no limits or constraints should be placed on the amount
or location of temporal data. As another example, Listing 10shows a temporal schema that references
an annotation document that itself is temporal.

Listing 10: A temporal schema references an annotation document that is itself temporal.
<temporalSchema>

...
<annotationSet>

<!-- Note: annotations.xml is a time-varying document (e.g ., it has several slices) -->
<include schemaLocation ="annotations.xml" />

</ annotationSet>
...

</ temporalSchema>

(g) Namespacesshould be preserved in the validation. If more than one namespace is used throughout
the conventional schemas and in the conventional documents, then the validation should use this
information in the validation process.

(h) Simple cases should besimplefor the user to create. For example, if only one conventionalschema
is present, then the temporal schema is only required to listthe URI for this schema, and no further
markup is needed for the tools to work correctly. Listing 11 shows such a temporal schema.

Listing 11: The temporal schema should be as simple as possible.
<temporalSchema>

<conventionalSchema>
<include schemaLocation ="Company.xsd" />

</ conventionalSchema>
</ temporalSchema>

Even more simply, if a temporal document references a schema, that schema can be a conventional
schema, interpreted by the tools as a temporal schema, as just discussed.

4.4 Design Decisions

This section outlines the design decisions that resulted from the design goals. We first describe general
decisions that apply to all ofτXSchema, and then discuss the decisions that apply specifically to temporal
schemas, temporal documents, and annotation documents. The XML Schema schemas that define the sytax
of these documents are provided in Appendix A.

4.4.1 General Decisions

(1) τXMLL INT will use XMLL INT (a conventional parser) as its internal engine for validating con-
ventional documents. This decision fulfills goal(a) in that we can use a conventional parser on
conventional documents, thus achieving full upward compatibility. It also fulfills (in fact, requires)
goal (b) in that in order for the conventional parser to work correctly, no changes can be introduced
into the conventional documents.

(2) The characterization of a temporal document will be achieved by using a <sliceSequence> ele-
ment; each individual conventional document’s URI and its associated lifetime will be directly listed

20

in this element via a<slice> element and itslocation , begin , and optionalend attributes. See
Listing 8 for a simple example. This decision fulfills goal(f) because the<sliceSequence> el-
ement can occur anywhere; thus allowing temporal data to occur anywhere. It also fulfills goal(d)
because this method allows a simple way to add new versions ofdocuments to the system.

(3) The schema of a conventional document must be a conventionalschema. This satisfies goal(a) by
promoting consistency with existing XML designs and practices and goal(b) by not requiring any
changes to the conventional documents or schemas.

(4) In all cases, the default logical annotation is “anything can change” and the default physical annota-
tion is “timestamp is located at root.” This decision satisfies goal(h) by supplying a useful default
annotation set if the user doesn’t supply one. See Listing 11above for an example of a schema that
does not specify any annotations.

(5) When given a temporal document and temporal schema,τXMLL INT will by default only validate
the current version of the document; the user must supply additional parameters/arguments to invoke
validation over time.

(6) Implicit constraints on well-formedness apply to each slice separately of a temporal document. Specif-
ically, each slice of a temporal document must satisfy the standard XMLwell-formednessconstraints.
Well-formedness constraints specify the logical and physical structure of an XML document and re-
quire that entities are properly nested: no start-tag, end-tag, empty-element tag, element, comment,
processing instruction, character reference, or entity reference can begin in one entity and end in
another.

As a comparison, Rizzolo and Vaisman’s temporal extension to XML [67] specifies (in Definition 3
on page 1184) six conditions for a valid temporal document intheir model. It is useful to see how
these conditions translate to our model.

Their first condition is “The union of the temporal labels of the containment edges outgoing from a
node is contained in the lifespan of that node.” Containmentedges represent time-varying subnodes,
attribute values, or textual components of elements. This effectively says that a contained component
cannot exist outside of its container within any snapshot. The second, “The temporal labels of the
containment edges incoming to a node are consecutive,” is specific to their encoding. The third is
“For any time instantt, the sub-graph composed by all containment edgesec such thatt ∈ Tec

is a
tree with rootr. We call this subgraph asnapshotof the document at timet, denotedD(t).” This is
equivalent to “each snapshot is a tree.” The fourth says, “the ID of a node remains constant for all the
snapshots of a document.” However, the ID of a node is not defined. It seems that this is specific to
their encoding.

The fifth of Rizzolo and Vaisman’s conditions says, “For any containment edgeec(ni, nj, Tec
), if nj

is an attribute of type REF, such that there exists a reference edgeer(nj , nk, Ter
), thenTec

= Ter

holds.” As discussed in Section 6.1.2, in our model a non-temporal referential integrity constraint is
mapped in a temporal document to one that applies in each snapshot. Here we differ with Rizzolo
and Vaisman, as what they define is what in our design is anon-sequenced referential integrity con-
straint (also discussed in Section 6.1.2). Our design is more uniform in that we utilize a per-snapshot
semantics forall non-temporal constraints when applied to a temporal document.

The last of their conditions states, “Leter(ni, nj, Ter
) be a reference edge. Then,Ter

⊆ lifespan(nj)
holds.” This states that a reference edge applies in a subsetof the snapshots in which the desti-
nation node exists, which is a quite specific kind of non-sequenced constraint. Again, we prefer a

21

per-snapshot semantics for referential integrity, as withall other explicit non-temporal integrity con-
straints.

(7) A given conventional XML Schema constraint for a slice implies asequencedconstraint for the
temporal document. See Section 6.2 for more information. This is a logical extension of the previous
design decision.

4.4.2 Temporal Document Decisions

(8) The data stored in a temporal document may change over time. The two ways that a node in an XML
document can vary with time are (1) in its content or (2) in itsexistence. Some nodes, especially
those containing loose text, will change their content. Some nodes will exist in one version of an
XML instance document but will not be present in another version. Other nodes will have both their
content and existence change over time.

(9) A temporal document is defined as a document that has the root element <temporalRoot> and
references a temporal schema.τXSchema tools will look for both of these conditions to determine if
a document is temporal.

(10) A temporal document will have an attribute<temporalSchemaLocation> within temporalRoot
that will specify the URI of the temporal schema. See Listing12 for an example.

(11) The root element may have a<sliceSequence> element to list a sequence of conventional docu-
ments (i.e., slices). We choose the term “sequence” here since the ordering of the slices is important;
they must be listed from earliest to latest. See Listing 12.

Listing 12: exampleTemporalDocument.xml

1 <temporalRoot>
2 <temporalSchemaSet>
3 <temporalSchema location ="temporalSchema1.xml"/>
4 <temporalSchema location ="temporalSchema2.xml"/>
5 </ temporalSchemaSet>
6 <sliceSequence>
7 <slice location ="version1.xml" begin ="2008-01-03" />
8 <slice location ="version2.xml" begin ="2008-06-27" />
9 <slice location ="version3.xml" begin ="2008-08-11" />

10 </ sliceSequence>
11 </ temporalRoot>

This decision satisfies goal(h) by providing an easy way to SQUASH the documents, goal(d) by pro-
viding a simple mechanism for adding slices, and goal(e)by allowing either the<sliceSequence>

element or the SQUASH representation to appear in the temporal document. Note that this last point
implies that a temporal document may have many different representations of the same information—
it can have a<sliceSequence> to list the slices individually or it can be squashed into a full tree
that represents the temporal data. We discuss representations further in Section 18.

4.4.3 Temporal Schema Document Decisions

(12) The root element of a temporal schema document will be<temporalSchema> .

(13) The child elements will be a single required<conventionalSchema> and a single (optional)
<annotationSet> .

22

4.4.4 Annotation Document Decisions

(14) The root element of an annotation document will be<annotationSet> . We choose the term “Set”
here since the ordering of the annotations within the document is unimportant. The root element can
then have a number of subelements; one for each aspect possible. Currently we concentrate on the
logical and physical aspects, and thus have defined<logical> and <physical> subelements.

(15) An item is a collection of XML elements that represent the same real-world entity. Items are in the
temporal schema and elements are in the temporal document.

(16) The <logical> subelement will contain a set of<item> subelements (one for each logical con-
straint). Each<item> element specifies whether an element or attribute varies over valid time or
transaction time, whether its lifetime is described as a continuous state or a single event, whether the
element itself may appear at certain times (and not at others), and whether its content changes. The
following shows an example logical annotation that specifies a single element.

<logical>
<item target ="Company/Person/FirstName">

<transactionTime existence ="constant"/>
<itemIdentifier name="personID" timeDimension ="transactionTime">

<field path ="./text()"/>
</ itemIdentifier>

</ item>
</ logical>

Section 8 provides a complete specification of logical annotations.

(17) The <physical> subelement will contain a set of<stamp> subelements (one for each desired
timestamp). These<physical> elements specify the timestamp options for the representation,
such as where the timestamps are placed and their kind (e.g.,valid time or transaction time) and the
kind of representation. The following shows an example physical annotation that specifies a single
timestamp.

<physical>
<stamp target ="Company/Person" dataInclusion ="expandedVersion">

<stampKind timeDimension ="transactionTime" stampBounds ="step"/>
</ stamp>

</ physical>

Section 8 provides a complete specification of physical annotations.

(18) Previously we introduced a language, which we calledSchemaPath, for locating element definitions in
a snapshot schema [25, 28]. Recently, the W3C extended XML Schema to support element definition
inheritance and introduced a new, simpler mechanism for specifying which element definitions can
be annotated, i.e., a subclass needs to specify its superclass element definition. In the interest of re-
using as much of XML Schema as possible, we decided to co-opt this new method, though it is less
expressive than SchemaPath since only named element definitions can be annotated. This decision
satisfies goal(c) by adopting an XML methodology.

In the new scheme an annotation is attached to an element definition through an element that names
the “target” element definition as follows. Suppose that in the Company schema there is an element
defintion for “company.”

<xs : element name="Company">
<xs : complexType mixed ="true">

...
</xs : element>

23

To annotate the company element definition, a physical annotation would specify the name of the
definition as its target, as illustrated below.

<physical>
<stamp target ="Company" ...>
...
</ stamp>
...

</ physical>

Note that for this scheme to work the target must be unambiguously defined. Hence, every element
definition name must be unique and only named elements can be annotated.

(19) An item specifies how an element in the temporal document may vary in its content and its existence.
For the former, there are three possible alternatives. The first is “varying with gaps”, which means that
each of its corresponding data nodes may be present in some versions of the XML instance document
and absent in others. A second, more restrictive form is “varying without gaps.” The data node is not
required to always be present. When it is present there may not be any gaps in its existence. The third
value is constant. Then the corresponding data node is either always present or never present.

(20) The content may change in an element in the temporal documentif the corresponding item specifies
content as varying. There are restrictions on how a data node’s content may change over time when
the corresponding item specifies content as constant. The restrictions are different for each of the type
of content (e.g., elements, attributes and loose text).

(21) Comments provide a way for a programmer to communicate with other programmers who use the
XML document. Processing instructions provide a way for theprogrammer to communicate with
XML-aware applications. Comments and processing instructions are not considered part of the XML
document’s content. XML Schema does not validate comments and processing instructions. Hence
τXSchema does not validate them either. This design decisionsatisfies goal(c) by utilizing XML
Schema directly.

Comments and processing instructions are always permittedto vary in content and existence. There
are no annotations for comments and processing instructions and they are not considered to be part of
an element’s content.

Comments and processing instructions may appear outside the root of an XML document. To solve
this,τXSchema introduces a node calledtemporalRoot that wraps the entire temporal document.
Any comments or processing instructions that appear outside of the roots of individual snapshots will
be wrapped bytemporalRoot .

(22) Text is the simplest type of content. In XML, text content is contained in an element. Text cannot
exist without an enclosing data element. When an item specifies (text) content as varying, the text
content in the corresponding data element may change to any permitted value. The text may disappear
(be empty) in one snapshot and return in a later one. For an item that specifies content as constant,
the text content in each version must remain the same.

Text content is often distributed in several text nodes. We do not concatenate the text in the text
nodes to consider changes in text content. If the distribution of the text changes, then the content is
considered to have changed even if the concatenated value isthe same. A node’s content is only its
own loose text, not that of its children (if any).

(23) The content of a data element consists of all of its loose text, attributes and direct child elements.
A data element’s content is considered for our purpose to notinclude any comment or processing
instruction nodes, descendants of its direct children or the content of its direct children.

24

Suppose an item specifies content as varying. Its corresponding data element’s content may change
over time. On the other hand, if the item specifies content as constant, the corresponding data ele-
ment’s content must remain constant. The content and existence dimensions are orthogonal, so an
item that specifies content as constant could have a child item that specifies existence as varying. In
this case, the data element corresponding to the child item can vary in its existence, but must always
appear in the same position when it exists.

When an item specifies existence as constant, the corresponding data element must either always be
present or never be present. If the item specifies existence as “varying without gaps” the correspond-
ing data element does not have to always exist overtime, but it is required to not have any gaps in
its existence. When the defining element specifies existenceas “varying with gaps”, there are no
restrictions on the existence of the corresponding data element.

(24) Data elements exist within the context of an XML document andmust have a parent element. The data
element’s parent may vary with time. The scope of a data element’s existence is limited to the time
when its parent exists. An element and it child can both specify existence behavior independently.
However, the behavior of the data element corresponding to the child-defining element will be affected
by both the parent and child defining elements. Within the scope of the parent’s existence, the child
data element is affected by only the child-defining element.However, from above the parent, the child
data element’s existence behavior is affected by both the parent and child-defining element.

When the parent’s existence is specified as constant there isno effect on the child. However, we need
to consider the case where an item is specified as constant butthe parent(s) of its constituent data
element(s) is not. There are three possibilities for constant existence:

(a) Any item so designated must exist in every document snapshot.

(b) Any element associated with an item so designated must exist in every snapshot in which its
parent element exists (i.e., the parent cannot exist without the child). The child can however
switch parents over time.

(c) The third option is like the second, but the child cannot switch parents.

(25) A root node is a special data element node. There can only be one root node in an XML document
and it is the node that contains all other nodes. When a root istime-varying, then the entire document
is time-varying. A root node follows the same rules for varying content as any other node and may
be specified as an item. A root node may have varying existence, either with or without gaps. The
document can only exist when the root exists. When the root has a gap in its existence, the document
also has a gap in its existence.

Any well-formed document has a root. The root may be different from one snapshot to the next. The
root has no special restrictions when specified as an item.

(26) Attributes can vary over time but cannot be specified as items. An attribute’s enclosing data element
can be part of an item. There are two ways to specify how an attribute may change over time. The
first is with current XML Schema constraints. The second is byspecifying how the enclosing data
element may vary with time.

Attributes will be specified as either required or constant.The attribute may be specified as required,
optional or prohibited. The default is optional. If required, it must always be present. If prohibited,
it can never be present. If specified as fixed, the attribute must always have the same value when it is
present. An attribute cannot be both fixed and required/prohibited. The only two things that can’t be
specified with conventional XML Schema are existence as “varying with gaps” and both existence as
constant and content as constant.

25

(27) All attributes exist within a data element and are part of itscontent. This places two additional
constraints on the attribute. First, the attribute can exist only when the data element is present. Second,
when the item corresponding to the data element specifies content as constant, the attribute’s existence
cannot change. The attribute is part of the data element’s content, and the data element’s content
cannot change. The attribute’s value may change if the item specifies content as varying.

(28) If no logical annotations are specified for a given element, then we are agnostic to the content of the
element over time—it may or may not vary. Adding logical annotations to some elements does not
affect this default behavior for other elements; it only defines the behavior for the specified elements.

(29) The default timestamp is placed at the root, and this timestamp always remains present. Specify-
ing physical annotations only adds additional timestamp locations; it does not remove the default
timestamp at the root. This approach is necessary in order toimplement decision(28) above, since
we must capture all varying elements whether or not there exists an associated logical or physical
timestamp for that element.

(30) We extend the notion of DOM equivalence by also ensuring thatthe children of a given node are also
DOM equivalent, and their children are DOM equivilant, . . . ,recursively. This “deep” versioning
allows us to capture all changes to a subtree, whereas the standard DOM equivalence might miss
changes that occur lower in the tree.

The rest of this section presents examples that compare the three methods and justify the method that
we chose. The rule for “varying without gaps” is consistent with the rule for constant. In other words,
during the time when the data element exists it follows the rule for constant. The difference being that it
does not always have to exist. “Varying with gaps” has no restriction. Such a data element may always
switch parents.

The following three tables contain a series of examples. Each example snapshot is a simple XML
document with elements “A”, “ B” and “C”, each of which are designated as items in the logical annotation
for all three tables and all use attributen as their item identifier.

The examples vary the values of existence for theCelement and the element that encloses it to highlight
the differences between the three possibilities. TheA element,IBM, is constant in every example. Table 1
shows snapshots when theB element is constant. Table 2 hasB elements that are “varying with gaps.” The
Monday and Tuesday snapshots usep1 and the Wednesday and Thursday snapshots usep2 . This is done to
illustrate the difference between possibilities 2 and 3. Table 3 has bothp1 andp2 as “varying with gaps.”
In Table 1 all the examples are valid no matter which possibility we use for constant. Table 2 illustrates the
difference between the three possibilities. Cells with note (1) are invalid using possibility 1 because element
C, that isBob, does not exist. They are valid using the other possibilities. Cells with note (2) are invalid
with possibility 3 sinceBob now has a different enclosing element. There are cells whereit does not matter
whether Bob exists. Some of these are labeled with note (3) and are the same for all three possibilities. Cell
(5) is valid since an item can change enclosing elements whenit is “varying with gaps.” All the examples
are valid only when using possibility 2. The definition of “varying without gaps” is illustrated by example
1 and example 2. In example 1 it doesn’t matter ifBob exists on Friday. Either way there isn’t a gap. In
example 2Bob does not exist in cell (4a). Therefore, Bob cannot exist in the cell labeled (4b) as this would
create a gap in its existence.

In Table 3 cells with note (1) are invalid using possibility 1but are valid using the other possibilities.
Cells with note (2) are invalid with possibility 3 sinceBob now has a different parent. The cell with note
(6) is an error with possibility 1 since there is a gap inBob’s existence. This is because the rule for “varying
with gaps” is kept consistent with the rule for constant. Cell (6) is valid for possibilities 2 and 3. Again,
only with possibility 2 are all examples valid. Possibility1 makes constant too restrictive. Possibilities 2
and 3 are similar, but 2 gives a bit more flexibility. Thus, we choose to adopt 2 as the semantics for constant.

26

Bob’s XML Snapshots
Existence Monday Tuesday Wednesday Thursday Friday

constant

<B n="p1">
<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p1">

<C n="Bob">

varying
without gaps

<B n="p1">

<B n="p1">

<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p1">

varying with
gaps

<B n="p1">

<C n="Bob">

<B n="p1">

<B n="p1">

<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p1">

Table 1:p1 is constant

4.5 Company Example

This section walks through in detail an example that illustrates the usage ofτXSchema. Explanations of a
user’s actions are given in sequence and the corresponding XML text is provided via alisting. In effort to
make the example as clear as possible, a few conventions are followed. Note that each convention is used
only for clarity and is not a requirement inτXSchema.

• Only transaction time is considered.

• The example does not use default namespaces forτXSchema files (e.g., temporal schemas) in order
to emphasize which namespace is being used. However, conventional documents make use of default
namespaces for brevity.

• As file contents are changed over time, a version number embedded in the name will also change so
that the reader can more easily keep track of the changes. Theversion number for each file begins at
0 and is constructed as follows.

– Company. S.xsd for conventional schemas, whereS = {A, B, C, ...} indicates the ver-
sion of the schema, e.g.,Company.A.xsd .

– data. S. D.xml for conventional documents, whereS indicates the version of the schema be-
ing used andD indicates the version number of the conventional document,e.g.,data.A.0.xml .

– temporalDocument. S. D.xml for temporal documents, whereS indicates the version of
the temporal schema being used andD indicates the version number of the latest conventional
document, e.g.,temporalDocument.0.3.xml .

– temporalSchema. D.xml for temporal schemas, whereD indicates the version number of
the temporal schema, e.g.,temporalSchema.0.xml .

27

Bob’s XML Snapshots
Existence Monday Tuesday Wednesday Thursday Friday

constant

<B n="p1">
<C n="Bob">

<B n="p1">

<C n="Bob">

<B n="p2">

<C n="Bob">
 (2)

<B n="p2">

<C n="Bob">
 (2)

(1)

varying
without gaps

<B n="p1"> (3)

<B n="p1">

<C n="Bob">

<B n="p2">

<C n="Bob">
 (2)

<B n="p2">

<C n="Bob">
 (2)

(3)

varying
without gaps

<B n="p1"> (3)

<B n="p1">

<C n="Bob">

<B n="p2">

<C n="Bob">
 (2)

<B n="p2">

(4a)

(4b)

varying with
gaps

<B n="p1">

<C n="Bob">

<B n="p1">

<B n="p2">

<B n="p2">

<C n="Bob">
 (5)

Table 2:p1 andp2 are “varying without gaps”

28

Bob’s XML Snapshots
Existence Monday Tuesday Wednesday Thursday Friday

constant

<B n="p1">
<C n="Bob">

<B n="p2">

<C n="Bob">
 (2)

<B n="p1">

<C n="Bob">

(1)

<B n="p2">

<C n="Bob">
 (2)

varying
without gaps

<B n="p1">

<B n="p2">

<B n="p2">

(6)

<B n="p2">

<C n="Bob">
 (2)

varying with
gaps

<B n="p1">

<C n="Bob">

<B n="p2">

<B n="p1">

<B n="p2">

<C n="Bob">

Table 3:p1 andp2 are “varying with gaps”

– annotations. A.xml for annotation documents, whereA indicates the version of the anno-
tation document, e.g.,annotations.0.xml .

– Person. S. E.xsd for the Person subschemas, whereS indicates the first version of the
conventional schema that references this subschema andE indicates the version number of
the subschema itself, e.g.,Person.A.0.xml .

– Product. S. F .xsd for the Product subschemas, whereS indicates the first version of the
conventional schema that references this subschema andF indicates the version number of the
subschema itself, e.g.,Product.A.0.xml .

In this example, each time the user modifies the conventionalschema, a new file is created. He must then
modify the conventional document to reference this new, modified schema. In practice, this is awkward and
would rarely happen. In a more realistic situation, the userwould reuse the same filename by just modifying
the file in place, and editors would be responsible for automatically retaining previous versions. Also, in
practice the conventional document would change much more frequently than the conventional schema.
Figure 2 depicts the overall scenario.

4.5.1 Initial Configuration

Consider the following scenario which begins on 2008-01-01. The user has a conventional schema which
defines a<Person> element, which itself has a<Name>element, an<SSN>element, and anID attribute
(see Listing 13).
He also has a conventional document conforming to the schema(see Listing 14).

Together, these documents form a conventional system whichcan be validated with conventional val-
idation tools (e.g., XMLLINT). Of course,τXMLL INT will also validate this conventional system. In

29

Listing 13: Company.A.xsd
<?xml version ="1.0"?>
<xsd : schema

xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
targetNamespace ="http://www.company.org"
xmlns ="http://www.company.org"
elementFormDefault ="qualified">

<xsd : element name="Company">
<xsd : complexType>

<xsd : sequence>
<xsd : element ref ="Person"/>

</xsd : sequence>
</xsd : complexType>

</xsd : element>

<xsd : element name="Person">
<xsd : complexType>

<xsd : sequence>
<xsd : element name="Name" type ="xsd:string"/>
<xsd : element name="SSN" type ="xsd:string"/>

</xsd : sequence>
<xsd : attribute name="ID" type ="xsd:string"/>

</xsd : complexType>
</xsd : element>

</xsd : schema>

Listing 14: data.A.0.xml
<?xml version ="1.0" encoding ="UTF-8"?>
<Company xmlns ="http://www.company.org">

<Person ID ="1">

<Name>Steve </ Name>
<SSN>111-22-3333</ SSN>

</ Person>

</ Company>

30

Legend of File Types

Company
Data

Schema
Company

Company
Temporal Data

Company
Temporal Schema

Conventional τ XSchemaXSchema

Figure 2: An overview of the end-state of the Company example.

the following sections, we will add new versions of the conventional document, add new versions of the
conventional schema, break up the conventional schema intomultiple subschemas, and specify logical an-
notations. Figure 2 shows the relationship between all the documents in the system. Note that Company
schema (for details on this schema and example documents, please see Section 10) will import and include
two subschemas:Person and Product . In this example, both the Person and Product schemas will
change over time. Each time there is a new slice created, the Company schema must be updated to refer-
ence the new slice. There are other mechanisms available to the user for handling this scenario, as described
in the document beginning at Section 11

4.5.2 Adding Temporal Data

On 2008-03-17, the user corrects the<SSN> element in the conventional document to produce a new
version (see Listing 15). The user can now useτXSchema to create temporal documents and use the
τXSchema tools to validate these documents.

Listing 15: data.A.1.xml
<?xml version ="1.0" encoding ="UTF-8"?>
<Company xmlns ="http://www.company.org">

<Person ID ="1">
<Name>Steve </ Name>
<SSN>123-45-6789</ SSN>

</ Person>

</ Company>

The user creates a temporal document that lists both slices of the conventional document with their
associated timestamps (see Listing 16).

The user uses the conventional schema as the temporal schema. That is, the user does not explicitly
create a temporal schema. Note that since no logical or physical annotations have been specified, the
defaults will take effect.

Section 12 continues this example when multiple conventional schemas are employed as well as when
each individual schema varies over time.

31

Listing 16: temporalDocument.0.1.xml
<?xml version ="1.0" encoding ="UTF-8"?>
<td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD">

<td : temporalSchemaSet>
<td : temporalSchema location ="./Company.A.xsd"/>

</td : temporalSchemaSet>

<td : sliceSequence>
<td : slice location ="data.A.0.xml" begin ="2008-01-01" />
<td : slice location ="data.A.1.xml" begin ="2008-03-17" />

</td : sliceSequence>

</td : temporalRoot>

32

5 Theoretical Framework

This section sketches the process of constructing a schema for a time-varying document from a conventional
schema. The goal of the construction process is to create a schema that satisfies the snapshot validation
subsumption property, which is described in detail below. In the relational data model, a schema defines
the structure of each relation in a database. Each relation has a very simple structure: a relation is a list of
attributes, with each attribute having a specified data type. The schema also includes integrity constraints,
such as the specification of primary and foreign keys. In a similar manner, an XML Schema document
defines the valid structure for an XML document. But an XML document has a far more complex structure
than a relation. A document is a nested collection of elements, with each element potentially having (text)
content and attributes.

5.1 Snapshot Validation Subsumption

Let DT be an XML document that contains timestamped elements. A timestamped element is an element
that has an associated timestamp. (A timestamped attributecan be modeled as a special case of a times-
tamped element.) Logically, the timestamp is a collection of times (usually periods) chosen from one or
more temporal dimensions (e.g., valid time, transaction time). Without loss of generality, we will restrict
the discussion in this section to lifetimes that consist of asingle period in one temporal dimension. The
timestamp records (part of) the lifetime of an element. We will use the notationxT to signify that element
x has been timestamped. Let the lifetime ofxT be denoted aslifetime(xT). One constraint on the lifetime
is that the lifetime of an element must be contained in the lifetime of each element that encloses it.

The snapshot operation extracts a complete snapshot of a time-varying document at a particular instant.
Timestamps are not represented in the snapshot. A snapshot at time t replaces each timestamped element
xT with its non-timestamped copyx if t is in lifetime(xT) or with the empty string, otherwise. The snapshot
operation is denoted as

snp(t,DT) = D

whereD is the snapshot at timet of the time-varying document,DT .
Let ST be a representational schema for a time-varying documentDT . The snapshot validation sub-

sumption property captures the idea that, at the very least,the representational schema must ensure that
every snapshot of the document is valid with respect to the conventional schema. Letvldt(S,D) represents
the validation status of documentD with respect to schemaS. The status istrue if the document is valid but
falseotherwise. Validation also applies to time-varying documents, e.g.,vldtT (ST ,DT) is the validation
status ofDT with respect to a representational schema,ST , using a temporal validator.

Property [Snapshot Validation Subsumption] LetS be an XML Schema document,DT be a time-
varying XML document, andST be a representational schema, also an XML Schema document.ST is said
to have snapshot validation subsumption with respect toS if

vldtT (ST ,DT)⇔ ∀t[t ∈ lifetime(DT)⇒ vldt(S, snp(t,DT)]

Intuitively, the property asserts that a good representational schema will validate only those time-varying
documents for which every snapshot conforms to the conventional schema. The subsumption property is
depicted in Figure 3.

5.2 Content and Existence Variance

The data stored in XML documents may change over time. It is useful to be able to validate the way data
can change. The XML Schema standard provides a way to validate XML documents, but does not define

33

T

D

D
T

w

v

snp(t,D)T

vldt(S,D)

vldt (S ,D)T

v w

T

Figure 3: Snapshot Validation Subsumption

how an XML document is allowed to change with time. To meet this need,τXSchema was created as an
extension of the XML standard that validates time-varying XML documents.

The two ways that a node in an XML document can vary with time are (1) in its content or (2) in its
existence. The content of an item includes the entire sub-tree rooted at a node. Each branch in the sub-tree
terminates at the first item on the branch, or at a leaf (text value, attribute, empty element). Some nodes,
especially those containing loose text, will change their content. Some nodes will exist in one version of an
XML instance document but will not be present in another version. Other nodes will have both their content
and existence change over time.

An item definition specifies how a data node may vary in its content and its existence. Let’s first
consider how an item specifies existence. There are three possible alternatives. The first is “varying with
gaps”, which means that each of its corresponding data nodesmay be present in some versions of the XML
instance document and absent in others. A second, more restrictive form is “varying without gaps.” The data
node is not required to always be present. When it is present there may not be any gaps in its existence. The
third value is “constant”. Then the corresponding data nodeis either always present or never present. Again
the existence-constant can have many different semantics.We have identified three of them and provide
support for the first two in our implementation.

• Existence is constant over all time (exists in every instant in lifetime of universe).

• Existence is constant over document lifetime (document lifetime may have gaps).

• Existence is constant over the lifetime of the immediate ancestor’s item.

The other aspect an item may specify is content. The content of a data node depends on its node type.
The content may change in the data node at any time if the corresponding item specifies content as varying.
There are restrictions on how a data node’s content may change over time when the corresponding item
specifies content as constant. The restrictions are different for each of the type of content (e.g., elements,
attributes and loose text). The detailed explanation of therestrictions can be found in Section 8.

Content-varying and existence-varying are orthogonal concepts. The only restriction is that, when an
item is content-constant, the item’s immediate descendants should be existence-content, but switching of
parents is allowed. When an item specifies content or existence as varying, the corresponding data node
may vary with time, but is not required to.

5.3 Items

In order to create a temporal document it is important to identify which elements persist across various
transformations of the document. This section discusses how to find and associate elements in different

34

snapshots of a temporal XML document. When elements are temporally-associated, anitem is created. An
item is a collection of XML elements that represent the same real-world entity. An item is a logical entity
that evolves over time through various versions.

In a temporal database, a pair of value-equivalent tuples can be coalesced, or replaced by a single
tuple that has a lifespan equivalent to the union of the pair’s lifespans.Coalescingis an important process
in reducing the size of a data collection (since the two tuples can be replaced by a single tuple) and in
computing the maximal temporal extent of value-equivalenttuples. In a similar manner, elements in two
snapshots of a temporal XML document can betemporally-associated. A temporal association between the
elements is possible when the element has the sameitem identifierin both snapshots. We will sometimes
refer to the process of associating a pair of elements asgluing the elements. When two or more elements is
glued, an item is created.

Only time-varying elements (that is, elements of types thathave a logical annotation) are candidates for
gluing. Determining which pairs should be glued depends on two factors: the type of the element, and the
item identifier for the element’s type. The type of an elementis the element’s definition in the schema. Only
elements of the same type can be glued. An item identifier serves to semantically identify elements of a
particular type. The identifier is a list of XPath expressions (much like a key in XML Schema) so we first
define what it means to evaluate an XPath expression.

Definition [XPath evaluation] LetEval(n,E) denote the result of evaluating an XPath expression
E from a context noden. Given a list of XPath expressions,L = (E1, . . . , Ek), then Eval(n,L) =
(Eval(n,E1), . . . , Eval(n,Ek)).

Since an XPath expression evaluates to a list of nodes,Eval(n,L) evaluates to a list of lists.
Definition [Item identifier] An item identifier for a type,T , is a list of XPath expressions,L, such that

the evaluation ofL partitions the set of typeT elements in a (temporal) document. Each partition is an item.
An item identifier has a target and at least one field, an itemref or a keyref. A target is an XPath expres-

sion that specifies an element’s location in the snapshots (relative to the item under which it is defined). A
field, itemref and a keyref can each specify part of an item identifier. A field contains an XPath expression
that specifies an element or attribute that is part of the itemidentifier. A keyref references a snapshot key
and an itemref references an item identifier. This way an itemmay be specified in terms of an existing item
or schema key. An itemref and keyref use the name of an item/key and are not XPath expressions. The
item identifier may consist of any combination of field(s), itemref(s) and keyref(s). Each field expression
specifies either an attribute or an element. If an attribute is indicated, then the item identifier uses the at-
tribute’s value. If an element is indicated, then the item identifier uses the element’s loose text. The current
implementation supports only fields.

A schema designer specifies the item identifiers for the time-varying elements. As an example, a de-
signer might specify the following item identifiers for the time-varying elements<athlete> and<medal> .

• <athlete> ⇒ [athName/ *]

• <medal> ⇒ [../athName/ * , ./ *]

The item identifier for an<athlete> is the name of the athlete, while the item identifier for<medal>
is the athlete’s name (the parent’s item identifier) combined with the description of the event (the text within
the medal element). An item identifier is similar to a (temporal) key in that it is used for identification.
Unlike a key however, an item identifier is not a constraint; rather it is a helpful tool in the complex process
of computing versions.

Over time, many elements in a temporal document may belong tothe same item as the item evolves.
The association of these elements in an item is defined below.

Definition [Temporal association] Letx be an element of typeT in the ith snapshot of a temporal
document. Lety be an element of typeT in the jth snapshot of the document. Finally letL be the

35

medalmedal

doc doc doc

athName athName athName texttext

Kjetil Kjetil Kjetil
 gold

2002−01−01 2002−03−01 2002−07−01

athlete athlete

silver

medal

athlete

Figure 4: Items and Versions

item identifier for elements of typeT . Thenx is temporally-associatedto y if and only if Eval(x,L) =

Eval(y, L) and it is not the case that there exists an elementz of typeT in a snapshot between theith and
jth snapshots such thatEval(z, L) = Eval(x,L).

A temporal association relates elements that are adjacent in time and that belong to the same item. For
instance, the<athlete> element in Listing 1 on page 7 is temporally associated with the<athlete>
element in Listing 2 but not the<athlete> element in Listing 3 (though the<athlete> element in
Listing 2 is temporally related to the one in Listing 3).

5.4 Versions

When an element in a new snapshot is temporally-associated with an item, the association either creates a
new version of the item or extends the lifetime of the latest version within the item. A version is extended
when “no difference” is detected in the associated element.Differences are observed within the context of
the Document Object Model (DOM).

Definition [DOM equivalence] A pair of elements is DOM equivalent if thepair meets the following
conditions.

• Their parents are the same item or their parents are non-time-varying elements.

• They have the same number of children.

• For each child that is a time-varying element, the child is the same item as the corresponding child of
the other (in a lexical ordering of the children).

• For each child that is something other than a time-varying element the child’s children are each DOM-
equivalent to the corresponding children of the other child(in a lexical ordering of the children and
grandchildren), and the child’svalue, type(e.g., element or text), andname(e.g., tag name) are also
the same.

• They have the same set of attributes (an attribute is a name,value pair).

The third bullet in the above definition applies to non-temporal children of a node. The idea is that the
“value” of a non-temporal child is the entire subtree rootedat the child. The subtree terminates at either
(non-temporal) leaves or (temporal) items.

36

As an aside, we observe that DOM equivalence in a temporal XMLcontext is akin to value equivalence
in a temporal relational database context [45]. DOM equivalence is used to determine versions of an item,
as follows.

Definition [Version] Letx be an item of typeT in a temporal document, with a lifetime that ends at
time t. Let y be an element of typeT in a snapshot at timet + k that is temporally associated to the latest
version ofx, vt. If vt is DOM equivalent toy then the lifetime ofvt is extended to includet+k. Otherwise,
versionvt+1, consisting ofy, is added to itemx.

A version’s lifetime is extended when the element from the next snapshot (or a future snapshot) is DOM
equivalent (the lifetime can have gaps or holes, although having a gap may violate a schema constraint as
described in Section 5.2). A new version is created when a temporal association is not DOM equivalent.

Figure 4 depicts the items and versions in the example. An abstract representation of the DOM for
each snapshot of the document is shown. The items in the sequence of snapshots are connected within
each shaded region. There is one athlete item and one medal item. The athlete item has two versions; the
transition between versions is shown as a black stripe between the regions.

37

38

6 Extending Temporal XML Schema Constraints

In this section we discuss XML Schema constraints and their temporal extensions. XML Schema provides
four types of constraints.

• Identity constraints

• Referential Integrity constraints

• Cardinality constraints (in the form ofminOccurs andmaxOccurs for sub-elements andrequired
andoptional for attributes)

• Datatype restrictions (which constrain the content of thecorresponding element or attribute)

XML Schema constraints are conventional constraints sincethey restrict a specific conventional docu-
ment. We briefly explain each of these XML Schema constraintsin turn, and then proceed to their temporal
extensions.

6.1 XML Schema Constraints

We give the syntax and semantics of constraints in conventional XML Schema, using thecompany ex-
ample. The root of this schema is thecompany entity. Under that, there areproducts andsupplier
elements. Aproduct is a sub-element ofproducts and anorder is considered a sub-element of
supplier s (with a reference fromorder to productNumber (within product) for data integrity).

6.1.1 Identity Constraints

Identity constraints restrict uniqueness of elements and attributes in a given document. As with the relational
model, XML Schema allows users to define bothkey andunique constraints (we use the termidentity
constraintto refer to the union of thekey andunique constraint types. The distinction between these two
constraint types is that the evaluation of thekey constraint should always yield a valid tuple (value) for all
of the component fields (none of the fields should be empty), while the fields in aunique constraint are
allowed to be absent.

Identity constraints are defined in the schema document using a combination of aselector and one or
morefield elements. These are sub-elements within a<xs:key> or <xs:unique> container element.
Both selector andfield contain an XPath expression (the evaluation of which in an XML document
yields the value of the constrained element or attribute). Theselector is used to define a contextual node
in the XML document (e.g.,product), relative to which the (combination of)field values is unique
(e.g.,@productNo).

An identity constraint may be named, and this name can then beused when defining a referential in-
tegrity constraint (similar to foreign keys in the relational model). A sample XML Schema identity con-
straint is in Listing 17.

Formally, we can defineunique andkey constraints as follows. Letn be the context node being vali-
dated (under which the identity constraint is defined). Letsel be the element named by theselector of
the identity constraint (sel is an XPath expression for the selector relative ton), with the list of correspond-
ing field expressionsF = (f1, . . . , fm). Using the example in Listing 17,n corresponds toproducts and
selector corresponds toproduct . Then aunique constraint can be formally defined as follows.

unique(n, sel) = ∀i, j ∈ Eval(n, sel) [Eval(i, F) = Eval(j, F)⇒ i = j]

For a key constraint, the only change is that no field can evaluate to the empty list.

39

Listing 17: Sample Identity Constraint Definition
...

<xs : element name="products">
...
<xs : element name="product" minOccurs ="0" maxOccurs ="unbounded">

...
</xs : element>
...
<xs : key name="productKey">

<xs : selector xpath ="product" />
<xs : field xpath ="@productNo" />

</xs : key>
...

</xs : element>
...

There are some similarities between the functionality ofkey andunique constraints and the XML 1.0
ID definitions (and the equivalentID simple type in XML Schema). However, the XML Schemakey and
unique constraints have a number of advantages over use ofID . The advantages allow us to define more
powerful constraints at a temporal level (in Section 6.2.1).

Advantages of XML Schemakey over the XML ID are as follows. For context, XML 1.0 provides
a mechanism for ensuring uniqueness using theID attribute (and referential integrity using the associ-
atedIDREF andIDREFS attributes). An equivalent mechanism is provided in XML Schema through the
ID , IDREF, andIDREFS simple types, which can be used for declaring XML 1.0-style attributes. XML
Schema also introduces two other mechanisms to ensure uniqueness using thekey andkeyref constraints
that are more flexible and powerful in the following ways.

• XML Schema keys can be applied to both elements and attributes. SinceID is an attribute (in DTDs;
in XML Schema an element’s type can be defined asxs:ID), it cannot be applied to other attributes.

• Usingkey andkeyref allows the specification of the scope within which uniqueness applies (done
by theselector element; i.e., it is “contextual uniqueness”) while the scope of an XML ID is the
whole document. Thus using akey constraint one can enforce: “within each order, the part numbers
should be unique”, to ensure that each order line has a different part number. This cannot be done
using XML ID s.

• Finally, XML Schema enables the creation of akey or akeyref constraint from combinations of
element and attribute content and does not restrict the possible datatypes for valid keys. XMLID s
consist of single attribute content, and must be of theID datatype.

6.1.2 Referential Integrity Constraints

Referential integrity constraints (defined using thekeyref element in an XML Schema document) are
similar to the corresponding constraints in the relationalmodel. Each referential integrity constraint refers
to a validkey or unique constraint and ensures that the corresponding key value exists in the document.
For example, akeyref can be defined to ensure that only valid product numbers (i.e., those that exist for
a<product> element) are entered for an order.

A sample definition of a referential integrity constraint inXML Schema to specify that particular con-
straint follows. Note that akeyref uses a key viarefer . Eachfield in the keyref must have a
correspondingfield in the associatedkey named byrefer .

40

Listing 18: Sample Referential Integrity constraint
...

<xs : element name="supplier" minOccurs ="0" maxOccurs ="unbounded">
...
<xs : element name="order minOccurs="0" maxOccurs="unbounded ">

...
<xs:keyref name="ordersProductRef " refer="productKey ">

<xs:selector xpath=" order" />
<xs:field xpath=" oProductNo" />

</xs:keyref>
...

</xs:element> % end order
...

</xs:element> % end supplier
...

Formally, we can define thekeyref constraint as follows. Letnr be the context node being eval-
uated with akeyref constraint defined within it. LetLr be the a list of XPath expressions defined by
[selr/fr1, selr/fr2, . . . , selr/frn], where theselector element of thekeyref constraint is represented
by selr, and the correspondingfield expressions byfrn.

Let Eval(nr, Lr) denote the result of evaluating the listLr relative to acontext nodenr. Let er be
an element from the list defined byEval(nr, Lr) (e.g., one of the products listed in an order). Similarly,
let Eval(nk, Lk) (see Section 6.1.1) denote the result of evaluating the referencedkey constraint, and
ek ∈ Eval(nk, Lk). Thekeyref constraint is satisfied when∀er there exists aek (in the document) such
thater = ek.

6.1.3 Cardinality Constraints

The cardinality of elements in XML documents is restricted by the use ofminOccurs andmaxOccurs
in the XML Schema document. For example, to state that there is a limit of from zero to four website URLs
for each supplier, theminOccurs of <sURL> is set to0 and themaxOccurs to 4.

While there can be multiple sub-elements with the same name,there can be a maximum of one attribute
(for example,supplierNo) with a given name. The cardinality for attributes is therefore restricted using
eitheroptional or required . An example of cardinality definitions in XML Schema follows.

Listing 19: Cardinality definitions using XML Schema
...
<xs : element name="supplier" minOccurs ="0" maxOccurs ="unbounded">

<xs : complexType mixed ="true">
<xs : sequence>

<xs : element name="sURL" type ="xs:anyURI" minOccurs ="0" maxOccurs ="4" />
...

</xs : sequence>
<xs : attribute name="supplierNo" type ="xs:integer" use ="required" />
<xs : attribute name="supplierName" type ="xs:string" use ="required" />
<xs : attribute name="supplierPhone" type ="xs:string" use ="optional" />

</xs : complexType>
</xs : element>
...

Let (n, c) be the list of child elementsc within noden. We use|(n, c)| to represent the cardinality of
the list(n, c). Then,minOccurs(c) ≤ |(n, c)| ≤ maxOccurs(c).

6.1.4 Datatype Restrictions

Datatype definitions in XML Schema can restrict the structure and content of elements, and the content
of attributes. We currently consider datatypes defined using the XML SchemasimpleType element. A

41

simple type is used to specify a value range. In the simplest case, a built-in XML Schema datatype (e.g.,
integer) imposes a value range. For more complicated requirements,a simple type can be derived from
one of the built-in datatypes.

An example of an XML Schema datatype definition follows.

Listing 20: XML Schema data type definition
...
<xs : simpleType name="supplierRating">

<xs : restriction base ="xs:string">
<xs : enumeration value ="A" />
<xs : enumeration value ="B" />
<xs : enumeration value ="C" />

</xs : restriction>
</xs : simpleType>
...

Formally, lettype(n) be the set of values that the dataype assigned to node (element or attribute)n
allows. Then, in any given document instance, the XML expressionn/text() ∈ type(n).

6.2 Temporal Augmentations to the XML Schema Constraints

Thus far we have considered conventional XML Schema constraints. We now proceed to discuss temporal
augmentations to these constraints.

There are two flavors of temporal constraints,sequencedandnon-sequenced. A temporal constraint is
sequenced with respect to a similar conventional constraint in the schema document, if the semantics of the
temporal constraint can be expressed as the semantics of theconventional constraint applied at each point
in time. A constraint is non-sequenced if it is evaluated over a temporal element as a whole (including the
lifetime of the data entity) rather than at each point in timeseparately.

As discussed in Section 4.4, given a conventional XML Schemaconstraint, the corresponding seman-
tics in τXSchema for a temporal document implies asequencedconstraint. For example, a conventional
(cardinality) constraint, “There should be between zero and four website URLs for each supplier,” has a
sequenced equivalent of: “There should be between zero and four website URLs for each supplierat each
point in time.” We also allow the user to add a new sequenced constraint (e.g., with specificapplicability
bounds) in the logical annotation document.

The applicability bound,B ⊆ T , allow the user to restrict their consideration from the lifetime of
the document to some desired subset they are interested in. For example, a constraint may only be valid
between 1999–2005, at which time it is replaced by a new constraint. Applicability bounds are relevant for
both sequenced and non-sequenced constraints. While the effect of an applicability bound (for a sequenced
constraint) can be simulated by “removing” the constraint from the schema document (during some time
slice), this restricts it to cases where the transaction time and valid time are identical.

A special kind of sequenced constraint is acurrent constraint. A current constraint is applicable (and
evaluated) at the current point in time, ornow [21]. We support current constraints by allowing the user to
set the applicability bound of the sequenced constraint tonow.

For the non-sequenced extension to constraints, we consider a window of evaluation,w, which can be
a temporal element. The user specifies the window of evaluation (e.g., a day, or a Gregorian month). The
user can also specify a slide size,ss, and applicability bound,B [26]. The default length forss is a single
granule interval corresponding to the granularity,gran, of the item within which it is defined. The default
for B is the lifetime of the temporal document. We have established the following relationship among the
components of a non-sequenced constraint:gran ≤ ss ≤ w ≤ B.

Non-sequenced constraints are evaluated over a time interval rather than at a point in time. The window
of evaluation must be within the applicability bound. So fornon-sequenced constraints, we replace the

42

evaluation pointt, wheret ∈ T , with w ∈ P(B). Whensize(w) is the same assize(B), we term it
a “fixed-window” constraint. For example, suppose the constraint requires there to be between 0 and 4
supplier URLs in the temporal document over a period of any calendar month. Let’s say this constraint is
applicable from 2009-03-01 to 2009-03-31. Here,w andB have the same size. If instead the applicability
were (2009-03-01 to 2009-06-31), then we see a case of a “sliding-window” constraint (since the evaluation
would take place duringeachmonth from March through June. Here, we see the the size of theslide is
implicitly a calendar monthas well. Let’s say instead, the constraint evaluation window were a period of
30 days. Then the user may wish to restrict how this evaluation window would slide. For example, one may
choose to evaluate it from March 1–30, then from March 2–31, and so on. Here, the size of the slide (ss) is
a single day.

Non-sequenced constraints are listed in the logical annotations document. In a few cases (when we
extend a particular XML Schema constraint for additional functionality), sequenced constraints are also
listed in the logical annotation document.

In the case where schema versioning is permitted (we discussschema versioning in detail in Part II), the
constraints are evaluated only within a single schema-constant period. For example, let us take a cardinality
constraint that restricts a maximum of 50 orders from a supplier in any calendar month. Let us further
assume that on July 12, the schema for orders changed and the order key now was anorderNumber
(instead of a combination of supplier number and date). Thenthe evaluation for the 50-order limit will be
done separately for the first eleven days of July, and July 12-31.

We now proceed to discuss temporal enhancements to each of the XML Schema constraints described
in Section 6.1. The general approach is to add non-sequencedextensions to each constraint (though for
sequenced cardinality constraints, we add new semantics aswell).

6.2.1 Identity Constraints

Conventional identity constraints restrict uniqueness ina given XML document and induce sequenced iden-
tity constraints in the temporal document. Non-sequenced extensions may further be defined for these
constraints.

We have shown in Section 6.1.1 the advantages of XML Schema identity constraints over defining an
element or attribute to have a type ofID . This motivates the following design decision: we extend the
semantics of XML Schema identity constraints to support non-sequenced semantics, but do not do so for
ID types. If an element or attribute in an XML Schema document issaid to have a type ofID , then that
only translates to a sequenced constraint.

Formally, we define a sequencedkey constraint as follows. LetT be the set of time points associated
with a temporal XML document over its lifetime. At all timest (wheret ∈ T), we can extract a snapshot
of the document. As with the conventional case, letn be a context node enclosing the associated identity
constraint in the conventional schema. We represent theselector by sel and corresponding field XPath
expressionsF = (f1, . . . , fm). We defineL as the list of XPath expressions[sel/ f1, sel/ f2, . . . , sel/ fn].
Correspondingly, letEval(n,L) denote the result of evaluating the list of XPath expressions L from
the context noden for the snapshot at pointt. We denote theith element ofEval(n,L) by ei. Then
∀i, j : ei = ej ⇒ i = j. This predicate must be true for every snapshot of the document.

The definition of a sequencedunique constraint is similar (but allows null values).
For both key and unique constraints we consider non-sequenced extensions. A non-sequenced

unique (or key) constraint requires that the constrained element (or attribute) is unique over time (not
just at a point in time). For example, if we wished to require that an employee’sSSNwere unique in a single
conventional document as well as the temporal document, we could use a non-sequenced constraint. We
will explain the sub-elements and attributes of these non-sequenced constraints shortly.

A time-invariantrestriction specifies that the value of the given conventional unique or key constraint

43

should not change over time. Without this restriction, conventionalunique andkey constraints simply
say that the values must not have duplicates in any associated XML document. However, this does not
preclude the values from changing as long as the new value does not appear elsewhere in the conventional
XML document. For example, given the (nontemporal)productKey definition in Listing 17 for the
product element, the following snippets (Listings 21 and 22) reflecta perfectly legal change from one
state to another for theproductNo attribute (from500 to 599) within the first<product> element.

Listing 21: Initial State forproductNo attribute
...
<product productNo ="500">

<productName>17 inch LCD, Model 350</ productName>
<qtyOnHand>25</ qtyOnHand>

</ product>
<product productNo ="501">

<productName>19 inch LCD, Model 370</ productName>
<qtyOnHand>10</ qtyOnHand>

</ product>
...

Listing 22: Changed State forproductNo attribute
...
<product productNo ="599">

<productName>17 inch LCD, Model 350</ productName>
<qtyOnHand>25</ qtyOnHand>

</ product>
<product productNo ="501">

<productName>19 inch LCD, Model 370</ productName>
<qtyOnHand>10</ qtyOnHand>

</ product>
...

A non-sequenced identity constraint states that a field value combination is unique across time. This is
both within and between nodes. Consider the conventionalunique constraint defined in Listing 23. Sup-
pose a non-sequenced uniqueness constraint is placed on theemail address of an employee, with an evalua-
tion window of a year (Listing 24). Then, no two employees canhave the email addressjdoe@arizona.edu
(for example) in any year, nor can the same employee (e.g., John Doe) switch fromjdoe@arizona.edu
to john.doe@arizona.edu and back tojdoe@arizona.edu in a year. To specify a uniqueness
constraint solely within a node, i.e., if we wished to only say that the same employee (e.g., John Doe) cannot
switch fromjdoe@arizona.edu to john.doe@arizona.edu and back tojdoe@arizona.edu
in a single year, we would need to define an item at the level of asingle employee (Listing 25). In this case,
we do not re-use the conventional uniqueness constraint since its selector is different (and it is defined under
employees , while we want it to be defined at the level ofemployee for a constraint at thewithin level).
We leave for future work a discussion of (and specifying the syntax and semantics for) unique constraints
that apply solely between nodes.

As seen in the example in Listing 22, a conventional identityconstraint does not imply non-sequenced
uniqueness. Thus, the sameproductNo (a conventional key) can bere-usedfor another product or
changed between snapshots (for the same product, as long as it remains unique). To place non-sequenced
restrictions on elements or attributes, we usenon-sequenced uniqueand non-sequenced keyconstraints.
These allow us to designate an element or attribute value (for example, aproductNo) as unique across a
temporal document (with snapshots coalesced across the window of evaluation).

Depending on how a non-sequenced identity constraint is specified, we may end up with two or more
products with the sameproductNo over time. We would like to clarify that an attribute or element
annotated with a non-sequenced unique (or key) constraint need not be used as theitemIdentifierfor the

44

Listing 23: Conventional Uniqueness constraint for employee emails
...
<xs : element name="employees">

...
<xs : element name="employee">

...
<xs : attribute name="email" type ="xs:string" use ="optional" />
...

</xs : element>
...
<xs : unique name="unique_employee_email">

<xs : selector xpath ="employee" />
<xs : field xpath ="@email" />

</xs : unique>
...

</xs : element>
...

Listing 24: Non-sequenced uniqueness constraint on employee emails
...
<item target ="company/employees">

...
<nonSeqUnique name="nsu_employee_email" conventionalIdentifier ="unique_employee_email"

evaluationWindow ="year" slideSize ="day" />
...

</ item>
...

Listing 25: Non-sequenced uniqueness constraint within a single employee
...
<item target ="company/employees/employee">

...
<nonSeqUnique name="nsu_employee_email" evaluationWindow ="year" slideSize ="day" >

<applicability begin ="2007-01-01" />
<selector xpath ="." />
<field xpath ="@email" />

</nonSeqUnique >
...

</ item>
...

45

correspondingitem (introduced in Part II for schema versioning). Anitem may have multiple (non-
sequenced) unique and key constraints defined under it.

By specifying productNo as non-temporal, no change can be made to its value. A different (or
new) productNo value indicates an instance of a distinct product. The simplest way to designate a
time-invariant key is by specifying the item as non-temporal (content="constant") in the logical
annotations and combining this with akey constraint on the element or attribute.

A non-sequenced unique constraintspecifies that a value (of an element or attribute) should notbe re-
used at a later time within an evaluation window. This is specified in the logical annotations through one
of the following elements:<nonSeqUnique> , <nonSeqKey> or <uniqueNullRestricted> (a
sub-element ofitem). We adopt the usual distinction in semantics betweenkey andunique (i.e., the
permissibility ofnull values).

With the refinements introduced in Section 6.2, we define anonSeqKey constraint as follows. Let
the item containing thenonSeqKey definition be denoted byn. Let L be the list of XPath expressions
[sel/ f1, sel/ f2, . . . , sel/ fn] wheresel is theselector andfi are thefield expressions.

Definenw to be a version ofn whose timestamp overlapsw. Evaluating the expression listL with
respect tonw returns a list of versions.

The union of all such versions overlapping the window of evaluationw is denoted by: For each window
(a time period)w, ∀i, j, ei ∈ Unionnw(Eval(nw, L)) andej ∈ Unionnw(Eval(nw, L)), ei = ej ⇒ i = j.

The effect of the slide size is to determine the start point for each successivew.
The next kind of constraint we discuss isuniqueNullRestricted . Since the XML Schema def-

inition of unique allows a NULL value at each point in time, the default semantics fornonSeqUnique
allows for multiple NULL values across time (one in each conventional document). A non-sequenced
uniqueNull -Restricted constraint restricts the appearance of the number of NULL values by allow-
ing the user to specify a finite number (one or more) across time; the default number being one. Setting the
number of nulls allowed across time to 0 is equivalent to specifying a non-sequencedkey constraint. A
non-sequenced key constraint, as might be expected, disallows NULL values in any of the key fields at any
time.

Using the termnode to refer to a constrained attribute or element, andval to a specific value (including
null) that we are interested in. Lettemp(DB , w, node, val) evaluate to the set of maximally coalesced
temporal elements associated with annode within the documentD, during the evaluation windoww (appli-
cability bound ofB), where the value ofnode = val. Then settingval to null, returns the sette where the
node is null. The cardinality,|te|, of the set is the number of timesnull appears (counting each contiguous
appearance as a single block);nullCountMin ≤ |te| ≤ nullCountMax .

A more powerful version of thenonSeqUnique (or nonSeqKey) constraint would permit the user
to specify exactly how many times anykey (or unique) value other than NULL can appear across time.
The default is 1—in which case it is identical to a non-sequenced unique or a non-sequenced key constraint.
We term this constraint as avalue cardinality constraint, but do not explore it for now since it has no XML
Schema equivalent.

We now proceed to discuss the different attributes and sub-elements for theuniqueConstraint
(summarized in Table 21; the sub-elements are indented).

name: This allows the user to name the constraint and is useful in case the constraint is referenced else-
where (e.g., in a referential integrity constraint).

conventionalIdentifier : Specifies the name of the identifier in the conventional schema docu-
ment. If this is not specified, then it implies a new constraint is being defined and theselector and
field sub-elements should not be empty.

46

nullCountMin : Used only in conjunction with theuniqueNullRestricted constraint to specify
how many nulls are allowed over the non-sequenced time extent (minimum).

nullCountMax : Used in conjunction with theuniqueNullRestricted constraint to specify how
many nulls are allowed over the non-sequenced time extent (maximum).

dimension : Specifies the dimension in which the unique constraint applies and is one ofvalidTime ,
transactionTime , or bitemporal . The default is assumed to bevalidTime since that is
closely related to capturing real world restrictions, rather than restrictions on data entry.

evaluationWindow : Specifies the time window over which the constraint should bechecked. The
purpose is to allow uniqueness to be specified for an interval, e.g., year. This is useful when, for
example, a particular key value should not be re-used for a period of a year. The value then must
be “unique over any period of a year”. By default the evaluation window is the lifetime of the time
varying XML document. Assuming we use XML Schema to specify the datatypes for time intervals,
we can extend that with a union of the string:lifetime . This will allow us to set the time interval
for evaluationWindow (and other attributes) to a value oflifetime (indicating a temporal
element equivalent to the lifetime of the XML document). In the constraint examples that follow,
we assume this datatype extension is done and use the keywordlifetime when needed. Strictly
speaking, the evaluation window could be defined as a union ofintervals. For example, a constraint
could requireno more than ten orders are placed each month, in the first and third weeks of the month.
For simplicity we use anxs:string datatype and specify only a single attribute for the evaluation
window (rather than sub-elements). The window correspondsto an interval. Thus, if just a granularity
is given, such as ”year”, this is interpreted as the interval”1 year”. If slideSize is not provided, then
it is assumed to be one granule, or the temporal granularity of the underlying item being constrained.

slideSize : Specifies the size of the slide (an interval); must be used in conjunction with an evaluation
window. By default, it takes the temporal granularity of theunderlying item being constrained.

applicability : The applicability of a constraint specifies when it was valid. (Note: theapplicability
attribute applies to the valid time dimension; transaction-time applicability would concern when a
constraint exists in the schema document.) Thus a key constraint may be enforced between 2005 and
2010. Strictly, the applicability need not be a single range, and may be a temporal element, which
is why we specify the applicability as (begin , end) attribute pairs within a wrapping sub-element
called applicability . If nothing is specified, the default is assumed to be the lifetime of the
document. The applicability and evaluation window of the constraint are related. Defining an eval-
uation window that exceeds the applicability of the constraint is not really meaningful, as it cannot
be checked beyond the constraint applicability. In such a case, a warning should be returned and the
evaluation window should be shortened to the maximum allowable within the constraint applicability
limits.

selector andfield : The selector specifies the context within which the combination offield
XPath expressions should evaluate to unique. Aselector can have one of two attributes specified.
If the xpath attribute it specified, it is evaluated relative to the pointof definition (of the constraint)
within the document. The other option is to use aitemref attribute. This provides schema ver-
sioning support by allowing theselector reference to have flexibility across versions. The only
other requirement for schema versioning, is that the elements and attributes picked byfield , do
not change across schemas (or if they do, the constraint is redefined). Multiplefield sub-elements
may be listed. The combination of these are taken for the constraint specification. Thefield
sub-elements have a usage identical to their conventional XML Schema counterparts, and have a

47

singlexpath attribute. selector andfield are needed to specify a new constraint (i.e., those
that were not defined as identifiers in the conventional schema). If a new constraint is defined, the
conventionalIdentifier attribute should not be used. A new constraint can be either defined
as either akey or aunique constraint.

We now describe some non-sequenced identity constraint examples.

1. The combination of supplier name and city is unique. However, at a later point in time we may have
a different supplier with a name and city combination that was seen previously. To avoid any problem
in a given business (calendar) year, we require that reuse should not occur for at least one year after
discontinuation. Part numbers on the other hand may not be re-used later. These constraints are
applicable between 2005 and 2009.

...
<item target ="company/suppliers">

...
<nonSeqKey name="idSupplierNo" dimension ="validTime" evaluationWindow ="year"

slideSize ="day">
<applicability begin ="2005-01-01" end ="2009-12-31">
<selector xpath ="supplier" />
<field xpath ="supplierName" />
<field xpath ="supplierCity" />

</nonSeqKey >
...

</ item>
...
<item target ="company/products">
...

<nonSeqKey name="idPartNo" dimension ="validTime" evaluationWindow ="lifetime">
<applicability begin ="2005-01-01" end ="2009-12-31" />
<selector xpath ="product" />
<field xpath ="productNo" />

</nonSeqKey >
...
</ item>
...

2. A product’s key (in both valid and transaction time) is its RFID number. The constraint is applicable
from 2007 onwards.

...
<item target ="company/products">

...
<nonSeqKey name="product_RFID" dimension ="bitemporal"

evaluationWindow ="lifetime">
<applicability begin ="2007-01-01" />
<selector xpath ="product" />
<field xpath ="@RFID" />

</nonSeqKey >
...

</ item>
...

3. Employee email addresses are optional. If they do exist, they should be unique and should not be re-
used for a two-year period. An existing unique constraint (conventional) exists on employee emails
with an name ofunique_employee_email . The assumption is that it is defined under employees,
i.e., has the same context as the definition of the item with a target of company/employees. Employee
pager numbers are also unique; but not all employees have them. No more than fifty employees should
be without a pager in any given calendar year.

48

...
<item target ="company/employees">

...
<nonSeqUnique name="nsu_employee_email" conventionalIdentifier ="unique_employee_email"

evaluationWindow ="2 years" slideSize ="day" />
<uniqueNullRestricted name="unr_employee_pager"

nullCountMax ="50" dimension ="bitemporal"
evaluationWindow ="year" slideSize ="year" >

<applicability begin ="2007-01-01" />
<selector xpath ="employee" />
<field xpath ="@pager" />

</uniqueNullRestricted >
...

</ item>
...

6.2.2 Referential Integrity Constraints

Each referential integrity (keyref) constraint for a conventional document leads to a sequenced counter-
part in a temporal document. Thus, each conventional keyrefobeys referential integrity.

A non-sequenced referential integrity constraint is useful to specify a reference to some past state of the
XML document. Suppose, for example, the “largest order” (indollar terms) placed by a customer is stored
with the customer data (with akeyref to orderNo). A non-sequenced referential the integrity constraint
could state, “The largest order the customer has placed should be for an order that existed in the document
at some time.”

Formally, we can define the sequencedkeyref constraint as follows. LetEval(selr, Fr) denote the
result of evaluating the listFr of keyref XPathfield expressions relative to theselector element
selr at any timet, t ∈ B, during the applicability boundB. Let er be an element from the list defined
by Eval(selr, Fr). Similarly, let Eval(selk, Fk) denote the result of evaluating the referencedkey (or
unique) constraint at timet, andek ∈ Eval(selk, Fk). Thekeyref constraint is satisfied when∃ek (in
the document) such thater = ek.

One might think that there should be a limitation preventingreferential integrity constraints within state
data referring to event data. However, for XML, there does not need to be such a limitation. Consider the
following example: Scientists take readings about the temperature and humidity levels at an observation
post. Each observation can be considered an event. Information on the scientists on the other hand is state
data. Depending on the structure of the document,<scientist> can be the enclosing element with
keyref s to the appropriate<observation> or <observation> can be the enclosing element with
a reference to the scientist(s) who were responsible for it.Both options can be defined using XML Schema
and should be allowed.

Intuitively, a non-sequencedkeyref constraint should refer to the definition of an identifier that does
not permit re-use. Without the restriction of not permitting re-use, the semantics of the referential integrity
may not be well defined. For example, if the order number couldbe re-used, then a customer’s largest order
may end up referencing an order that was not originally placed by that customer. Not permitting re-use of
order numbers however is a strict constraint that can be omitted if thelargestOrderNo has a valid-time
timestamp. Then, the non-sequential reference can be understood to be for a specific order number that was
valid at the begin time of thelargestOrderNo .

We represent a non-sequenced referential integrity constraint using anonSeqKeyref element in
the logical annotations. Next, we proceed to discuss the different attributes and sub-elements for the
nonSeqKeyref (summarized in Table 24; the sub-elements are indented).

name: This allows the user to name the constraint and is useful in case the constraint is referred to else-
where. In a managed environment, this would also aid in allowing constraints to be disabled or

49

dropped.

refer : Denotes a referenced constraint (either conventional or temporal), i.e., the name of the constraint,
that the non-sequenced referential integrity constraint is associated with. If the constraint being re-
ferred to is a conventionalkeyref , then it is in effect just extending the semantics of the conventional
constraint (e.g., with an applicability bound). In this case, it inherits the referredkey constraint in-
formation. If this is a new constraint, then we need to refer to both an existing identity constraint
(either conventional or temporal), and define theselector andfield properties.

applicability : A non-sequenced keyref can be associated with a particularapplicability that
specifies when it was in effect. If the applicability is not specified, the default is assumed to be the
lifetime of the document. As with uniqueness constraints, the applicability can be a temporal element.

selector andfield : These two sub-elements have a usage identical to theiruniqueConstraint
counterparts, but are needed to specify a new constraint (i.e., those that were not defined as referential
integrity constraints in the conventional schema).

New non-sequenced referential integrity constraints may be defined (i.e., those that were not defined as
akeyref in the conventional schema).

4. A non-sequenced referential integrity constraint is to be defined for the product number in orders.
We assume a referential integrity constraint exists in the conventional schema. The name of the
corresponding keyref isordersProductRef which references a valid part number. The constraint
is applicable from 2005–2009.

...
<nonSeqKeyref name="ordersProductRef_NS" refer ="ordersProductRef">

<applicability begin ="2005-01-01" end ="2009-12-31" />
</ nonSeqKeyref>
...

5. A non-sequenced referential integrity constraint is to be defined for the customer email in orders.
It should reference a valid email address. The corresponding unique constraint within customers is
defined ascustEmailsUnique . The referential integrity constraint is applicable from 2008–2012,
and no corresponding conventional constraint exists.

...
<nonSeqKeyref name="ordersCustEmailRef" refer ="custEmailsUnique">

<applicability begin ="2008-01-01" end ="2012-12-31" />
<selector xpath ="order" />
<field xpath ="oCustEmail" />

</ nonSeqKeyref>
...

6.2.3 Cardinality Constraints

As discussed in Section 6.1.3, the cardinality of elements in conventional documents is restricted by us-
ing minOccurs andmaxOccurs , and that of attributes by usingoptional and required . These
automatically induce sequenced constraints in the temporal document.

Non-sequenced constraints can be used to restrict the cardinality over time. Consider the example of
an order element in Listing 26. We see that thedeliveredOn element may not always be present in
a specific document snapshot. Let us further say, that while it may be empty at the time the order was
placed, we require it to be appear at some point (say within three months of the order being placed). So,

50

even thoughminOccurs="0" is satisfactory for a conventional document, we may desire the equivalent
minOccurs="1" for a temporal document.

Listing 26: Orders with an optionaldeliveredOn
<xsd : schema xmlns :xsd ="http://www.w3.org/2001/XMLSchema">
...

<xsd : element name="order">
<xsd : complexType>

<xsd : sequence>
<xsd : element name="orderNo" type ="xsd:string" />
<xsd : element name="orderDate" type ="xsd:date" />
<xsd : element name="deliveredOn" minOccurs ="0" maxOccurs ="1" type ="xsd:date" />
...
<xsd : element ref ="product" minOccurs ="1" maxOccurs ="unbounded" />
...

</xsd : sequence>
</xsd : complexType>

</xsd : element>
...

For attributes, a similar requirement may be placed (i.e., asnapshotoptional attribute, may be
required over some evaluation window).

Another refinement that may be desired for a non-sequenced cardinality constraint is theaggregation
level at which the count is being performed. Let’s consider the schema in Listing 27. A non-sequenced
cardinality constraint can be used to place a limit of one hundred orders from a supplier in any given
year. In this case,order is the direct child of suppliers, and the conventionalmaxOccurs constraint (on
order) would be used to restrict the number of childorder elements asupplier can have. Suppose,
we wished to further constrain the number of orders for thecompany across the all suppliers to 1500 per
month. In other words, the number oforder elements that were descendants ofcompany) should be
≤ 1500 in any calendar month. The conventional cardinality constraints are not designed to handle this.
This is our motivation behind introducing theaggLevel option for a cardinality constraint.

Listing 27: Considering Aggregation Levels for anorder
...
<xsd : element name="company">
...

<xsd : element name="supplier" minOccurs ="1" maxOccurs ="unbounded">
...

<xsd : element ref ="order" minOccurs ="0" maxOccurs ="unbounded" />
...
</xsd : element>

..
</xsd : element>
...

We represent temporal cardinality constraints using acardConstraint element in the logical anno-
tation document. Formally, we define thecardConstraint (of typechildList) as follows. Let:

• sel be a context node (defined byselector in a cardinality constraint), with the list of correspond-
ing field expressionsF = (f1, . . . , fm).

• ancestorOf(n, a) returntrue if a is an ancestor of noden, andfalse otherwise.

• For two listsL1 andL2, let L1 ⊎ L2 return the result of appending the members ofL2 to L1.

• Evalw(sel, F) be the result returned by the evaluation ofF relative tosel (over the evaluation win-
doww). There may be many nodes corresponding to a givensel (e.g., manysupplier nodes), and
each such (supplier) node can have many children. Thereforeevalw(sel, F) returns a list of lists.

51

• childListi ∈ evalw(sel, F) be theith member (also a list) of the result.

• childListAggr = aggr(childlisti, aggLevel) be the aggregation of the variouschildListi at the
ancestor level ofaggLevel; i.e.,childListAggr = (childList1⊎. . .⊎childListi⊎. . .⊎childListn),
where∀i, ancestorOf(sel, aggLevel) is true .

Then thecardConstraint restricts:min ≤ |childListAggr| ≤ max, if an aggLevel is defined. If
theaggLevel is empty, then:min ≤ |childList| ≤ max. Here|list| is the count of members in thelist.

The definition forchildList can be modified for set semantics,childSet , by only considering dis-
tinct elements (i.e., duplicates are not considered). Thisbrings up the issue of how to determine if two nodes
are duplicates. One option is to go with the understanding ofDOM-equivalence defined in Section 5.4. An-
other option is to consider two nodes equivalent if the values of their corresponding item identifiers match.
When defining theitemIdentifierRef attribute incardConstraint , theselector XPath for
the cardinality constraint (i.e., thefield XPath expression in cardinality) should be compatible withthe
referred item identifier.

Formally, we let:

• childSeti ∈ evalw(sel, F) be the set of child nodes returned by the evaluation of the XPath expres-
sionsF relative tosel (over the evaluation windoww).

• childSetAggr = aggr(childSeti, aggLevel) be the aggregation of thechildSeti result at the an-
cestor level ofaggLevel; i.e., childSetAggr = (childSet1 ∪ . . . ∪ childSeti ∪ . . . ∪ childSetn),
where∀i, ancestorOf(sel, aggLevel) is true .

Then thecardConstraint restricts: min ≤ |childSetAggr| ≤ max, if an aggLevel is defined.
If the aggLevel is empty, then:min ≤ |childSet| ≤ max. As can be seen, the definitions for the
restriction type ofchildSet are very similar to the definition for the type ofchildList .

6. There should be no more than fifty active suppliers (i.e., in the “database”) in any year. This con-
straint is true between 2007 and 2009. [childList constraint]

...
<cardConstraint name="supplierCardYear"

restrictionTarget ="childList" dimension ="validTime" evaluationWindow ="year"
slideSize ="day" max ="50">

<selector xpath ="company" />
<field xpath ="supplier" />
<applicability begin ="2007-01-01" end ="2009-12-31" />

</ cardConstraint>
...

7. No supplier should be given more than one hundred orders in a calendar month. These orders should
not be for more than five hundred different products.Note: we do not do SUM type constraints here,
since they are not an extension of minOccurs or maxOccurs (Different kinds of aggregation).

...
<cardConstraint name="supOrders" restrictionTarget ="childList" dimension ="validTime"

evaluationWindow ="month" slideSize ="month" max ="100">
<selector xpath ="company/supplier" />
<field xpath ="order" />

</ cardConstraint>
<cardConstraint name="supParts" restrictionTarget ="childList" dimension ="validTime"

evaluationWindow ="month" slideSize ="month" aggLevel ="company/supplier" max ="500">
<selector xpath ="company/supplier/order" />
<field xpath ="product" />

</ cardConstraint>
...

52

8. There should be a maximum of 250 potential suppliers for the company across all products. We
assume there exists an item identifier— on the potential supplier’s supplierNo attribute. This
constraint is to be enforced during 2009. [Sequenced constraint; use ofchildSet]

This is a sequenced constraint. However it cannot be enforced by a combination of aminOccurs
andmaxOccurs .

...
<cardConstraint name="potential_suppliers_seq" restrictionTarget ="childSet"

itemIdentifierRef ="potential_supplierNo" dimension ="validTime"
sequenced ="true" aggLevel ="company" max ="250">

<selector xpath ="company/product" />
<field xpath ="potential_supplier" />
<applicability begin ="2009-01-01" end ="2009-12-31" />

</ cardConstraint>
...

Another kind of constraint we consider is restricting the cardinality of thevalueList , i.e., the min/-
max number of “values” that an element or attribute can have over a specific evaluation window. This
constraint does not have an XML Schema equivalent. So it doesnot fit into a strict extension of XML
Schema semantics.

A valueList restriction is related to the datatype of the item (which specifies the possible values
an item can take). For example, suppose an orderstatus attribute can have one of the five following
values:placed , underReview , being processed , shipped , andreturned . It is possible that
changes to the order can have it swap back and forth betweenunderReview andbeing processed .
Therefore over a period of a month, it can potentially have seven values. However the number ofdistinct
values that status can have is five or fewer. In this sense, thevalueList andvalueSet restriction kinds
are analogous to the SQL notion ofCOUNT(attribute) andCOUNT(distinct attribute) .

For both of the twovalueList restrictions, child elements (or attributes) are not beingcounted. In-
stead it is the value of the element (or attribute) itself. So, the semantics of thecardConstraint/selector
element is different from that forchildList or childSet . In the latter, theselector is used to
set up the context node, relative to which the child items described by thefield nodes are counted.
With valueList constraints, theselector is used to decide the item for which the values will be
counted. Typically for thevalueList cardinality constraints, thefield expression will contain a termi-
nal /text() function.

The formal definition forvalueList andvalueSet constraints are similar to those forchildList
andchildSet . The main difference being in theevalw(sel, F) function, which instead of returning a list
(or set) of nodes (element or attribute), returns thevalue or content of those nodes. An example of a
valueList andvalueSet cardinality constraints follows.

9. A product should have only one name in any month, but can have up to three distinct names in a year.
This is in force during 2008–2010. [valueList andvalueSet constraints; different evaluation
window sizes used]

53

...
<cardConstraint name="prodNameMonth" restrictionTarget ="valueList"

dimension ="validTime" evaluationWindow ="month" slideSize ="day" min ="1" max ="1">
<selector xpath ="product" />
<field xpath ="@productName/text()" />
<applicability begin ="2008-01-01" end ="2010-12-31" />

</ cardConstraint>
<cardConstraint name="prodNameYear" restrictionTarget ="valueSet"

dimension ="validTime" evaluationWindow ="year" slideSize ="day" min ="1" max ="3">
<selector xpath ="product" />
<field xpath ="@productName/text()" />
<applicability begin ="2008-01-01" end ="2010-12-31" />

</ cardConstraint>
...

We now proceed to discuss the different attributes and sub-elements for thecardConstraint (sum-
marized in Table 25; the sub-elements are indented).

name: This allows the user to name the constraint and is useful in case the constraint is referenced later.

restrictionTarget : Cardinality constraints can restrict thechildList ,childSet , valueList ,
andvalueSet counts of elements and attributes.

childList refers to the actual number of sub-elements that can appear over time, and is analo-
gous to the conventional minOccurs and maxOccurs for sequenced constraints. The difference be-
tweenchildList andchildSet is similar, in that duplicate sub-elements are not counted for
childSet . Duplication is determined using by referencing an applicable uniqueness constraint
(which in terms specifies the fields to be evaluated).

itemIdentifierRef : The name of the item identifier. Used along withchildSet to eliminate du-
plicates.

dimension : Specifies the dimension in which the cardinality constraint applies and is one ofvalidTime ,
transactionTime , or bitemporal .

evaluationWindow : Associated with a non-sequenced cardinality constraint isthe time window over
which the constraint should be checked. This allows cardinality minimum and maximum ranges to be
specified for an interval, e.g., year. This is useful, for example, when a restriction needs to be put on
how many orders suppliers can handle in any given period. By default the time window is the lifetime
of the XML document.

slideSize : Associated with the time window of evaluation. By default itis the granularity of the under-
lying data type.

sequenced : Denotes if the constraint is sequenced or not (using eithertrue or false). This is allowed
in the constraint specification since XML Schema only allowsminOccurs andmaxOccurs to be
aggregated at the target parent level. Allowing a differentaggregation level is useful, for example, if
instead of restricting the number of potential suppliers for a product (assuming<potential_suppliers>
is a child element of<product>), we wish to restrict the total number of potential suppliers the
company maintains relationships with at any time. If a constraint is specified as sequenced, the
evaluationWindow attribute must not be used.

aggLevel : Specifies the level at which the aggregation is performed forcardinality constraints; by default
it is at the level of the target’s parent. This is also the reason why we allow sequenced cardinality

54

specifications. For a sequenced constraint to be useful, theaggregation level should not be the target’s
parent.

min andmax: Specify the minimum and maximum cardinality respectively.

selector andfield : These two sub-elements have a usage identical to XML Schema usage for con-
ventional constraints.

applicability : The constraint applicability specifies when it was in effect. If the applicability is
not specified, the default is assumed to be the lifetime of thedocument. The applicability can be a
temporal element.

6.2.4 Datatype Restrictions (Constraints)

As mentioned in Section 6.1.4, we currently consider non-sequenced augmentations to the XML Schema
simpleType element. A simple type is used to specify a value range and induces a sequenced constraint
that ensures conventional document values conform to this range.

A non-sequenced equivalent of this type of constraint can beconsidered either at the schema level (i.e.,
datatype evolution—within schema evolution) or at the instance level (transition constraints). Schema-level
constraints restrict the kinds of changes possible to the datatype of an item. However, we do not see much
need for this type of a constraint.

At the instance level (i.e., conforming to a particular typespecification), a temporal constraint could
restrict discrete and continuous changes. Discrete changes can be handled by defining a set of value tran-
sitions for the data. For example, it could be specified that while supplier ratings can change over time,
the changes can only occur in single-step increments (i.e.,B to either A or C). Continuous changes are
handled by defining a restriction on the direction of the change. For a transition constraint to be applicable,
a corresponding datatype should be defined at the conventional schema level.

We now proceed to discuss the different attributes and sub-elements for thetransitionConstraint
(summarized in Table 26; the sub-elements are indented).

name: This allows the user to name the constraint and is useful in case the constraint is referenced else-
where.

dimension : Specifies the dimension in which the unique constraint applies and is one ofvalidTime ,
transactionTime , or bitemporal . The default isvalidTime since a cardinality constraint
on transaction time is akin to specifying how many “data entry changes” can be made to an element
or attribute.

selector andfield : These two sub-elements have a usage identical to their conventional XML Schema
counterparts.

valuePair : This is used to list possible pairs for discrete changes. Thepairs themselves are specified as
<old> and<new> sub-elements. valuePair cannot be used simultaneously withvalueEvolution .
The values listed here should be within the range of values defined for the conventionalsimpleType
datatype.

valueEvolution : This sub-element lists the direction for continuous changes. Only one ofvaluePair
andvalueEvolution should be used. The values listed here should be within the range of values
defined for the conventionalsimpleType datatype. Continuous changes of the following direction
are currently supported:

55

• strictlyIncreasing : the value should be strictly increasing

• strictlyDecreasing : the value should be strictly decreasing

• nonIncreasing : the value should be non-increasing

• nonDecreasing : the value should be non-decreasing

• equal : the value should be equal, i.e., no change allowed.

The last type,equal , should only be used in conjunction with the applicability begin and applicabil-
ity end to restrict when the value of a particular element or attribute (e.g., salary) should not change.
This allows us flexibility over annotating salary to be non-temporal since the user may wish to place
this restriction only between “March 2009 and June 2009”.

applicability : The constraint applicability specifies when it was in effect. If the applicability is
not specified, the default is assumed to be the lifetime of thedocument. The applicability can be a
temporal element.

10. Supplier Ratings can move up or down a single step at a time (for example, from A to B, or B to A;
but not from A to C) in valid time but no restrictions are placed in transaction time (since a data entry
error might be made). This is applicable between 2008 and 2010.

...
<transitionConstraint name="supplierRating"

dimension ="validTime">
<selector xpath ="supplier" />
<field xpath ="supplierRatingType" />
<valuePair> <old >A</old > <new>B</new > </ valuePair>
<valuePair> <old >B</old > <new>A</new > </ valuePair>
<valuePair> <old >B</old > <new>C</new > </ valuePair>
<valuePair> <old >C</old > <new>B</new > </ valuePair>
<applicability begin ="2008-01-01" end ="2010-12-31" />

</ transitionConstraint>
...

11. Employee Salaries should not go down, but may increase between 2008 and 2009. However, a salary
freeze is in place between January and June 2009 due to economic factors.

...
<transitionConstraint name="employeeSalary1"

dimension ="validTime">
<selector xpath ="employee" />
<field xpath ="salary" />
<valueEvolution direction =">=" />
<applicability begin ="2008-01-01" end ="2009-12-31" />

</ transitionConstraint>

<transitionConstraint name="employeeSalary2"
dimension ="validTime">

<selector xpath ="employee" />
<field xpath ="salary" />
<valueEvolution direction ="=" />
<applicability begin ="2009-01-01" end ="2009-06-30" />

</ transitionConstraint>
...

56

7 Support for Bitemporal Data

Up to this point, all the examples we have seen consider only asingle dimension of time. But as explained
in Section 3.2, both transaction and valid time play an important role in modeling entities which need to
maintain the historical information. If an entity needs to maintain both the historical information as well as
the history of changes, bitemporal support is needed. In this section, we consider a conceptual extension of
τXSchema to provide support for bitemporal data and procedure for squashing the conventional documents
along both time dimensions.

For illustration, we consider a modified example from Chapter 10 of the bookDeveloping Time-
Oriented Database Applications in SQL[72].

Nykredit is a major Danish mortgage bank. It maintains the information about properties and customers
into bitemporal tables for historical information and to provide tracking support. Traditionally, its been
using relational database tables to maintain this information. If this information needs to be migrated to
XML, τXSchema with the support for bitemporal data would be useful.

In their database, the information about Property, Customers and their relationship is maintained in the
following three tables.

Property (property number, address, VT Begin, VT End, TT Start,
TT End)

Customer (name, VT Begin, VT End, TT Start, TT End)
Prop Owner (customer number, property number, VT Begin, VT End,

TT Start, TT End)

Let us assume that, the information about the property is represented in XML using the schema given
in Listing 28. For simplicity, onlyproperty number andaddress attributes of theProperty are
considered. Property is associated with a owner by theowner name attribute of the<property> ele-
ment. To simplify the things a little, we assume that the owner is uniquely represented by theowner name
attribute.

Corresponding logical and physical annotations are given in Listings 29 and 30. As can be seen from the
temporal annotation, the<property> element is content varying both in transaction-time and valid-time.

To illustrate the process of gluing in two dimensions, we consider the history, over both valid time and
transaction time, of a flat (apartment) in Aalborg, at Skovvej 30 for the month of January 2008. All its
transactions are listed below in the chronological order oftransaction-time. The corresponding bitemporal-
time diagrams and snippets of conventional XML documents are also given for understanding.

Assume that, initially, the mortgage for the flat was being handled by some other company. So, although
Nykredit maintained the property information, no information about the owner is stored in the database. We

Listing 28: property.xsd
...
<element name="property">

<complexType mixed ="true">
<sequence>

<element name="address" type ="string" minOccurs ="1" maxOccurs ="1" />
</ sequence>
<attribute name="property_number" type ="nonNegativeInteger" use ="required"/>
<attribute name="owner_name" type ="string" use ="optional"/>

</ complexType>
</ element>
...

57

Listing 29: property logical annotation.xml
...
<item target ="property">

<transactionTime content ="varying" existence ="constant" />
<validTime content ="varying" existence ="constant" />
<itemIdentifier name="property_number" timeDimension ="bitemporal">

<field path ="@property_number"/>
</ itemIdentifier>

</ item>
...

Listing 30: property physical annotation.xml
...
<stamp target ="property">

<stampKind timeDimension ="bitemporal" stampBounds ="extent"/>
</ stamp>
...

also assume that the flat exists in Nykredit’s database from January 1. The snippet of the conventional
document corresponding to this period is shown in Figure 5.

Transaction Time [01-01, UC) (Will be altered to [01-01, 01-10))

• Valid Time [01-01, Forever)

Listing 31: Property information, no owner details
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 5: Mortgage being handled by other company. No customer

On January 10, this flat was purchased by Eva Nielsen. We record this information at a current valid-time
(01-10), current transaction-time (01-10). The snippets of the conventional documents corresponding to
this transaction period starting on01-10 are shown in Figure 6.

This information is valid starting now, and was inserted now. We will see that the transaction-time
extent ofall modifications is “now” to “until changed,” which we encode as“forever” and express as
9999-12-31 in the XML document.

The interplay between valid time and transaction time can beconfusing, so it is useful to have a visu-
alization of the information content of a bitemporal table.Figure 7 shows thebitemporal time diagram, or
simply time diagram, corresponding to the above insertion.

In this figure, the horizontal axis tracks transaction time and the vertical axis tracks the valid time. In-
formation about the owners associated with the property aredepicted as two-dimensional polygonal regions
in the diagram. Arrows extending rightward denote “until changed” in transaction time; arrows extending
upward denote “forever” in valid time. Here we have but one region, associated with Eva Nielsen, that
starts at time 10 (January 10) in transaction time and extends to “until changed,” and begins also at time 10
in valid time and extends to “forever.” The arrow pointing upward extends to the largest valid time value
(“forever”); the arrow pointing to the right extends to “now,” that is, it advances day by day to the right (a

58

Transaction Time [01-10, UC) (Will be altered to [01-10, 01-15))

• Valid Time [01-01, 01-10)

Listing 32: Data corresponding to Valid time of Jan 1 - 10
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-10, Forever)

Listing 33: Data corresponding to Valid time of Jan 10 onwards
...
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 6: Eva purchased the flat on January 10

transaction time in the future is meaningless).
On January 15 Peter Olsen buys this flat; this legal transaction transfers ownership from Eva to him.

Figure 8 illustrates how this update impacts the time diagram. The valid-time extent of this modification
is always “now” to “forever,” so from time 15 on, the propertyis owned by Peter; at the rest of the time,
from time 10 to 15, the property was owned by Eva. Both regionsextend to the right to “until changed.”
This time diagram captures two facts: Eva owning the flat and Peter owning the flat, each associated with a
bitemporal region.
The snippets of the conventional documents corresponding to this transaction are shown in Figure 9.

On January 20, we find out that Peter has sold the property to someone else, with the mortgage again
being handled by another mortgage company. From Nykredit’spoint of view, the property no longer has a
owner as of (a valid time of) January 20.

Figure 10 shows the resulting time diagram. If we now requestthe valid-time history as best known,
we will learn that Eva owned the flat from January 10 to January15, and Peter owned the flat from January
15 to January 20. All prior states are retained. We can still time travel back to January 18 and request the
valid-time history, which will state that on that day we thought that Peter still owned the flat.
The snippets of the conventional documents corresponding to this transaction are shown in Figure 11.

On January 23, we find out that Eva had purchased the flat not on January 10, but on January 3, a week
earlier. So we insert those additional days, to obtain the time diagram shown in Figure 12. Corresponding
snippets of the conventional documents are given in Figure 14

We learn on January 26 that Eva bought the flat not on January 10, as initially thought, nor on January
3, as later corrected, but on January 5. We specify a period ofapplicability of January 3 through 5, with the
result shown in the time diagram in Figure 13. Correspondingconventional snippets are given in Figure 15

Finally, we learn on January 28 that Peter bought the flat on January 12, not on January 15 as previously
thought. This change requires a period of applicability of January 12 through 15, setting theowner name
to Peter, which results in the time diagram in Figure 16. Effectively, the ownership must be transferred from
Eva to Peter for those three days, resulting in the conventional documents given in Figure 17.

Gluing elements in two dimensions involves gluing them along one dimension (e.g., valid-time) fol-
lowed by their gluing along the other dimension (e.g., transaction-time). The last timing diagram on January

59

5

10

15

20

25

30

5 10 15 20 25 30

Eva

Valid
Time

Transaction
 Time

Figure 7: A bitemporal time diagram corresponding to Eva purchasing the flat, performed on January 10

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 8: Peter buys the flat, performed on January 15

28 in Figure 16 could be divided into 7 time-periods along thetransaction time dimension as shown in Fig-
ure 18, i.e.,[01-01 - 01-10) , [01-10 - 01-15) , [01-15 - 01-20) , [01-20 - 01-23) ,
[01-23 - 01-26) , [01-26 - 01-28) , [01-28 - UC) .

All the above conventional documents are first squashed along valid-time dimension as explained soon
to give seven temporal documents corresponding to each of the above periods. The sample sample represen-
tation of these documents corresponding to periods[01-10, 01-15) , [01-20, 01-23) , [01-26,
01-28) are given below in Listings 53, 54, and 55, respectively. These documents are temporal documents
themselves.

Other representations are also possible for these documents. As an example, the document in Figure 54
could also be represented as shown in Figure 56. In this representation, multiple DOM-equivalent versions
of the <property> are merged into a single version and their time periods are represented as a single
time-varying element, i.e., a set of periods.

These temporal documents then act as conventional documents while performing squashing along transaction-
time dimension. When squashed along transaction-time dimension, they give the final temporal document

60

Transaction Time [01-15, UC) (Will be altered to [01-15, 01-20))

• Valid Time [01-01, 01-10)

Listing 34: Transaction Time[01-15, UC) , Valid Time [01-01, 01-10)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-10, 01-15)

Listing 35: Transaction Time[01-15, UC) , Valid Time [01-10, 01-15)
...
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-15, Forever)

Listing 36: Transaction Time[01-15, UC) , Valid Time [01-15, F)
...
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 9: Peter buys the flat, performed on January 15

shown in Listings 57, 58 and 59.
When we were concerned with only valid-time or only transaction-time in earlier examples, the coalesc-

ing of content-constant versions was done by lengthening the version periods. But when the interplay of two
dimensions comes into picture, the periods in a single dimension generalize toregionsin the time diagram,
which are considerably more involved than one-dimensionalperiods. In terms of time diagram, an item ver-
sion with two valid-time instants,VT Begin andVT End, and two transaction-time instants,TT Start
andTT Stop , encodes arectanglein bitemporal space. Such two rectangle can be coalesced when either
their valid-time instantsVT Begin andVT End match or their transaction-time instantsTT Start and
TT Stop match.

While representing these regions in the XML document, they could be split with the vertical lines
(termed astransaction-time splittingshown in Figure 19) or horizontal lines (termed asvalid-time splitting).
Due to the semantics of transaction time, regions are often split with vertical lines in the timing diagram.

The temporal document in Figures 57–59 uses the first approach, since it minimizes the representation
of the document.

61

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 10: Peter sells the flat, performed on January 20

Listing 53: Transaction Time[01-10, 01-15)
...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-10" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-10" end ="9999-12-31" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>
</ property_RepItem>
...

62

Transaction Time [01-20, UC) (Will be altered to [01-20, 01-23))

• Valid Time [01-01, 01-10)

Listing 37: Transaction Time[01-20, UC) , Valid Time [01-01, 01-10)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-10, 01-15)

Listing 38: Transaction Time[01-20, UC) , Valid Time [01-10, 01-15)
...
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-15, 01-20)

Listing 39: Transaction Time[01-20, UC) , Valid Time [01-15, 01-20)
...
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-20, Forever)

Listing 40: Transaction Time[01-20, UC) , Valid Time [01-20, F)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 11: Peter sells the flat, performed on January 20

63

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 12: Discovered on January 23: Eva actually purchasedthe flat on January 3

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 13: Discovered on January 26: Eva actually purchasedthe flat on January 5

64

Transaction Time [01-23, UC) (Will be altered to [01-23, 01-26))

• Valid Time [01-01, 01-03)

Listing 41: Transaction Time[01-23, UC) , Valid Time [01-01, 01-03)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-03, 01-15)

Listing 42: Transaction Time[01-23, UC) , Valid Time [01-03, 01-05)
...
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-15, 01-20)

Listing 43: Transaction Time 23rd - UC, Valid Time 15th - 20th
...
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-20, Forever)

Listing 44: Transaction Time[01-23, UC) , Valid Time [01-20, F)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 14: Discovered on January 23: Eva actually purchasedthe flat on January 3

65

Transaction Time [01-26, UC) (Will be altered to [01-26, 01-28))

• Valid Time [01-01, 01-05)

Listing 45: Transaction Time[01-26, UC) , Valid Time [01-01, 01-05)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-05, 01-15)

Listing 46: Transaction Time[01-26, UC) , Valid Time [01-05, 01-15)
...
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-15, 01-20)

Listing 47: Transaction Time[01-26, UC) , Valid Time [01-15, 01-20)
...
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-20, Forever)

Listing 48: Transaction Time[01-26, UC) , Valid Time [01-20, F)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 15: Discovered on January 26: Eva actually purchasedthe flat on January 5

66

5

10

15

20

25

30

5 10 15 20 25 30

Peter

Eva

Valid
Time

Transaction
 Time

Figure 16: January 28: Peter actually purchased the flat on January 12

Listing 54: Transaction Time[01-20, 01-23)
...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-10" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-10" end ="2008-01-15" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-15" end ="2008-01-20" />
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-20" end ="9999-12-31" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

</ property_RepItem>
...

67

Transaction Time [01-28, UC)

• Valid Time [01-01, 01-05)

Listing 49: Transaction Time[01-28, UC) , Valid Time [01-01, 01-05)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-05, 01-12)

Listing 50: Transaction Time[01-28, UC) , Valid Time [01-05, 01-12)
...
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-12, 01-20)

Listing 51: Transaction Time[01-28, UC) , Valid Time [01-12, 01-20)
...
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>
...

• Valid Time [01-20, Forever)

Listing 52: Transaction Time[01-28, UC) , Valid Time [01-20, F)
...
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>
...

Figure 17: January 28: Peter actually purchased the flat on January 12

68

Time

Time

Eva

Peter

15 20 25 305 10

5

10

20

15

25

30

35

35

321 4 5 6 7

Valid

Transaction

Figure 18: Transaction Time Regions

Listing 55: Transaction Time[01-26, 01-28)
...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-05" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-05" end ="2008-01-12" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-12" end ="2008-01-20" />
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-20" end ="9999-12-31" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

</ property_RepItem>
...

69

Listing 56: Transaction Time[01-20, 01-23)
...
<property_RepItem>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-10" />
<timestamp_ValidExtent begin ="2008-01-20" end ="9999-12-31" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-10" end ="2008-01-15" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_ValidExtent begin ="2008-01-15" end ="2008-01-20" />
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

</ property_RepItem>
...

12

Time

Transaction
Time

Eva

Peter

1 2

3

4

5

7

6

8

9

15 20 25 305 10

5

10

20

15

25

30

35

35

10
13

11

Valid

Figure 19: Transaction-time splitting of regions

70

Listing 57: Temporal Document along both valid-time and transaction-time
...
<property_RepItem>

<property_Version>
<timestamp_TransExtent start ="2008-01-01" stop ="2008-01-10" />
<timestamp_ValidExtent begin ="2008-01-01" end ="9999-12-31" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-10" stop ="2008-01-15" />
<timestamp_ValidExtent begin ="2008-01-10" end ="9999-12-31" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-10" stop ="2008-01-23" />
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-10" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-15" stop ="2008-01-20" />
<timestamp_ValidExtent begin ="2008-01-15" end ="9999-12-31" />
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-15" stop ="2008-01-23" />
<timestamp_ValidExtent begin ="2008-01-10" end ="2008-01-15" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>
...

71

Listing 58: Temporal Document along both valid-time and transaction-time.Continued
<property_Version>

<timestamp_TransExtent start ="2008-01-20" stop ="9999-12-31" />
<timestamp_ValidExtent begin ="2008-01-20" end ="9999-12-31" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-20" stop ="2008-01-28" />
<timestamp_ValidExtent begin ="2008-01-15" end ="2008-01-20" />
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-23" stop ="2008-01-26" />
<timestamp_ValidExtent begin ="2008-01-03" end ="2008-01-15" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-23" stop ="2008-01-26" />
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-03" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-26" stop ="2008-01-28" />
<timestamp_ValidExtent begin ="2008-01-05" end ="2008-01-15" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

72

Listing 59: Temporal Document along both valid-time and transaction-time.Continued

<property_Version>
<timestamp_TransExtent start ="2008-01-26" stop ="9999-12-31" />
<timestamp_ValidExtent begin ="2008-01-01" end ="2008-01-05" />
<property property_number ="7797">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-28" stop ="9999-12-31" />
<timestamp_ValidExtent begin ="2008-01-12" end ="2008-01-20" />
<property property_number ="7797" owner_name ="Peter">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

<property_Version>
<timestamp_TransExtent start ="2008-01-28" stop ="9999-12-31" />
<timestamp_ValidExtent begin ="2008-01-05" end ="2008-01-12" />
<property property_number ="7797" owner_name ="Eva">

<address> Skovvej 30, Alborg </ address>
</ property>

</ property_Version>

</ property_RepItem>
...

73

In order to support bitemporal data, we anticipate following architectural and implementational changes
to the existing tools.

SCHEMAMAPPER : SCHEMAMAPPERwould need very little change. As the representation of a temporal
document is going to remain the same, it needs to add both transaction and valid-time elements from
the TVSchema for the elements from physical annotation which are time-varying along both the
dimensions.

τXMLL INT : τXMLL INT would also need little change to support bitemporal data. Since the representa-
tion of items in a XML document is not going to change, the gluing procedure, which is the first part
of the τXMLL INT algorithm, would remain the same. Next step is to validate the individual items
identified during gluing. In the existingItem class, the validation procedure for the item needs to be
extended to perform the validation of items varying along both valid and transaction time.

SQUASH : To perform squashing of bitemporal data we anticipate a need of a wrapper class, e.g.,DoBi -
temporalSquashing , to the existing architecture. This class would use the existing DoSquashing
class to perform the squashing of documents along valid-time for identified transaction-time periods.
This will generate the series of temporal documents, which will act as conventional documents for
squash along transaction-time. The existingDoSquashing class and other primitive functions will
not be able to handle these temporal documents, since they were not designed anticipating the ex-
istence of items in the conventional documents. Thus theDoSquashing class would need some
changes to handle these documents. Also, although the conceptual algorithms for the primitive func-
tions remains the same, some implementation level changes would be needed. The existingItem
class has the support for bitemporal time. But the coalescing algorithm handles only time-periods. It
does not handle regions. The currentcoalesce function needs an extension to perform coalescing of
regions.

UNSQUASH : UNSQUASH tool would also need some changes similar to the SQUASH tool. A new wrap-
per class (e.g.,DoBitemporalUnSquashing) could be added. This class would first unsquash
the given bitemporal document along the transaction-time dimension to give multiple temporal docu-
ments along valid-time. Each of these documents need to be unsquashed along the valid-time dimen-
sion giving multiple conventional documents. ExistingUnSquash would work without any changes
for performing unsquashing along the valid-time dimension. Some modifications would be needed to
UnSquash class to perform the unsquashing along the transaction-time dimension.

Thus, although the tools would be based on the existing classes, addition of some new classes and
modifications to the primitive functions would be necessaryin order to provide the support for bitemporal
data.

74

8 Architecture

In this section we describe the overall architecture ofτXSchema and illustrate with an example. The design
and implementation details of the tools are explained further in Section 9.

A visual depiction of the architecture ofτXSchema is illustrated in Figure 20. This figure is central
to our approach, so we describe it in detail and illustrate itwith examples. We note that although the
architecture has many components, only those components shaded in the figure are specific to an individual
time-varying document and need to be supplied by a user. New time-varying schemas can be quickly and
easily developed and deployed. We also note that the representational schema, instead of being the only
schema in an ad hoc approach, is merely an artifact in our approach, with the conventional schema, logical
annotations, and physical annotations being the crucial specifications to be created by the designer.

The designer annotates the conventional schema with logical annotations (box 5). The logical annota-
tions together with the conventional schema form the logical schema. Listing 60 provides an extract of the
logical annotations on thewinOlympic schema. The logical annotations specify a variety of characteristics
such as whether an element or attribute varies over valid time or transaction time, whether its lifetime is
described as a continuous state or a single event, whether the item itself may appear at certain times (and
not at others), and whether its content changes. For example, <athlete> is described as a state element,
indicating that the<athlete> will be valid over a period (continuous) of time rather than asingle in-
stant. Annotations can be nested, enabling the target to be relative to that of its parent, and inheriting as
defaults the kind,contentVarying , andexistenceVarying attribute values specified in the par-
ent. The attributeexistenceVarying indicates whether the element can be absent at some times and
present at others. As an example, the presence ofexistenceVarying for an athlete’s phone indicates
that an athlete may have a phone at some points in time and not at other points in time. The attribute
contentVarying indicates whether the element’s content can change over time. An element’s content
is a string representation of itsimmediate content, i.e., text, sub-element names, and sub-element order.

As discussed in Section(4), if no annotationsare provided whatsoever, the default annotation is that
anything can change. However, once we begin to annotate the conventional schema, the semantics we adopt
are that elements that are not described as time-varying arestatic. Thus, they must have the same content
and existence across every XML document in box 7. For example, we have assumed that the birthplace
of an athlete will not change with time, so there is no annotation for <birthPlace> among the logical
annotations. The schema for the logical annotation document is given by ASchema (box 2).

The next design step is to create the physical annotations (box 6). In general, the physical annotations
specify the timestamp representation options chosen by theuser. An excerpt of the physical annotations
for thewinOlympic schema is given in Listing 61. Physical annotations may also be nested, inheriting the
specified attributes from their parent; these values can be overridden in the child element.

Physical annotations play two important roles.

• They help to define where the physical timestamps will be placed (versioning level). The location
of the timestamps is independent of which components vary over time (as specified by the logical
annotations). Two documents with the same logical information will look very different if we change
the location of the physical timestamp. For example, although the elementsphone andathName are
time-varying, the user may choose to place the physical timestamp at theathlete level. Whenever
any element below athlete changes, the entireathlete element is repeated.

• The physical annotations also define the type of timestamp (for both valid time and transaction time).
A timestamp can be one of two types:step or extent . An extent timestamp specifies both the
start and end instants in the timestamp’s period. In contrast a step-wise constant (step) timestamp
represents only the start instant. The end instant is implicitly assumed to be just prior to the start of

75

Listing 60: Sample WinOlympic Logical Annotation
<?xml version ="1.0" encoding ="UTF-8"?>
<logical

xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi :schemaLocation ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema
ASchema.xsd">

<defaultTimeFormat>
<format plugin ="XMLSchema" granularity ="gDay"/>

</ defaultTimeFormat>
...

<item target ="winOlympic/country/athleteTeam">
<validTime content ="constant" existence ="varyingWithGaps">

<maximalExistence begin ="1924-01-01" />
</ validTime>
<itemIdentifier name="teamName" timeDimension ="transactionTime">

<field path ="./teamName"/>
</ itemIdentifier>

</ item>
...

<item target ="winOlympic/country/athleteTeam/athlete/medal">
<validTime/>
<transactionTime/>
<itemIdentifier name="medalId1" timeDimension ="bitemporal">

<field path ="./text()"/>
<field path ="../athName"/>

</ itemIdentifier>
</ item>

...
</ logical>

Listing 61: Sample WinOlympic Physical Annotation
<?xml version ="1.0" encoding ="UTF-8"?>
<physical xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"

xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi :schemaLocation ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema
ASchema.xsd">

<defaultTimeFormat>
<format plugin ="XMLSchema" granularity ="days"/>

</ defaultTimeFormat>
...

<stamp target ="winOlympic/country">
<stampKind timeDimension ="transactionTime" stampBounds ="extent"/>

</ stamp>
...

<stamp target ="winOlympic/country/athleteTeam/athlete">
<stampKind timeDimension ="transactionTime" stampBounds ="step"/>

</ stamp>
...
</ physical>

76

9. Representational
Schema

0. XML Schema

Input/Output References Namespace

SQUASH

Legend of Arrows

1. TSSchema

SCHEMA
MAPPER

2. ASchema

3. Base Schema

4. Temporal Schema

5. Logical Annotation 6. Physical Annotation

7. Non−Temporal Data
8. Temporal Data

Figure 20: Overall Architecture ofτXSchema

the next version, ornow for the current version. However, one cannot usestep timestamps when
there might be “gaps” in time between successive versions.extent timestamps do not have this
limitation. Changing even one timestamp fromstep to extent can make a big difference in the
representation.

The schema for the physical annotations is also contained within ASchema (box 2).τXSchema supplies
a default set of physical annotations, which is to timestampthe root element with valid and transaction time
using step timestamps, so the physical annotations are optional. However, adding them can lead to more
compact representations.

We emphasize that our focus is on capturing relevant aspectsof physical representations, not on the
specific representations themselves (the design of which ischallenging in itself). Also, since the logical
and physical annotations are orthogonal and serve two separate goals, we choose to maintain them inde-
pendently. A user can change where the timestamps are located, independently of specifying the temporal
characteristics of that particular element. In the future,when software environments for managing changes
to XML files over time are available, the user could specify logical and physical annotations for an element
together (by annotating a particular element to be temporaland also specifying that a timestamp should be
located at that element), but these would remain two distinct aspects from a conceptual standpoint.

The temporal schema (box 4) ties the schema, logical annotations and physical annotations together.
This document contains sub-elements that associate a series of conventional schema with logical and phys-
ical annotations, along with the time span during which the association was in effect. The schema for the
temporal schema document is TSSchema (box 1).

77

6. Logical Annotations

7. Physical Annotations

4. Conventional Schema

5. Temporal Schema XMLLintT Error Messages

Figure 21:τXMLL INT: Checking the schemas

5. Temporal Schema

9. Temporal Document

XMLLintT Error Messages

Figure 22:τXMLL INT: Checking the instance

At this point, the designer is finished. She has written one conventional XML schema (box 3), specified
two sets of annotations (boxes 5 and 6), and provided the linking information via the temporal schema
document (box 4). We provide boxes 1 and 2; XML Schema (box 0) is of course provided by W3C. Thus
new time-varying schemas can be quickly and easily developed and deployed.

Let’s now turn our attention to the tools that operate on these various specifications. The temporal
schema document (box 4) is passed throughτXMLL INT (see Figure 21) which checks to ensure that the
temporal and physical annotations are consistent with the conventional schema. The temporal validator
(τXMLL INT) utilizes the conventional validator (e.g., XMLLINT) for many of its checks. For instance, it
validates the logical annotations against the ASchema. Butit also checks that the logical annotations are not
inconsistent. Similarly, the physical annotation document is passed throughτXMLL INT to ensure consis-
tency of the physical annotations. The temporal constraintchecker then evaluates the temporal constraints
expressed in the schema (see Section 15 for more details). Finally, the temporal validator reports whether
the temporal document was valid or invalid.

Once the annotations are found to be consistent, theSchema Mapper(software oval, Figure 20) gener-
ates therepresentational schema(box 9) from the original conventional schema and the logical and physical
annotations. The representational schema is needed to serve as the schema for a time-varying document/data
(box 8). The time-varying data can be created in four ways:

1. automatically from the non-temporal data (box 7) usingτXSchema’ssquash tool (described in Sec-
tion 9.4),

2. automatically from the data stored in a database, i.e., asthe result of a “temporal” query or view,

3. automatically from a third-party tool, or

4. manually.

78

The time-varying data is validated against the representational schema in two stages. First, a conven-
tional XML Schema validating parser is used to parse and validate the time-varying data since the represen-
tational schema is an XML Schema document that satisfies the snapshot validation subsumption property.
But as emphasized in Section 2, using a conventional XML Schema validating parser is not sufficient due to
the limitations of XML Schema in checking temporal constraints. For example, a regular XML Schema val-
idating parser has no way of checking something as basic as “the valid time boundaries of a parent element
must encompass those of its child”. These types of checks areimplemented inτXMLL INT. So the second
step is to pass the temporal data toτXMLL INT as shown in Figure 22. A temporal XML data file (box 8)
is essentially a timestamped representation of a sequence of non-temporal XML data files (box 7). The
namespace is set to its associated XML Schema document (i.e., representational schema). The timestamps
are based on the characteristics defined in the logical and physical annotations (boxes 5 and 6). The tempo-
ral validator,τXMLL INT, by checking the temporal data, effectively checks the non-temporal constraints
specified by the conventional schema simultaneously on all the instances of the non-temporal data (box 7),
as well as the constraints between snapshots, which cannot be expressed in a conventional schema.

To reiterate, the conventional approach to storing timestamped data would require the user start with
a representational schema (box 9) and use it to validate the temporal data (box 8). Both these documents
become very complex if time varying data and schema are to be handled, and are non-intuitive to work with
directly. Our proposed approach is to have the user design a conventional schema, add logical and physical
annotations (boxes 5 and 6), leading to the representational schema (and temporal data) being automatically
generated. In the second part of this technical report (Section 11 onwards), we discuss the user specification
of the temporal schema (box 4), which is only needed if the conventional schema (box 3) and annotation
documents (boxes 5 and 6) themselves can vary.

79

80

9 Tools and Algorithms

Our three-level schema specification approach enables a suite of tools operating both on the schemas and
the data they describe. This section gives an overview of thesuite of tools and the algorithms used by them.

The tools are open-source and beta versions are available [65]. The tools have been implemented in
Java using the DOM API [82]. The DOM API was chosen over SAX APIdue to its ability to create an
object-oriented hierarchical representation of the XML document that can be navigated and manipulated
at run-time. The primitives explained below use this ability of the DOM API to easily manipulate the
document-tree.

We first describe the details of the implementation primitives pushUp, pushDown and coalesce.
These primitives are used byτXMLL INT, SQUASH, UNSQUASH, and RESQUASH tools for manipulat-
ing XML trees. SCHEMA MAPPER, a logical-to-representational mapper, is introduced next. This tool
takes as input the conventional schema, logical and physical annotations, and generates a representational
schema. This representational schema is used byτXMLL INT to validate the given temporal document
using a conventional XML Schema validator.τXMLL INT does the actual temporal schema and data vali-
dation. Temporal data validation is a several-step process, a major part of this process being gluing elements
to form items. The items are then validated individually.

Other tools in the suite squash, unsquash and resquash the documents. Given a temporal schema and
a set of conventional documents, SQUASH combines all of the conventional documents into a single tem-
poral document. UNSQUASH performs the opposite operation, breaking the single temporal document into
multiple conventional documents. RESQUASH is just a combination of UNSQUASH and SQUASH; given
a temporal document, an old physical annotation and a new physical annotation, RESQUASH changes the
representation of the given document as per the new physicalannotation.

9.1 Implementation Primitives

As mentioned earlier, the logical and physical annotationsare orthogonal in nature; a user can change the
location of timestamps, independent of specifying the temporal characteristics of a particular element. The
representation of the temporal document will change accordingly. Thus, two documents having a single
logical annotation can have different physical annotations and hence different representations.

While processing a temporal document, one of the most frequently needed operations on the temporal
document moves the timestampsup or down in the hierarchy of XML elements defined by original snap-
shot schema. Another operation needed by bothτXMLL INT and SQUASH utilities coalesces the adjacent
versions from a given item. We decided to write primitive functions for these operations so that they could
be reused for building the tools with minimum efforts.We nowdescribe the primitive functions representing
these operations.

9.1.1 ThepushUp Function

Although logical and physical annotations are orthogonal in nature, one restriction on the physical anno-
tation is that, at least a single timestamp should be locatedat or above the topmost time-varying element
in the XML schema hierarchy. If a given physical annotation has timestamps at locations other than the
time-varying elements, thepushUp function moves the timestamps up in the hierarchy after coalescing the
items.

Consider the conventional schema in Listing 62 and corresponding logical annotation (Listing 63) and
physical annotation (Listing 64). Figures 23–26 depict step by step working of thepushUp function when
applied to a temporal document having timestamps at the time-varying elements.

81

The first tree representation in Figure 23 represents the original document before applying thepushUp
function. The timestamps are present at element, which is temporal in nature (i.e., present in the logical
annotation). ThepushUp function moves the timestamp to element<A>, which is present in the physical
annotation. It results in the three copies of element<A> corresponding to the three versions of item B.
Elements<A>, <C> and<D> are non-temporal in nature. Thus their contents are the sameand hence are
duplicated in all the three versions.

Listing 62: Conventional Schema
1 ...
2 <element name="A">
3 <complexType mixed ="true">
4 <sequence>
5 <element name="B" type ="string"/>
6 <element name="C" type ="string"/>
7 <element name="D" type ="string"/>
8 </ sequence>
9 </ complexType>

10 </ element>
11 ...

Listing 63: Logical Annotation
1 ...
2 <item target ="/A/B">
3 <transactionTime/>
4 <itemIdentifier name="A_id" timeDimension ="transactionTime">
5 <field path ="./text"/>
6 </ itemIdentifier>
7 </ item>
8 ...

Listing 64: Physical Annotation
1 ...
2 <stamp target ="/A" dataInclusion ="expandedVersion">
3 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
4 </ stamp>
5 ...

82

Original Document

item

Aversion1

A

C DB item

B1 B3B2

B BBversion1 version2 version3

 [t1−t2) [t2−t3) [t4−t5)

A

C DB item

B1 B3B2

B BBversion1 version2 version3

 [t1−t2) [t2−t3) [t4−t5)

[t1−t5)

pushUpBefore call (Aitem), physicalAnnotation

A

Figure 23: Example ofpushUp

After first iteration of third

item

Aversion1

B1 B3B2

version3B

 [t4−t5)
ver1C

 [t2−t5)
ver1D

 [t2−t5)
version2B

 [t2−t3)
ver1C

 [t1−t2)

A

B item

B BBversion1 version2 version3

 [t1−t2) [t2−t3) [t4−t5)

C

C

D

D

version1 version1

itemDC item

[t1−t5) [t1−t5)

[t1−t5)

Before call to function splitChildVersions

Aversion2

A item

A

 [t2−t5)

B item

B2

Aversion1

A

B1

[t1−t2)

B3C

itemC

D

itemD

 [t1−t2)

D

item

C

itemC D

ver1D

loop in function for splitChildVersions(Aitem , physicalAnnotation)

A

Figure 24: Example ofpushUp: Continued

83

splitChildVersions

A item

Aversion2

A

B2

Aversion2

A

B3

 [t2−t3)

Aversion1

A

B1

[t1−t2) [t4−t5)

C
ver1

[t1−t2)

C
item D

item

Dver1

C D

[t1−t2)

C
ver1

[t2−t3)

C
item D

item

Dver1

C D

[t2−t3)

C
ver1

[t4−t5)

C
item D

item

Dver1

C D

[t4−t5)

iteration of third for loop in functionAfter second

Figure 25: Example ofpushUp: Continued

Final Result

A item

DC

Aversion2

A

B2 DC

Aversion2

A

B3

 [t2−t3)

DC

Aversion1

A

B1

[t1−t2) [t4−t5)

Figure 26: Example ofpushUp: Continued

84

ThepushUp function is used in SQUASH and RESQUASH tools. These tools first construct the temporal
document with the timestamps located at the time-varying elements. The timestamps are then moved up in
the hierarchy to the elements present in the physical annotation.

The recursive algorithm forpushUp is given in Figure 28. The function accepts an item representation
of an XML element as one of its parameters. The algorithm is called on the root item in the temporal XML
document. If the root element is not an item, it is converted into an item usingcreateItem function before
pushUp is called. ThepushUp function recurses until it reaches the bottom of the XML tree. At that
point, it moves timestamps up in the hierarchy by using the function splitChildVersions. The nestedfor
loop in the functionsplitChildVersions may multiply the existing versions of the item by splitting them
depending upon its versions’s overlap with its child items’versions. The child items from the versions of
the parent item are replaced by the child items’ versions removing the child items not present in the physical
annotation. The timestamp is thus pushed one level up in the hierarchy, closer to the elements present in the
physical annotation.

Other helper functions used in the algorithm are as follows.

• isItem (e): The function checks whether the given XML elemente has a representation of an item.

• createItem (e, timePeriod): The function creates a new XML element with the representation of an
item and adds the given elementeas the (single) version of newly create item with the time period of
the version beingtimePeriod

• replace (src, target): The function replaces thesrc element with thetargetelement.

• getTimePeriod (itm): The function returns the complete time-period of an item.i.e., The time-period
with start time equal to the start time of the first version andend time equal to the end time of the last
version of an item.

Figure 27 shows a slightly more complicated case, where two time-varying elements are siblings of
each other. In this case, movement of timestampsUp in the hierarchy could result in the multiplication of
the total number of versions depending upon the time overlapof individual versions from the sibling items.
In this case, two versions of and two versions of<C> give six versions of<A> after the application of
pushUp function.

85

C2

A

B1

[t1−t2)
version1A

A

B1 C1

[t2−t3)
version2A Aversion6

A

C2

[t7−t8)

Aversion5

A

B2 C2

[t6−t7)

A

B2

[t5−t6)

Aversion4

A

C1

[t3−t4)

Aversion3

A item

& t5 < t6 < t7 < t8t1 < t2 < t3 < t4

A

B1

B item itemC

Bversion2

[t1−t3) [t5−t7) [t2−t4) [t6−t8)

B C Cversion2version1version1

B2 C1

Figure 27: Example ofpushUp

86

Figure 28: Algorithm:pushUp

//Inputs
// itm - An element from a temporal document which is an item
// physicalAnnotation- Parsed physical annotation document
//Output
// Modified itm element
function pushUp (itm, physicalAnnotation):

for each versionv of itm do
for each child elementc of v do

if isItem(c)
replace(c, pushUp(c, physicalAnnotation))

else
ci← createItem(c, getTimePeriod(itm))
replace(c, pushUp(ci, physicalAnnotation))

splitChildVersions(itm, physicalAnnotation)
return itm

//Inputs
// itm - An element from a temporal document which is an item
// physicalAnnotation- Parsed physical annotation document
function splitChildVersions (itm, physicalAnnotation):

for each versionv of itm do
for each child elementci of v do

if ci not in physicalAnnotation
for each versioncv of ci do

tpChild← timePeriod(cv)
for each versionv’ of itm do

tp← timePeriod(v’)
if tpChild coincides withtp

ci’ ← the child item ofv’ corresponding tocv
replace(ci’ , cv)

else iftpChild andtp overlap
partition tp andtpChild
tp’ andtpChild’← the partitions that coincide
v” ← the version corresponding totp’
ci’ ← the child item ofv” corresponding tocv
replace(ci’ , cv)

87

9.1.2 ThepushDown Function

ThepushDown function behaves exactly opposite of thepushUp function. If a given physical annotation
has timestamps at locations above the time-varying elements, thepushDown function moves these time-
stamps down the hierarchy. After executing this function onthe temporal document, timestamps will be
located at the time-varying elements. At this point, since the temporal characteristics and the representation
coincide, it becomes easier to perform coalescing on the resultant temporal document.

Consider the example in Figures 23–26. According to the physical annotation in Figure 64, the tree-
structured representation of the temporal document is given in Figure 26. Although is a time-varying
element, timestamp is present at the element<A> higher up in the hierarchy. This results in the duplication
of elements<A>, <C> and <D> . WhenpushDown function is applied to the above document, the
timestamps are moved down the hierarchy, the redundancy is eliminated and the final document looks as
shown in the first tree of Figure 23. At this point, the user might be wondering, what if the elements<C>
and<D> are not the same in three different versions of<A> in the given temporal document. This would
not happen, since the elements<C> and<D> are not defined to be time-varying in the temporal annotation;
so they better be the same. If they are different, the algorithm would report this as an error.

The recursive algorithm for thepushDown function is given in Figure 29. The algorithm is called on
the root element in the temporal XML document. If the root element is not an item, it is first converted
to an item element using functioncreateItem function. The algorithm moves the timestamps down the
hierarchy one level at a time. If an item is not a time-varyingelement and if it has multiple versions (e.g.,
element<A> of Figure 25), it is converted into a single version by using themergeVersions function. The
function groups corresponding child elements having the same item-identifier from its different versions
into the same child item. The child element from the first version is then replaced by its corresponding child
item XML element. After merging, since the parent item has only single version, the item is replaced by its
single version.

Other helper functions used in the algorithm are as follows.

• isTimeVarying (itm, temporalAnnotation): The function returnstrue if itm definition is present in
the logical annotation.

• versionCount (itm): The function returns the number of versions present in thegiven itm element.

• GetVersion (itm, n): The function returns thenth version of the givenitm element.

Figures 32, 33 and 34 depict the stepwise working of functionpushDown. For the given tree, element
<D> is temporal in nature but the timestamp is present at the element <A> which is two levels up in the
hierarchy. In the first step, the timestamp is moved to element , while in the next step, the timestamps
are moved to element<D>, which is actually a time-varying element.

9.1.3 Thecoalesce Function

As explained in Section 5, elements in two snapshots of a temporal XML document can be temporally-
associated. If the elements are DOM-equivalent and the snapshot periods are contiguous, those two elements
could be replaced by a single element with the time period extending from the start time of the first element
to the stop time of the last element. This process is termedcoalescingand is an integral part of SQUASH to
compact the document.

After the snapshots are glued and the items are formed,coalesce is called for each item. The algorithm
for coalesce is given in Figure 31. The algorithm compares the time-periods of the two contiguous ver-
sions. If they meet, and if the contents of the two versions are the same (i.e., if they are DOM-Equivalent as

88

Figure 29: Algorithm:pushDown

//Inputs
// itm - An element from a temporal document which is an item
// temporalAnnotation- Parsed logical annotation document
//Output
// Modified itm element
function pushDown (itm, temporalAnnotation):

if isTimeVarying(itm, temporalAnnotation)
processChildElements(itm)
return itm

else
if versionCount(itm) = 1

processChildElements(itm)
return GetVersion(itm, 1)

else
mergeVersions(itm, temporalAnnotation)
processChildElements(itm)
return GetVersion(itm, 1)

//Input
// itm - An element from a temporal document which is an item
function processChildElements (itm):

for each versionv of itm do
childElementList← {}
for each child elementc of v do

if isItem(c)
c’ ← pushDown(c, temporalAnnotation)

else
ci← createItem(c, getTimePeriod(itm))
c’ ← pushDown(ci, temporalAnnotation)

childElementList← childElementList∪ c’
for each child elementc of v do

replace(c, c’)

89

Figure 30: Algorithm:mergeVersions

//Inputs
// itm - An element from a temporal document which is an item
// temporalAnnotation- Parsed logical annotation document
function mergeVersions (itm, temporalAnnotation):

let v1← GetVersion(itm, 1)
for each child c of v1do

if isTimeVarying(c, temporalAnnotation)
ci← createItem(c, getTimePeriod(itm))
replace(c, ci)

else
retainc

for each versionv of itm starting from GetVersion(itm, 2) do
for each child c of v do

if isTimeVarying(c, temporalAnnotation)
evaluate item-identifier forc
addc as a version to itemci from v1

remove versionv from itm

Figure 31: Algorithm:coalesce

//Input
// itm - An element from a temporal document which is an item.
function coalesce(itm):

let v1← GetVersion(itm, 1)
for each versionv of itm starting GetVersion(itm, 2) do

v2← v
if (v1.time-periodmeetsv2.time-periodand DOM-Equivalent(v1, v2))

v1.time.end← v2.time.end
remove versionv2 from itm

else
v1← v2

90

[t3−t4)

D1 D2
E E

F G

C

A

B item

B Bversion1 version2

B B

version1A

itemA

A item

A Aversion1 version2

A A

B B CC

D1 E F G D2 E F G

Original Document

(Aitem)mergeVersionsAfter return from

[t1−t2) [t3−t4)

[t1−t4)

[t1−t2)

Figure 32: Example ofpushDown

91

D

D1 D2

D
Dversion1

itemD

version2

Bversion1

(After return from function pushDown Bitem)

version2

C

F G

item

version1A

A

A

C

F G

itemB

item

version1A

A

A

E

B

E

mergeVersions (Bitem)After return from function

B

[t1−t4)

[t1−t4)

[t1−t2) [t3−t4)

[t1−t4)

[t3−t4)[t1−t2)

D1 D2

D

itemD

version1

Figure 33: Example ofpushDown: Continued

D

pushDown (Aitem)()

version2

C

F G

A

E

Final Document

B

[t1−t2) [t3−t4)

D1 D2

D

itemD

version1

After return from function

Figure 34: Example ofpushDown: Continued

92

item

A version1

A

B C

D E

F

item

A version3

A

C

D E

B’item

(t1−t2)

A version1

A

B C

D E

F

item

(t2−t3)

A version2

A

C

D E

F

B item

(t3−t4)

A version3

A

C

D E

B’item

A item

(t1−t3) (t3−t4)

A

Figure 35: Example ofcoalesce

explained in Section 5.4), the stop time of the first version is then extended to the stop time of the second
version.

Figure 35 shows the process of applying coalescing on Item A.In the tree-representation of the doc-
ument, versionsA1 [t1-t2) andA2 [t2-t3) are contiguous. They are also DOM-Equivalent (Sec-
tion 5.4). Thus the two versions are replaced by a single version with time period(t1-t3) . After merging
A1 andA2, although the resulting version is contiguous with the nextversionA3 [t3-t4) , they are not
merged, as they are not DOM-Equivalent. Thus, in the resulting document, there remain two versionsA1
andA2.

93

9.2 SCHEMA MAPPER

Once the annotations are found to be consistent, the logical-to-representational mapper generates the rep-
resentational schema from the original conventional schema and the logical and physical annotations. The
representational schema is needed to serve as the schema fora time-varying document.

Every time-varying element is given a timestamp for the valid time and/or the transaction time as ap-
propriate. Non-time-varying elements and attributes are translated as is. The process of converting a con-
ventional schema into the representational schema is explained in the next few paragraphs.

An XML Schema specification defines the types of elements and attributes that could appear in a docu-
ment instance. More generally, the specification can be viewed as a (tree) grammar. The grammar consists
of productions of the following form for each element type.

S⇒ <S>α</ S>

In the above production, ‘α’ describes the contents of elements of typeS.
A temporal schema denotes that some of the element types are time-varying. To construct a representa-

tional schema, several productions are added to the conventional schema for each time-varying element. No
productions are removed from the non-temporal schema though some are modified. Since only elements
can be temporal, this section focuses on the element-related components of a schema. The construction
process consists of several steps. We will illustrate the process by describing what is done for a single,
representative time-varying element type,S.

The first step is to add a production to indicate that the element typeS is time varying, i.e., an item. The
production has following form:

SItem⇒ <SItemitemId=" n" > SVersion+ </SItem>

An item has a uniqueitemId value, and consists of a list of versions. The third step is toadd a
production to specify each version of typeS. The production for a version of an element of typeShas the
following form:

SVersion⇒ <SVersion> t S</ SVersion>

wheret is the definition of timestamp element andSis the non-temporal definition of the element’s type.
We do not impose a particular schema for a timestamp, rather we assume that the schema is given separately
and adopted by the temporal document’s schema. Each timestamp can have either or both of the following
forms.

t⇒ <transactionTime start="..." stop="..."/>

OR

t⇒ <validTime begin="..." end="..."/>

The next step is to modify the context in which a time-varyingelement appears. For each time-varying
element type,S, that appears in the left-hand-side of a production, replace S with SItem. For example,
assume that the schema has a production of the following form:

X⇒ <X> β Sγ </ X>

whereβ andγ describe arbitrary content before and afterS, respectively. The production is replaced by
the following production.

94

X⇒ <X> β SItemγ </ X>

Only the element type is replaced, any other constraints on the element are kept (e.g.,minOccurs and
maxOccurs are unaffected).

The final step is to relax the uniqueness constraint imposed by a DTD identifier or XML Schema key
definition. Since the same identifiers and key values can appear in multiple versions of an element, such
values are no longer unique in a temporal document, even though they are unique within each snapshot.
In temporal relational databases, the concept of a temporalkey, which combines a snapshot key with a
time, has been introduced. Temporal keys can be enforced by atemporal validating parser, but not by a
conventional parser. So constraints that impose uniqueness within a snapshot must be relaxed or redefined
as follows. The value of each id type attribute in a time-varying element is rewritten to be a unique value.
Finally, schema keys are rewritten to include itemIds and version start and end times, creating a temporal
key.

The algorithm for SCHEMA MAPPER is shown in Figure 36. The algorithm uses the same procedure
explained in the above paragraphs to create the representational schema from the conventional schema. The
helper functionisConsistent checks whether the physical annotation is consistent with the given conven-
tional schema. As part of consistency, it checks whether allthe targets in the physical annotation are present
in the conventional schema.

95

Figure 36: Algorithm: SCHEMA MAPPER

//Inputs
// conventionalSchema- Parsed snapshot schema document
// physicalAnnotation- Parsed physical annotation document
//Output
// Modified conventionalSchemadocument
function doSchemaMapping (conventionalSchema, physicalAnnotation):

if isConsistent(conventionalSchema, physicalAnnotation)
for each elemente in physicalAnnotationdo

add following definitions toconventionalSchema

<xs:element name=" eItem">
<xs:complexType>

<xs:sequence>
<xs:element name=" eVersion">

<xs:complexType>
<xs:sequence>

<tv:element ref="timeStamp"/>
<xs:element ref=" e” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="itemID" type="ID"/>

</xs:complexType>
</xs:element>

for each referenceof edo
replace<xs:element ref=" e" /> with <xs:element ref=" eItem" />

add following definition to theconventionalSchema
<xs:element name="temporalRoot">

<xs:complexType>
<xs:element ref=" currentRoot” />

</xs:complexType>
</xs:element>

return modifiedconventionalSchema
else

display error

96

SCHEMA

Temporal
Constraint

Temporal
Document

Schema
Temporal

Messages
Error

Schema
Representational

MAPPER

Conventional

Validator

Validator

Figure 37: Validating a document with Time-Varying Data

9.3 τXMLL INT

In Section 8, we introduced the various components of theτXSchema architecture, including the validator.
In this section, we explainτXMLL INT component in detail. Figure 37 provides the validation proce-
dure used byτXMLL INT . The temporal schema document (box 4 of Figure 20) is passed through the
τXMLL INT which first checks to ensure that the logical and physical annotations are consistent with the
conventional schema and with each other. Once the annotations are found to be consistent, the logical-
to-representational Mapper (SCHEMA MAPPER) generates the representational schema (box 9) from the
original conventional schema and the logical and physical annotations. The representational schema is
needed to serve as the schema for a time-varying document andis used to validate the temporal document
using conventional validator.

Once the representational schema is ready, a conventional validator is used to parse and validate the
time-varying data.τXMLL INT utilizes the conventional validator for many of its checks.For instance, it
validates the logical and physical annotations against theASchema. However, using a conventional XML
Schema validating parser is not sufficient due to the limitations of XML Schema in checking temporal
constraints. So the second step is to pass the temporal data to Temporal Constraint Validator Module. The
module, by checking the temporal data, effectively checks the non-temporal constraints specified by the
conventional schema simultaneously on all the instances ofthe non-temporal data (box 7), as well as the
(non-sequenced temporal) constraints between snapshots,which cannot be expressed in a snapshot schema.

Figures 38 and 39 depict the two tasks performed by theτXMLL INT: (i) validating the consistency
of a temporal schema and (ii) validating the instance of a temporal document against the temporal schema.
Section 8 describes further details of how time-varying data is validated against the representational schema.

τXMLL INT has agluing componentthat creates all the items and their item identifiers. Two elements
with the same item identifiers should be glued together. It concatenates all of the fields together. It creates
one string that is the schema for all the fields and a second string that is the value of all the fields. Ele-
ment and attribute names cannot contain the ‘| ’ symbol since it is used to separate each field string in the
concatenated string. The fields are concatenated in the order specified in the item identifier.

τXMLL INT maintains a hash map to hold all the items. Each item containsa reference to each of its
constituent elements. Two elements are glued if their item identifiers match exactly. Both the schema and
instance strings must be equal. Even the amount and locationof white spaces in a field elements loose text
must be identical. For every time-varying element, the gluing component determines whether to create a
new item or to glue this element to an existing item.

97

6. Logical Annotations

7. Physical Annotations

4. Conventional Schema

5. Temporal Schema XMLLintT Error Messages

Figure 38:τXMLL INT – Checking the Schema

5. Temporal Schema

9. Temporal Document

XMLLintT Error Messages

Figure 39:τXMLL INT – Checking the Instance

Once the items are created, theTemporal Constraint Validator Modulevalidates individual item to check
whether it satisfies the following constraints, if applicable to that item.

Content Constant: Content of an element cannot vary over time.

Existence Constant: The element cannot disappear and reappear again.

Content Varying Applicability: The contents of an item cannot change beyond the period specified by the
contentVaryingApplicability element in the logical annotation.

Valid Time Frequency: The element cannot change more than specified number of timesspecified by the
frequency element.

Maximal Existence Period: The element can exist only within the period specified by the
maximalExistence element.

By checking the constraints on all the items, the module effectively checks for all the sequenced and non-
sequenced constraints on the entire temporal document.

The algorithm forτXMLL INT is given in Figure 40. The algorithm uses a hash-map to maintain a map-
ping between item-identifier and the corresponding item. After checking the consistency of the schemas,
the function creates a representational schema using the SCHEMA MAPPER. The given temporal document
is parsed against this schema using the conventional validator. The for loop creates the items by gluing
together the elements with the same item-identifier. Each item is then validated for sequenced and non-
sequenced constraints explained in Section 6.

98

Figure 40: Algorithm:τXMLL INT

//Inputs
// conventionalSchema- Parsed snapshot schema document
// temporalAnnotation- Parsed logical annotation document
// physicalAnnotation- Parsed physical annotation document
// temporalDocument- Parsed temporal document
function doTemporalValidation (conventionalSchema, temporalAnnotation, physicalAnnotation,

temporalDocument):
initialize ahash-tablewith item-identifier as key and item as hash value
if Consistent(conventionalSchema, temporalAnnotation, physicalAnnotation)

repSchema← doSchemaMapping(conventionalSchema, physicalAnnotation)
if conventionalValidator(temporalDocument, repSchema)

for each elemente in the temporalDocumentdo
if isTimeVarying(e, temporalAnnotation)

evaluate the item-identifier
if item-identifierin hash-table

if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version

else
create a new version

else
create a new item inhash-table, with one version

for each item in hash-tabledo
for each sequenced and non-sequenced constraintin temporalAnnotationdo

if the constraint is not satisfied
display errors

else
display errors generated by the conventional validator

else
display errors

99

9.4 SQUASH

TheSQUASHutility takes a sequence of XML documents, a logical annotation and a physical annotation as
input and generates a temporal XML document consistent withthe physical annotation.

The algorithm for SQUASH tool is given in Figure 41. It cleverly reusespushUp, pushDown and
coalesce primitives to create a compressed document from a set of conventional documents as per the
given temporal schema.

The algorithm first checks for the consistency of the logicaland the physical annotations with the con-
ventional schema. It then creates a new XML document with<temporalRoot> as its root and attaches
root elements of the conventional documents as its versions. At this point, the timestamps are present at the
root level element.pushDown function then moves these timestamps down the hierarchy to the elements
present in the logical annotation. Every item is then coalesced to create its compact representation. The
pushUp function then moves the timestamps up in the hierarchy up to the elements present in the actual
physical annotation.

9.5 UNSQUASH

The UNSQUASH utility performs the opposite operation of SQUASH. It takes a temporal XML document
and a temporal schema and generates multiple non-temporal XML documents. It also provides the func-
tionality of extracting a particular snapshot from the given temporal document using UNSQUASH utility.
The algorithm for UNSQUASH is given in Figure 42.

The algorithm first checks for the consistency of the logicaland physical annotations with the snap-
shot schema. It then constructs the representational schema using SCHEMA MAPPERand parses the given
temporal document against the representational schema using the conventional validator. ThepushDown
function is first called on the given document to move the timestamps to the time-varying elements. A new
physical annotation, containing only the root element, is created and passed to the functionpushUp. The
purpose is to move all the timestamps to theroot element. At this moment every version of theroot item
element is a conventional document. These individual versions are then written to the separate files.

9.6 RESQUASH

The RESQUASH utility takes the temporal XML data and the two physical annotated schemas (the original
schema and the target one) and converts the temporal XML document based on the target physical annotated
schema. The algorithm for RESQUASH is given in Figure 43.

The algorithm first checks for the consistency of the logicalannotation and the source and target physical
annotations with the conventional schema. It then performsthe operationpushDown on the given tempo-
ral document. The given temporal document has the representation as per thesrcPhysicalAnnotation. The
pushDown function moves all the timestamps to the actual time-varying elements as per thetemporalAn-
notation. The functionpushUp is then called with thetargetPhysicalAnnotationas its parameter, which
then moves the timestamps up in the hierarchy to the elementsmentioned in the new physical annotation.

100

Figure 41: Algorithm: SQUASH

//Inputs
// conventionalSchema- Parsed snapshot schema document
// logicalAnnotation- Parsed logical annotation document
// physicalAnnotation- Parsed physical annotation document
// snapshotSet- Set of snapshot documents
//Output
// temporalDocument- Temporal document created from snapshotSet
function doSquash (conventionalSchema, logicalAnnotation, physicalAnnotation, snapshotSet):

if Consistent(conventionalSchema, logicalAnnotation, physicalAnnotation)
repSchema← doSchemaMapping(conventionalSchema, physicalAnnotation)
create element<temporalRoot

beginDate=" beginDate of first snapshot document"
endDate=" endDate of last snapshot document">

create elementrootItm corresponding to root level elementroot
for each snapshotin the setof snapshotSetdo

add root elementroot of snapshot as a version ofrootItm
root← pushDown(rootItm, logicalAnnotation)
for each item itm in temporalDocdo

coalesce(itm)
if isItem(root)

rootItm← root
else

rootItm← createItem(root)
rootItm← pushUp(rootItm, physicalAnnotation)
if rootItm not in physicalAnnotation

replace(rootItm, getVersion(rootItm, 1))
return temporalDoc

else
display errors.

101

Figure 42: Algorithm: UNSQUASH

//Inputs
// conventionalSchema- Parsed snapshot schema document
// logicalAnnotation- Parsed logical annotation document
// physicalAnnotation- Parsed physical annotation document
// temporalDocument- Temporal document created from above
//Output
// snapshotSets- Set of snapshots extracted from temporalDocument
function doUnSquash(conventionalSchema, temporalAnnotation, physicalAnnotation,

conventionalDocument):
if Consistent(conventionalSchema, logicalAnnotation,physicalAnnotation)

repSchema← doSchemaMapping(conventionalSchema,physicalAnnotation)
if conventionalValidator(temporalDocument, repSchema)

newPhysicalAnnotation← root element definition of theconventionalSchema
root← temporalDocument.rootElement
if isItem(root)

rootItm← root
else

rootItm← createItem(root)
root← pushDown(rootItm, logicalAnnotation)
if isItem(root)

rootItem← pushUp(root, newPhysicalAnnotation)
else

rootItem← newItem(root)
replace (root, pushUp(rootItem, newPhysicalAnnotation))

snapshotSet← {}
for each versionrootVerof rootItemdo

add elementrootVeras a snapshot document tosnapshotSet
return snapshotSet

else
display errors generated by the conventional validator

else
display errors

102

Figure 43: Algorithm: RESQUASH

//Inputs
// conventionalSchema- Parsed snapshot schema document
// logicalAnnotation- Parsed logical annotation document
// temporalDocument- Temporal document to be resquashed
// srcPhysicalAnnotation- Parsed physical annotation document used for creating

temporalDocument
// targetPhysicalAnnotation- Parsed physical annotation document to be used

for creating new temporalDocument
//Output
// temporalDocument- resquashed temporal document
function doReSquashing (conventionalSchema, temporalAnnotation, srcPhysicalAnnotation,

targetPhysicalAnnotation,temporalDocument):
if Consistent(conventionalSchema, logicalAnnotation, srcPhysicalAnnotation) and

Consistent(conventionalSchema, temporalAnnotation, targetPhysicalAnnotation)
root← temporalDocument.rootElement
if isItem(root)

rootItem← pushDown(root, logicalAnnotation)
else

rootItem← newItem(root)
replace(root, pushDown(rootItem, logicalAnnotation))

rootItem← pushUp(rootItem, targetPhysicalAnnotation)
if rootItm not in physicalAnnotation

replace(rootItm, getVersion(rootItm, 1))
return temporalDocument

else
display errors

103

Squash
Sequence of
Non−temporal
Documents

Temporal
Document

Temporal
Document
(New
Representation

ReSquash

UnSquash

Figure 44: Squash/UnSquash/ReSquash Commutativity Diagram

It is also possible to work with two logical annotation documents (the original one and the target one)
instead of physical ones, and convert the temporal XML document based on the target logical annotations.
The only restriction with the logical annotations is that the data needs to be consistent with both sets of logi-
cal annotations. This constraint does not exist with the physical annotations because only the representation
of a temporal document changes. This could be easily achieved by using the combination of UNSQUASH

and SQUASH tools. The given temporal document will be unsquashed to retrieve the original conventional
documents. These snapshot documents will then be squashed using the target logical annotation and the
original physical annotation. Since the physical annotation remains the same, the new document will be the
same as the original one. Although, while performing the squashing using the target logical annotation, the
SQUASH tool would find out any violations of the sequenced and non-sequenced constraints enforced by
the target logical annotation.

SQUASH, UNSQUASH and RESQUASH tools retain snapshot reducibility [8] in that the commutativity
diagram in Figure 44 is maintained. Specifically, if we take aparticular sequence of static XML documents,
each associated with a time slice, and squash them into a temporal XML document, then resquash that
into a separate temporal XML document, with a different physical schema, and then unsquash it again,
we will get exactly the same sequence of static XML documents. This of course assumes that the static
documents corresponding to the non-temporal schema provided and that the temporal XML documents are
valid instances of the schema produced by the schema mapper.

104

10 Example Schema and Instance Documents

10.1 WinOlympic Example

Listing 65: Conventional schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xs : schema
3 xmlns :xs ="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault ="qualified"
5 attributeFormDefault ="unqualified">
6

7 <xs : element name="winOlympic">
8 <xs : complexType mixed ="true">
9 <xs : sequence>

10 <xs : element name="numEvents" type ="xs:nonNegativeInteger"/>
11 <xs : element ref ="country" minOccurs ="0" maxOccurs ="unbounded"/>
12 </xs : sequence>
13 </xs : complexType>
14 </xs : element>
15 <xs : element name="country">
16 <xs : complexType mixed ="false">
17 <xs : sequence>
18 <xs : element ref ="athleteTeam"/>
19 </xs : sequence>
20 <xs : attribute name="countryName" type ="xs:string" use ="required"/>
21 </xs : complexType>
22 </xs : element>
23 <xs : element name="athleteTeam">
24 <xs : complexType mixed ="true">
25 <xs : sequence>
26 <xs : element ref ="athlete" maxOccurs ="unbounded"/>
27 </xs : sequence>
28 <xs : attribute name="numAthletes" type ="xs:positiveInteger" use ="optional"/>
29 </xs : complexType>
30 </xs : element>
31 <xs : element name="athlete">
32 <xs : complexType mixed ="true">
33 <xs : sequence>
34 <xs : element name="athName" type ="xs:string"/>
35 <xs : element ref ="medal" minOccurs ="0" maxOccurs ="unbounded"/>
36 <xs : element name="phone" type ="phoneNumType" minOccurs ="0" maxOccurs ="unbounded"/>
37 </xs : sequence>
38 </xs : complexType>
39 </xs : element>
40 <xs : element name="medal">
41 <xs : complexType mixed ="true">
42 <xs : attribute name="mtype" type ="medalType" use ="required"/>
43 </xs : complexType>
44 </xs : element>
45 <xs : simpleType name="medalType">
46 <xs : restriction base ="xs:string">
47 <xs : pattern value ="bronze|silver|gold"/>
48 </xs : restriction>
49 </xs : simpleType>
50 <xs : simpleType name="phoneNumType">
51 <xs : restriction base ="xs:string">
52 <xs : length value ="12"/>
53 <xs : pattern value ="\d{3}-\d{3}-\d{4}"/>
54 </xs : restriction>
55 </xs : simpleType>
56 </xs : schema>

105

Listing 66: Conventional document on 1 January 2002.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="winOlympic.xsd">
4

5 There are <numEvents>11</ numEvents> events in the Olympics .
6 <country countryName ="Norway">
7 <athleteTeam numAthletes ="95">
8 Athletes will take part in various events . The
9 athletes participating are listed below

10 <athlete>
11 <athName>
12 Kjetil Andre Aamodt
13 </ athName>
14 </ athlete>
15 <athlete>
16 <athName>
17 Trine Bakke -Rognmo
18 </ athName>
19 His telephone numbers are :
20 <phone>123-402-0340</ phone>
21 <phone>123-402-0000</ phone>
22 </ athlete>
23 <athlete>
24 <athName>
25 Lasse Kjus
26 </ athName>
27 </ athlete>
28 </ athleteTeam>
29 </ country>
30 </ winOlympic>

Listing 67: Conventional document on 1 March 2002.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="winOlympic.xsd">
4

5 There are <numEvents>11</ numEvents> events in the Olympics .
6 <country countryName ="Norway">
7 <athleteTeam numAthletes ="95">
8 Athletes will take part in various events . The
9 athletes participating are listed below

10 <athlete>
11 <athName>
12 Kjetil Andre Aamodt
13 </ athName>
14 was the recipient of the
15 <medal mtype ="silver">Men 's Combined </ medal>
16 </ athlete>
17 <athlete>
18 <athName>
19 Trine Bakke -Rognmo
20 </ athName>
21 His telephone numbers are :
22 <phone>123-402-0430</ phone>
23 <phone>123-402-0000</ phone>
24 </ athlete>
25 <athlete>
26 <athName>
27 Lasse Kjus
28 </ athName>
29 </ athlete>
30 </ athleteTeam>
31 </ country>
32 </ winOlympic>

106

Listing 68: Conventional document on 1 July 2002.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="winOlympic.xsd">
4

5 There are <numEvents>11</ numEvents> events in the Olympics .
6 <country countryName ="Norway">
7 <athleteTeam numAthletes ="95">
8 Athletes will take part in various events . The
9 athletes participating are listed below

10 <athlete>
11 <athName>
12 Kjetil Andre Aamodt
13 </ athName>
14 was the recipient of the
15 <medal mtype ="gold">Men 's Combined </ medal>
16 </ athlete>
17 <athlete>
18 <athName>
19 Trine Bakke -Rognmo
20 </ athName>
21 His telephone numbers are :
22 <phone>123-402-0430</ phone>
23 <phone>123-402-0000</ phone>
24 </ athlete>
25 <athlete>
26 <athName>
27 Lasse Kjus
28 </ athName>
29 </ athlete>
30 </ athleteTeam>
31 </ country>
32 </ winOlympic>

Listing 69: Temporal schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalSchema xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <conventionalSchema>
5 <sliceSequence>
6 <slice location ="winOlympic.xsd" begin ="2002-01-01" />
7 </ sliceSequence>
8 </ conventionalSchema>
9

10 <annotationSet>
11 <include schemaLocation ="annotations.xml"/>
12 </ annotationSet>
13

14 </ temporalSchema>

Listing 70: Annotation document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <annotationSet xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema" >
3

4 <physical>
5 <stamp target ="/winOlympic" dataInclusion ="expandedVersion">
6 <stampKind timeDimension ="transactionTime" stampBounds ="step"/>
7 </ stamp>
8 <stamp target ="/winOlympic/country" dataInclusion ="expandedVersion">
9 <stampKind timeDimension ="validTime" stampBounds ="extent"/>

10 </ stamp>
11 <stamp target ="/winOlympic/country/athleteTeam/@numAthletes"
12 dataInclusion ="expandedVersion">
13 <stampKind timeDimension ="validTime" stampBounds ="extent">

107

14 <format plugin ="XMLSchema" granularity ="gMonth"/>
15 </ stampKind>
16 </ stamp>
17 <stamp target ="/winOlympic/country/athleteTeam/athlete"
18 dataInclusion ="expandedVersion">
19 <stampKind timeDimension ="bitemporal" stampBounds ="extent" />
20 </ stamp>
21 <stamp target ="/winOlympic/country/athleteTeam/athlete/medal"
22 dataInclusion ="expandedVersion">
23 <stampKind timeDimension ="bitemporal" stampBounds ="extent" />
24 </ stamp>
25 <stamp target ="/winOlympic/country/athleteTeam/athlete/medal/med alType"
26 dataInclusion ="expandedVersion">
27 <stampKind timeDimension ="transactionTime" stampBounds ="extent" />
28 </ stamp>
29 <stamp target ="/winOlympic/country/athleteTeam/athlete/phone"
30 dataInclusion ="expandedVersion">
31 <stampKind timeDimension ="bitemporal" stampBounds ="extent" />
32 </ stamp>
33 </ physical>
34

35 <logical>
36 <item target ="/winOlympic">
37 <transactionTime/>
38 <itemIdentifier name="olympicId1" timeDimension ="transactionTime">
39 <field path ="//text"/>
40 </ itemIdentifier>
41 </ item>
42 <item target ="/winOlympic/country">
43 <validTime kind ="state" content ="constant" existence ="varyingWithGaps">
44 <maximalExistence begin ="1924-01-01" />
45 </ validTime>
46 <itemIdentifier name="countryId1" timeDimension ="validTime">
47 <field path ="@countryName"/>
48 </ itemIdentifier>
49 </ item>
50 <item target ="/winOlympic/country/athleteTeam">
51 <attribute name="numAthletes">
52 <validTime kind ="state" content ="varying"/>
53 </ attribute>
54 </ item>
55 <item target ="/winOlympic/country/athleteTeam/athlete">
56 <validTime kind ="state"/>
57 <transactionTime/>
58 <itemIdentifier name="atheleteId1" timeDimension ="bitemporal">
59 <field path ="athName"/>
60 </ itemIdentifier>
61 </ item>
62 <item target ="/winOlympic/country/athleteTeam/athlete/medal">
63 <validTime kind ="event"/>
64 <transactionTime/>
65 <itemIdentifier name="medalId1" timeDimension ="bitemporal">
66 <field path ="//text"/>
67 <field path ="../athname"/>
68 <!-- Should not glue across winOlympic elements (i.e., acro ss validTime). -->
69 <!-- Could have Kjetil winning the gold in Men's combined in 2 002 and 2006. -->
70 </ itemIdentifier>
71 <attribute name="medalType">
72 <transactionTime />
73 </ attribute>
74 </ item>
75 <item target ="/winOlympic/country/athleteTeam/athlete/phone">
76 <validTime kind ="state" content ="varying" existence ="varyingWithGaps"/>
77 <transactionTime/>
78 <itemIdentifier name="phoneId1" timeDimension ="bitemporal">
79 <field path ="//text"/>
80 </ itemIdentifier>
81 </ item>

108

82 </ logical>
83 </ annotationSet>

Listing 71: Temporal document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalDocument xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <temporalSchemaSet>
4 <temporalSchema location ="temporalSchema.xml"/>
5 </ temporalSchemaSet>
6

7 <sliceSequence>
8 <slice location ="slice1.xml" begin ="2002-01-01" end ="2002-03-01" />
9 <slice location ="slice2.xml" begin ="2002-03-01" end ="2002-07-01" />

10 <slice location ="slice3.xml" begin ="2002-07-01"/>
11 </ sliceSequence>
12

13 </temporalDocument >

10.2 Company Example

Listing 72: Conventional schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xs : schema
3 xmlns :xs ="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault ="qualified"
5 attributeFormDefault ="unqualified">
6

7 <xs : element name="company">
8 <xs : complexType mixed ="true">
9 <xs : sequence>

10 <xs : element ref ="companyData"/>
11 <xs : element ref ="supplier" minOccurs ="1" maxOccurs ="unbounded"/>
12 <xs : element ref ="product" minOccurs ="1" maxOccurs ="unbounded"/>
13 </xs : sequence>
14 </xs : complexType>
15 <xs : key name="productKey">
16 <xs : selector xpath ="company/product"/>
17 <xs : field xpath ="@productNo"/>
18 </xs : key>
19 <xs : keyref name="oProductKey" refer ="productKey">
20 <xs : selector xpath ="company/order"/>
21 <xs : field xpath ="oProductNo"/>
22 </xs : keyref>
23 </xs : element>
24 <xs : element name="companyData">
25 <xs : complexType mixed ="true">
26 <xs : all>
27 <xs : element name="companyName" type ="xs:string" minOccurs ="1"
28 maxOccurs ="1"/>
29 <xs : element name="cURL" type ="xs:string" minOccurs ="0"
30 maxOccurs ="1"/>
31 </xs : all>
32 </xs : complexType>
33 </xs : element>
34 <xs : element name="supplier">
35 <xs : complexType mixed ="true">
36 <xs : sequence>
37 <xs : element name="sURL" type ="xs:string" minOccurs ="0"
38 maxOccurs ="unbounded"/>
39 <xs : element name="sRating" type ="xs:string" minOccurs ="0"
40 maxOccurs ="1"/>
41 <xs : element name="order" minOccurs ="0" maxOccurs ="unbounded">
42 <xs : complexType mixed ="true">

109

43 <xs : sequence>
44 <!-- orderNo is unique within a supplier -->
45 <xs : element name="orderNo" type ="xs:integer" minOccurs ="1"/>
46 <xs : element name="oProductNo" minOccurs ="1" maxOccurs ="unbounded"/>
47 <xs : element name="oQty" type ="xs:integer" minOccurs ="1" maxOccurs ="1"/>
48 </xs : sequence>
49 <xs : attribute name="orderType" type ="orderType" use ="required"/>
50 </xs : complexType>
51 </xs : element>
52 </xs : sequence>
53 <xs : attribute name="supplierNo" type ="xs:integer" use ="required"/>
54 <xs : attribute name="supplierName" type ="xs:string" use ="required"/>
55 </xs : complexType>
56 </xs : element>
57 <xs : element name="product">
58 <xs : complexType mixed ="true">
59 <xs : sequence>
60 <xs : choice>
61 <xs : element name="priceinDollars" type ="xs:float" minOccurs ="1" maxOccurs ="1"/>
62 <xs : element name="priceinPounds" type ="xs:float" minOccurs ="1" maxOccurs ="1"/>
63 <xs : element name="priceinEuros" type ="xs:float" minOccurs ="1" maxOccurs ="1"/>
64 </xs : choice>
65 <xs : element name="qtyOnHand" type ="xs:integer" minOccurs ="1" maxOccurs ="1"/>
66 </xs : sequence>
67 <xs : attribute name="productNo" type ="xs:integer" use ="required"/>
68 <xs : attribute name="productName" type ="xs:string" use ="required"/>
69 </xs : complexType>
70 </xs : element>
71 <xs : simpleType name="orderType">
72 <xs : restriction base ="xs:string">
73 <xs : pattern value ="normal|rush"/>
74 </xs : restriction>
75 </xs : simpleType>
76 </xs : schema>

Listing 73: Conventional document on 29 March 2004.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <company
3 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
4 xsi :noNamespaceSchemaLocation ="company.xsd">
5

6 <companyData>
7 <companyName>IBM</ companyName>
8 <cURL>http ://www .ibm .com </ cURL>
9 </ companyData>

10

11 <supplier supplierNo ="1" supplierName ="Seagate" >
12 <sURL>http ://seagate .com </ sURL>
13 <sRating>AAA</ sRating>
14 <order orderType ="normal">
15 <orderNo>1</ orderNo>
16 <oProductNo>2</ oProductNo>
17 <oQty>50</ oQty>
18 </ order>
19 </ supplier>
20

21 <supplier supplierNo ="2" supplierName ="Wistron Corporation" >
22 <sURL>http ://www .wistron .com </ sURL>
23 <sRating>AA</ sRating>
24 </ supplier>
25

26 <supplier supplierNo ="3" supplierName ="small_supplier_1" >
27 </ supplier>
28

29 <product productNo ="1" productName="hard disk 73 GB 7200rpm">
30 <priceinDollars>100</ priceinDollars>
31 <qtyOnHand>100</ qtyOnHand>

110

32 </ product>
33

34 <product productNo ="2" productName="SCSI hard disk 147 GB 10000rpm">
35 <priceinDollars>150</ priceinDollars>
36 <qtyOnHand>100</ qtyOnHand>
37 </ product>
38

39 </ company>

Listing 74: Conventional document on 30 March 2004.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <company
3 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
4 xsi :noNamespaceSchemaLocation ="company.xsd">
5

6 <companyData>
7 <companyName>IBM</ companyName>
8 <cURL>http ://www .ibm .com </ cURL>
9 </ companyData>

10

11 <supplier supplierNo ="1" supplierName ="Seagate" >
12 <sURL>http ://seagate .com </ sURL>
13 <sRating>AAA</ sRating>
14 <order orderType ="normal">
15 <orderNo>1</ orderNo>
16 <oProductNo>2</ oProductNo>
17 <oQty>50</ oQty>
18 </ order>
19 <order orderType ="rush">
20 <orderNo>2</ orderNo>
21 <oProductNo>1</ oProductNo>
22 <oQty>100</ oQty>
23 </ order>
24 </ supplier>
25

26 <supplier supplierNo ="2" supplierName ="Wistron Corporation" >
27 <sURL>http ://www .wistron .com </ sURL>
28 <sRating>AA</ sRating>
29 <order orderType ="normal">
30 <orderNo>1</ orderNo>
31 <oProductNo>2</ oProductNo>
32 <oQty>10</ oQty>
33 </ order>
34 </ supplier>
35

36 <supplier supplierNo ="3" supplierName ="small_supplier_1" >
37 </ supplier>
38

39 <product productNo ="1" productName="hard disk 73 GB 7200rpm">
40 <priceinDollars>100</ priceinDollars>
41 <qtyOnHand>40</ qtyOnHand>
42 </ product>
43

44 <product productNo ="2" productName="SCSI hard disk 147 GB 10000rpm">
45 <priceinDollars>125</ priceinDollars>
46 <qtyOnHand>80</ qtyOnHand>
47 </ product>
48

49 </ company>

111

Listing 75: Conventional document on 31 March 2004.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <company
3 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
4 xsi :noNamespaceSchemaLocation ="company.xsd">
5

6 <companyData>
7 <companyName>IBM</ companyName>
8 <cURL>http ://www .ibm .com </ cURL>
9 </ companyData>

10

11 <supplier supplierNo ="1" supplierName ="Seagate" >
12 <sURL>http ://seagate .com </ sURL>
13 <sRating>AAA</ sRating>
14 <order orderType ="normal">
15 <orderNo>1</ orderNo>
16 <oProductNo>2</ oProductNo>
17 <oQty>50</ oQty>
18 </ order>
19 <order orderType ="rush">
20 <orderNo>2</ orderNo>
21 <oProductNo>1</ oProductNo>
22 <oQty>100</ oQty>
23 </ order>
24 <order orderType ="normal">
25 <orderNo>3</ orderNo>
26 <oProductNo>2</ oProductNo>
27 <oQty>25</ oQty>
28 </ order>
29 </ supplier>
30

31 <supplier supplierNo ="2" supplierName ="Wistron Corporation" >
32 <sURL>http ://www .wistron .com /indexNew .html </ sURL>
33 <sRating>AA</ sRating>
34 <order orderType ="normal">
35 <orderNo>1</ orderNo>
36 <oProductNo>2</ oProductNo>
37 <oQty>10</ oQty>
38 </ order>
39 </ supplier>
40

41 <supplier supplierNo ="3" supplierName ="small_supplier_1" >
42 </ supplier>
43

44 <product productNo ="1" productName="hard disk 73 GB 7200rpm">
45 <priceinDollars>105</ priceinDollars>
46 <qtyOnHand>120</ qtyOnHand>
47 </ product>
48

49 <product productNo ="2" productName="SCSI hard disk 147 GB 10000rpm">
50 <priceinDollars>125</ priceinDollars>
51 <qtyOnHand>70</ qtyOnHand>
52 </ product>
53

54 </ company>

Listing 76: Temporal schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalSchema xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TS">
3

4 <conventionalSchema>
5 <sliceSequence>
6 <slice location ="company.xsd" begin ="2004-03-29" />
7 </ sliceSequence>
8 </ conventionalSchema>
9

112

10 <annotationSet>
11 <include schemaLocation ="annotations.xml" />
12 </ annotationSet>
13

14 </ temporalSchema>

Listing 77: Annotation document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <annotationSet xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema" >
3

4 <physical>
5 <stamp target ="//company" dataInclusion ="expandedVersion">
6 <stampKind timeDimension ="transactionTime" stampBounds ="step"/>
7 </ stamp>
8 <stamp target ="/company/product" dataInclusion ="expandedVersion">
9 <stampKind timeDimension ="validTime" stampBounds ="step"/>

10 </ stamp>
11 <stamp target ="/company/supplier" dataInclusion ="expandedVersion">
12 <stampKind timeDimension ="validTime" stampBounds ="extent">
13 <format plugin ="XMLSchema" granularity ="gMonth"/>
14 </ stampKind>
15 </ stamp>
16 <stamp target ="//order" dataInclusion ="expandedVersion">
17 <stampKind timeDimension ="validTime" stampBounds ="extent" />
18 </ stamp>
19 </ physical>
20

21 <logical>
22 <item target ="/company/supplier">
23 <validTime kind ="state" content ="varying" existence ="varyingWithGaps"/>
24 <transactionTime/>
25 <itemIdentifier name="SupplierId1" timeDimension ="bitemporal">
26 <field path ="@supplierNo"/>
27 </ itemIdentifier>
28 <attribute name="supplierName">
29 <validTime kind ="state" content ="varying"/>
30 </ attribute>
31 </ item>
32 <item target ="/company/product">
33 <validTime kind ="state" content ="varying" existence ="varyingWithGaps"/>
34 <transactionTime/>
35 <itemIdentifier name="ProductId1" timeDimension ="bitemporal">
36 <keyref refName ="productKey" refType ="snapshot"/>
37 </ itemIdentifier>
38 <attribute name="productName">
39 <validTime kind ="state" content ="varying"/>
40 <transactionTime/>
41 </ attribute>
42 </ item>
43 <item target ="/company/supplier/order">
44 <validTime kind ="event"/>
45 <transactionTime/>
46 <itemIdentifier name="OrderId1" timeDimension ="bitemporal">
47 <field path ="orderNo"/>
48 </ itemIdentifier>
49 <attribute name="otype">
50 <validTime kind ="state" content ="varying"/>
51 </ attribute>
52 </ item>
53 <item target ="/company/supplier/sURL">
54 <validTime kind ="state" existence ="varyingWithGaps"/>
55 <itemIdentifier timeDimension ="validTime">
56 <field path ="."/>
57 </ itemIdentifier>
58 </ item>
59 <item target ="/company/supplier/sRating">
60 <validTime kind ="state" content ="varying" existence ="varyingWithoutGaps"/>

113

61 <transactionTime/>
62 <itemIdentifier timeDimension ="validTime">
63 <field path ="."/>
64 </ itemIdentifier>
65 </ item>
66 <item target ="/company/product/qtyOnHand">
67 <validTime kind ="state" content ="varying"/>
68 <transactionTime/>
69 <itemIdentifier timeDimension ="bitemporal">
70 <field path ="."/>
71 </ itemIdentifier>
72 </ item>
73 <item target ="/company/product/priceinDollars">
74 <validTime kind ="state" content ="varying"/>
75 <itemIdentifier timeDimension ="validTime">
76 <field path ="."/>
77 </ itemIdentifier>
78 </ item>
79 <item target ="/company/product/priceinPounds">
80 <validTime kind ="state" content ="varying"/>
81 <itemIdentifier timeDimension ="validTime">
82 <field path ="."/>
83 </ itemIdentifier>
84 </ item>
85 <item target ="/company/product/priceinEuros">
86 <validTime kind ="state" content ="varying"/>
87 <itemIdentifier timeDimension ="validTime">
88 <field path ="."/>
89 </ itemIdentifier>
90 </ item>
91 </ logical>
92 <annotationSet>

Listing 78: Temporal document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalRoot xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <temporalSchemaSet>
4 <temporalSchema location ="temporalSchema.xml"/>
5 </ temporalSchemaSet>
6

7 <sliceSequence>
8 <slice location ="slice1.xml" begin ="2004-03-29" end ="2002-03-30" />
9 <slice location ="slice2.xml" begin ="2004-03-30" end ="2002-03-31" />

10 <slice location ="slice3.xml" begin ="2004-03-31"/>
11 </ sliceSequence>
12

13 </ temporalRoot>

Listing 79: Squashed document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <tv_root
3 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns :tv ="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema "
5 xsi :noNamespaceSchemaLocation ="repCompany.xsd">
6

7 <rep : company_RepItem>
8 <!-- Version 1 of 1 for company -->
9 <rep : company_Version begin ="2004-03-29">

10 <rep : company>
11 <rep : companyData>
12 <rep : companyName>IBM</rep : companyName>
13 <rep : cURL>http ://www .ibm .com </rep : cURL>
14 </rep : companyData>
15

16 <rep : supplier_RepItem>

114

17 <!-- Version 1 of 1 for supplier 1 (Seagate) -->
18 <rep : supplier_Version begin ="2004-03-29">
19 <rep : supplier supplierNo ="1" supplierName ="Seagate">
20 <rep : sURL>http ://seagate .com </rep : sURL>
21 <rep : sRating>AAA</rep : sRating>
22

23 <rep : order_RepItem>
24 <!-- Version 1 of 1 for order 1 -->
25 <rep : order_Version begin ="2004-03-29">
26 <rep : order orderType ="normal">
27 <rep : orderNo>1</rep : orderNo>
28 <rep : oProductNo>2</rep : oProductNo>
29 <rep : oQty>50</rep : oQty>
30 </rep : order>
31 </rep : order_Version>
32 </rep : order_RepItem>
33

34 <rep : order_RepItem>
35 <!-- Version 1 of 1 for order 2 -->
36 <rep : order_Version begin ="2004-03-30">
37 <rep : order orderType ="rush">
38 <rep : orderNo>2</rep : orderNo>
39 <rep : oProductNo>1</rep : oProductNo>
40 <rep : oQty>100</rep : oQty>
41 </rep : order>
42 </rep : order_Version>
43 </rep : order_RepItem>
44

45 <rep : order_RepItem>
46 <!-- Version 1 of 1 for order 3 -->
47 <rep : order_Version begin ="2004-03-31">
48 <rep : order orderType ="normal">
49 <rep : orderNo>3</rep : orderNo>
50 <rep : oProductNo>2</rep : oProductNo>
51 <rep : oQty>25</rep : oQty>
52 </rep : order>
53 </rep : order_Version>
54 </rep : order_RepItem>
55

56 </rep : supplier_Version>
57 </rep : supplier_RepItem>
58

59

60 <rep : supplier_RepItem>
61 <!-- Version 1 of 2 for supplier 2 (Wistron) -->
62 <rep : supplier_Version begin ="2004-03-29" end ="2004-03-31">
63 <rep : supplier supplierNo ="2" supplierName ="Wistron Corporation">
64 <rep : sURL>http ://www .wistron .com </rep : sURL>
65 <rep : sRating>AA</rep : sRating>
66

67 <rep : order_RepItem>
68 <!-- Version 1 of 1 for order 3 -->
69 <rep : order_Version begin ="2004-03-30">
70 <rep : order orderType ="normal">
71 <rep : orderNo>1</rep : orderNo>
72 <rep : oProductNo>2</rep : oProductNo>
73 <rep : oQty>10</rep : oQty>
74 </rep : order>
75 </rep : order_Version>
76 </rep : order_RepItem>
77

78 </rep : supplier_Version>
79

80 <!-- Version 2 of 2 for supplier 2 (Wistron) -->
81 <rep : supplier_Version begin ="2004-03-31">
82 <rep : supplier supplierNo ="2" supplierName ="Wistron Corporation">
83 <rep : sURL>http ://www .wistron .com /indexNew .html </rep : sURL>
84 <rep : sRating>AA</rep : sRating>

115

85

86 <rep : order_RepItem>
87 <!-- Version 1 of 1 for order 3 -->
88 <rep : order_Version begin ="2004-03-30">
89 <rep : order orderType ="normal">
90 <rep : orderNo>1</rep : orderNo>
91 <rep : oProductNo>2</rep : oProductNo>
92 <rep : oQty>10</rep : oQty>
93 </rep : order>
94 </rep : order_Version>
95 </rep : order_RepItem>
96 </rep : supplier_Version>
97

98 </rep : supplier_RepItem>
99

100 <rep : supplier_RepItem>
101

102 <!-- Version 1 of 1 for supplier 3 (small supplier) -->
103 <rep : supplier_Version begin ="2004-03-29">
104 <rep : supplier supplierNo ="3" supplierName ="small_supplier_1"/>
105 </rep : supplier_Version>
106

107 </rep : supplier_RepItem>
108

109

110 <rep : product_RepItem>
111

112 <!-- Version 1 of 3 for product 1 (7200rpm hard disk) -->
113 <rep : product_Version begin ="2004-03-29" end ="2004-03-30">
114 <rep : product productNo ="1" productName="hard disk 73 GB 7200rpm">
115 <rep : priceinDollars>100</ priceinDollars>
116 <rep : qtyOnHand>100</ qtyOnHand>
117 </rep : product>
118 </rep : product_Version>
119

120 <!-- Version 2 of 3 for product 1 (7200rpm hard disk) -->
121 <rep : product_Version begin ="2004-03-30" end ="2004-03-31">
122 <rep : product productNo ="1" productName="hard disk 73 GB 7200rpm">
123 <rep : priceinDollars>100</ priceinDollars>
124 <rep : qtyOnHand>40</ qtyOnHand>
125 </rep : product>
126 </rep : product_Version>
127

128 <!-- Version 3 of 3 for product 1 (7200rpm hard disk) -->
129 <rep : product_Version begin ="2004-03-31">
130 <rep : product productNo ="1" productName="hard disk 73 GB 7200rpm">
131 <rep : priceinDollars>105</ priceinDollars>
132 <rep : qtyOnHand>20</ qtyOnHand>
133 </rep : product>
134 </rep : product_Version>
135

136 </rep : product_RepItem>
137

138

139 <rep : product_RepItem>
140

141 <!-- Version 1 of 3 for product 2 (SCSI 10000rpm hard disk) -->
142 <rep : product_Version begin ="2004-03-29" end ="2004-03-30">
143 <rep : product productNo ="2" productName="SCSI hard disk 147 GB 10000rpm">
144 <rep : priceinDollars>150</rep : priceinDollars>
145 <rep : qtyOnHand>100</rep : qtyOnHand>
146 </rep : product>
147 </rep : product_Version>
148

149 <!-- Version 2 of 3 for product 2 (SCSI 10000rpm hard disk) -->
150 <rep : product_Version begin ="2004-03-30" end ="2004-03-31">
151 <rep : product productNo ="2" productName="SCSI hard disk 147 GB 10000rpm">
152 <rep : priceinDollars>125</rep : priceinDollars>

116

153 <rep : qtyOnHand>80</rep : qtyOnHand>
154 </rep : product>
155 </rep : product_Version>
156

157 <!-- Version 3 of 3 for product 2 (SCSI 10000rpm hard disk) -->
158 <rep : product_Version begin ="2004-03-31">
159 <rep : product productNo ="2" productName="SCSI hard disk 147 GB 10000rpm">
160 <rep : priceinDollars>125</rep : priceinDollars>
161 <rep : qtyOnHand>70</rep : qtyOnHand>
162 </rep : product>
163 </rep : product_Version>
164

165 </rep : product_RepItem>
166

167 </rep : company_Version>
168 </rep : company_RepItem>
169

170 </ tv_root>

117

118

Part II

Supporting Schema Versioning of XML Documents
The previous part concerneddata versioning; this part concernsschemaversioning, and follows a similar
structure: motivation (including an extension of the Company example), review of related work, further
design decisions, architecture, theoretical framework, implementation details, and the full WinOlympic
example.

119

120

11 Introduction

Schema designers often edit their schemas, refining and adding element and attribute types. As an example,
in 2003-01-01 , the designers of Winter Olympic schema realize that they also need the name of the
sport in which the athlete has won the medal. And they decide to add that as a “required” attribute of the
<medal> element. As new release of this schema is developed, all XML documents that were instances
of its earlier version will be rendered invalid, with the maintainers responsible for updating their XML
documents.

One challenge with schema versioning is that, in this potential quicksand, anything can change, and thus
must be versioned: the conventional documents, the base schema, the annotations, the schema documents
included by these documents, even the schemas of these schema components. And, because the physical
annotations can change, the concrete representation within a temporal XML document can vary. Thus, it
becomes even more difficult to even define validation in such afluid environment.

Schema versioning should offer a solution to the above problem by enabling intelligent handling of any
temporal mismatch between data and its schemas. A frameworkis needed that would retain past data and
past schemas, while allowing the current data and schema to be extracted.

This work has many real-world applications. As an example, the Botanic Garden and Botanical Museum
in Berlin-Dahlem (BGBM5) maintains a repository of XML Schemas6 related to index terms, keywords,
biodiversity data about specimens and observations, meta-level data about collections, organizations, and
networks, and various wrapper and configuration files. Most of these XML schemas have had multiple
versions over the last two to three years. The BioCASE Collection Profile is up to version 1.24; the Access
to Biological Collection Data is up to version 2.06.

As another example, thePharmacogenetics Knowledge Base(PharmGKB7) “contains genomic, pheno-
type and clinical information collected from ongoing pharmacogenetic studies.” Its schema is up to version
4.0; its evolution is documented.8 The PHARMGKB XML schema was designed conventionally, not uti-
lizing an architecture that supports schema versioning. Asnew releases of this schema were developed
(for example, on May 26, 2004 Version 4.0, the latest version, was released), all XML documents that
were instances of this schema were rendered invalid, with the maintainers responsible for updating their
XML documents. The architecture proposed in this report retains past data and past schemas, while always
allowing the current data and schema to be extracted, for tools that are not schema-versioning aware.

5http://www.bgbm.org
6http://www.bgbm.org/biodivinf/schema/default.asp
7http://www.pharmgkb.org/
8http://www.pharmgkb.org/schema/history.html

121

122

12 Motivation

We now extend our design in Section 4.3 to include schema versioning. Here we must focus on the intri-
cacies of changing namespaces from slice to slice, versioning of subschemas that are included or imported
into the main schema, and versioning multiple main schemas.We briefly cover each in turn.

12.1 Company Example Extended

We now extend our example presented in Figure 2 in Section 4.5to include schema versioning. We use the
same conventions and naming schemes as before. Figure 45 depicts the scenario. Here, in addition to the
Company Data document varying over time, the Company Schema, Person Schema, Product Schema, and
Company Annotation documents will also vary over time. Notethat those documents are depicted here as
multiple slices.

Legend of File Types

Company
Annotations

Company

Schema

Data

Schema
Company

Company
Temporal Data

Company
Temporal Schema

Conventional XSchemaτ

Person Product
Schema

Figure 45: An overview of the end-state of the Company example.

12.2 Changing Schemas

On 2008-05-22, the user decides to make a change to the conventional schema. He changes the<Name>el-
ement to<FirstName> , resulting in a new version of the schema (Listing 80, line 19).

The user must therefore update the conventional document toconform to the new schema (see Listing 81
line 5).

The user now creates an explicit temporal schema to represent the changes to the conventional schema.
He chooses to use method (a) as described in design decision(31) in Section 14 (see Listing 82). Note that
since the user has yet to specify any annotations, the defaults are still in effect.

The user must also update the temporal document to include the new slice of the conventional document
(Listing 83, line 11).

123

Listing 80: Company.B.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.company.org"
5 xmlns ="http://www.company.org"
6 elementFormDefault ="qualified">
7

8 <xsd : element name="Company">
9 <xsd : complexType>

10 <xsd : sequence>
11 <xsd : element ref ="Person"/>
12 </xsd : sequence>
13 </xsd : complexType>
14 </xsd : element>
15

16 <xsd : element name="Person">
17 <xsd : complexType>
18 <xsd : sequence>
19 <xsd : element name="FirstName" type ="xsd:string"/>
20 <xsd : element name="SSN" type ="xsd:string"/>
21 </xsd : sequence>
22 <xsd : attribute name="ID" type ="xsd:string"/>
23 </xsd : complexType>
24 </xsd : element>
25

26 </xsd : schema>

Listing 81: data.B.1.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Company xmlns ="http://www.company.org">
3

4 <Person ID ="1">
5 <FirstName>Steve </ FirstName>
6 <SSN>123-45-6789</ SSN>
7 </ Person>
8

9 </ Company>

Listing 82: temporalSchema.0.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventionalSchema>
5 <ts : sliceSequence>
6 <ts : slice location ="Company.A.xsd" begin ="2008-01-01" />
7 <ts : slice location ="Company.B.xsd" begin ="2008-05-22" />
8 </ts : sliceSequence>
9 </ts : conventionalSchema>

10

11 </ts : temporalSchema>

124

Listing 83: temporalDocument.1.1.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
3 temporalSchemaLocation ="./temporalSchema.0.xml"/>
4

5 <td : sliceSequence>
6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 </td : sliceSequence>

10

11 </td : temporalRoot>

12.2.1 Introducing Subschemas

On 2008-07-11, the user decides to split the schema into several smaller subschemas while also adding a
new element. Themainschema (see Listing 84) no longer defines any elements itself, but instead uses the
XML Schema <import> (line 9) and <include> (line 10) elements to reference two subschemas (see
Listings 85 and 86).

Listing 84: Company.C.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.company.org"
5 xmlns ="http://www.company.org"
6 elementFormDefault ="qualified"
7 xmlns :per ="http://www.person.org" >
8

9 <xsd : import namespace ="http://www.person.org" schemaLocation ="./Person.C.0.xsd" />
10

11 <xsd : include schemaLocation ="./Product.C.0.xsd" />
12

13 <xsd : element name="Company">
14 <xsd : complexType>
15 <xsd : sequence>
16 <xsd : element name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
17 <xsd : element name="Product" type ="ProductType" maxOccurs ="unbounded"/>
18 </xsd : sequence>
19 </xsd : complexType>
20 </xsd : element>
21

22 </xsd : schema>

Listing 85: Person.C.0.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.person.org"
5 xmlns ="http://www.person.org"
6 elementFormDefault ="qualified">
7

8 <xsd : complexType name="PersonType">
9 <xsd : sequence>

10 <xsd : element name="FirstName" type ="xsd:string"/>
11 <xsd : element name="SSN" type ="xsd:string"/>
12 </xsd : sequence>
13 <xsd : attribute name="ID" type ="xsd:string"/>
14 </xsd : complexType>
15

16 </xsd : schema>

125

Listing 86: Product.C.0.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.company.org"
5 xmlns ="http://www.company.org"
6 elementFormDefault ="qualified">
7

8 <xsd : complexType name="ProductType">
9 <xsd : sequence>

10 <xsd : element name="Type" type ="xsd:string" minOccurs ="1" maxOccurs ="1"/>
11 </xsd : sequence>
12 </xsd : complexType>
13

14 </xsd : schema>

The user updates the instance document to conform to the new schema paradigm and adds a<Product>

element (see Listing 87, lines 10–12).

Listing 87: data.C.2.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Company xmlns ="http://www.company.org" xmlns :per ="http://www.person.org">
3

4 <Person ID ="1">
5

6 <per : FirstName>Steve </per : FirstName>
7 <per : SSN>111-22-3333</per : SSN>
8 </ Person>
9

10 <Product>
11 <Type>Widget </ Type>
12 </ Product>
13

14

15 </ Company>

Note that in this example, theCompany schema is taking the so-called “heterogeneous” and “homoge-
neous” namespace approaches for thePerson and Product subschemas, respectively [23]. That is,
the Person subschema’s namespace is exposed in theCompany schema, while theProduct subschema
defines the same target namespace as theCompanyschema.

The user then changes the temporal schema (Listing 88, line 8) and the temporal document (Listing 89,
lines 4 and 11) to reflect these modifications. Note that the temporal schema only references theCompany
schema, because that schema directly importsPerson and includesProduct .

Listing 88: temporalSchema.1.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventionalSchema>
5 <ts : sliceSequence>
6 <ts : slice location ="Company.A.xsd" begin ="2008-01-01" />
7 <ts : slice location ="Company.B.xsd" begin ="2008-05-22" />
8 <ts : slice location ="Company.C.xsd" begin ="2008-07-11" />
9 </ts : sliceSequence>

10 </ts : conventionalSchema>
11

12 </ts : temporalSchema>

Listing 89: temporalDocument.1.2.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"

126

3 temporalSchemaLocation ="./temporalSchema.1.xml"/>
4

5 <td : sliceSequence>
6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />

10 </td : sliceSequence>
11

12 </td : temporalRoot>

12.2.2 Adding Logical Annotations

On 2008-08-04, the user decides to construct an annotation document. Here, the user creates a logical
annotation (via the<item> element) that specifies that only the<FirstName> element can change (see
Listing 90).

Listing 90: annotations.0.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <as : annotationSet xmlns :as ="http://www.cs.arizona.edu/tau/tauXSchema/AS">
3

4 <as : logical>
5 <as : item target ="Company/Person/FirstName">
6 <as : transactionTime existence ="constant"/>
7 <as : itemIdentifier name="personID" timeDimension ="transactionTime">
8 <as : field path ="./text()"/>
9 </as : itemIdentifier>

10 </as : item>
11 </as : logical>
12

13 </as : annotationSet>

The user must then update the temporal schema to include the annotation document (see Listing 91,
lines 12–16) and the temporal document to point to the new version of the temporal schema (see Listing 92,
line 4). τXMLL INT will now check this constraint between conventional document slices over time.

Listing 91: temporalSchema.2.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventionalSchema>
5 <ts : sliceSequence>
6 <ts : slice location ="Company.A.xsd" begin ="2008-01-01" />
7 <ts : slice location ="Company.B.xsd" begin ="2008-05-22" />
8 <ts : slice location ="Company.C.xsd" begin ="2008-07-11" />
9 </ts : sliceSequence>

10 </ts : conventionalSchema>
11

12 <ts : annotationSet>
13 <ts : sliceSequence>
14 <ts : slice location ="annotations.0.xml" begin ="2008-08-04" />
15 </ts : sliceSequence>
16 </ts : annotationSet>
17

18 </ts : temporalSchema>

Listing 92: temporalDocument.2.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
3 temporalSchemaLocation ="./temporalSchema.2.xml"/>

127

4

5 <td : sliceSequence>
6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />

10 </td : sliceSequence>
11

12 </td : temporalRoot>

12.2.3 Temporal Subschemas

On 2008-09-10, the user changes thePerson subschema (see Listing 93, line 11) to include a<LastName> element.

Listing 93: Person.D.1.xsd

1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.person.org"
5 xmlns ="http://www.person.org"
6 elementFormDefault ="qualified">
7

8 <xsd : complexType name="PersonType">
9 <xsd : sequence>

10 <xsd : element name="FirstName" type ="xsd:string"/>
11 <xsd : element name="LastName" type ="xsd:string"/>
12 <xsd : element name="SSN" type ="xsd:string"/>
13 </xsd : sequence>
14 <xsd : attribute name="ID" type ="xsd:string"/>
15 </xsd : complexType>
16

17 </xsd : schema>

The user must update theCompany schema (Listing 94, line 9) to reference the new version of the sub-
schema.

Listing 94: Company.D.xsd

1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.company.org"
5 xmlns ="http://www.company.org"
6 elementFormDefault ="qualified"
7 xmlns :per ="http://www.person.org" >
8

9 <xsd : import namespace ="http://www.person.org" schemaLocation ="./Person.D.1.xsd" />
10

11 <xsd : include schemaLocation ="./Product.C.0.xsd" />
12

13 <xsd : element name="Company">
14 <xsd : complexType>
15 <xsd : sequence>
16 <xsd : element name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
17 <xsd : element name="Product" type ="ProductType" maxOccurs ="unbounded"/>
18 </xsd : sequence>
19 </xsd : complexType>
20 </xsd : element>
21

22 </xsd : schema>

The user must also update the conventional document (Listing 95, line 7) to include a<LastName> element.

128

Listing 95: data.D.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Company xmlns ="http://www.company.org" xmlns :per ="http://www.person.org">
3

4 <Person ID ="1">
5

6 <per : FirstName>Steve </per : FirstName>
7 <per : LastName>Thomas</per : LastName>
8 <per : SSN>111-22-3333</per : SSN>
9 </ Person>

10

11 <Product>
12 <Type>Widget </ Type>
13 </ Product>
14

15

16 </ Company>

The user then changes the temporal schema (Listing 96, line 9) and temporal document (Listing 97, lines 4
and 12) to reflect these modifications.

Listing 96: temporalSchema.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventionalSchema>
5 <ts : sliceSequence>
6 <ts : slice location ="Company.A.xsd" begin ="2008-01-01" />
7 <ts : slice location ="Company.B.xsd" begin ="2008-05-22" />
8 <ts : slice location ="Company.C.xsd" begin ="2008-07-11" />
9 <ts : slice location ="Company.D.xsd" begin ="2008-09-10" />

10 </ts : sliceSequence>
11 </ts : conventionalSchema>
12

13 <ts : annotationSet>
14 <ts : sliceSequence>
15 <ts : slice location ="annotations.0.xml" begin ="2008-08-04" />
16 </ts : sliceSequence>
17 </ts : annotationSet>
18

19

20 </ts : temporalSchema>

Listing 97: temporalDocument.3.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
3 temporalSchemaLocation ="./temporalSchema.3.xml"/>
4

5 <td : sliceSequence>
6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />

10 <td : slice location ="data.D.3.xml" begin ="2008-09-10" />
11 </td : sliceSequence>
12

13 </td : temporalRoot>

12.2.4 Namespace Changes

One month later (2008-11-13), the user changes the target namespace of the main schema to"steves -
company.org" (see Listing 98, lines 4 and 5). Since theProduct subschema uses the homogeneous

129

namespace paradigm, it also must be updated to the new namespace (see Listing 99, lines 4 and 5). Of
course, the user must also update the conventional document(see Listing 100, line 2).

Listing 98: Company.E.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.stevescompany.org"
5 xmlns ="http://www.stevescompany.org"
6 elementFormDefault ="qualified"
7 xmlns :per ="http://www.person.org" >
8

9 <xsd : import namespace ="http://www.person.org" schemaLocation ="./Person.D.1.xsd" />
10

11 <xsd : include schemaLocation ="./Product.E.1.xsd" />
12

13 <xsd : element name="Company">
14 <xsd : complexType>
15 <xsd : sequence>
16 <xsd : element name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
17 <xsd : element name="Product" type ="ProductType" maxOccurs ="unbounded"/>
18 </xsd : sequence>
19 </xsd : complexType>
20 </xsd : element>
21

22 </xsd : schema>

Listing 99: Product.E.1.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.stevescompany.org"
5 xmlns ="http://www.stevescompany.org"
6 elementFormDefault ="qualified">
7

8 <xsd : complexType name="ProductType">
9 <xsd : sequence>

10 <xsd : element name="Type" type ="xsd:string" minOccurs ="1" maxOccurs ="1"/>
11 </xsd : sequence>
12 </xsd : complexType>
13

14 </xsd : schema>

Listing 100:data.E.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Company xmlns ="http://www.stevescompany.org" xmlns :per ="http://www.person.org">
3

4 <Person ID ="1">
5

6 <per : FirstName>Steve </per : FirstName>
7 <per : LastName>Thomas</per : LastName>
8 <per : SSN>111-22-3333</per : SSN>
9 </ Person>

10

11 <Product>
12 <Type>Widget </ Type>
13 </ Product>
14

15

16 </ Company>

The user then changes the temporal schema (see Listing 101, line 10) and temporal document (see List-
ing 102, lines 4 and 13) to reflect his modifications.

130

Listing 101: temporalSchema.4.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventionalSchema>
5 <ts : sliceSequence>
6 <ts : slice location ="Company.A.xsd" begin ="2008-01-01" />
7 <ts : slice location ="Company.B.xsd" begin ="2008-05-22" />
8 <ts : slice location ="Company.C.xsd" begin ="2008-07-11" />
9 <ts : slice location ="Company.D.xsd" begin ="2008-09-10" />

10 <ts : slice location ="Company.E.xsd" begin ="2008-11-13" />
11 </ts : sliceSequence>
12 </ts : conventionalSchema>
13

14 <ts : annotationSet>
15 <ts : sliceSequence>
16 <ts : slice location ="annotations.0.xml" begin ="2008-08-04" />
17 </ts : sliceSequence>
18 </ts : annotationSet>
19

20 </ts : temporalSchema>

Listing 102: temporalDocument.4.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
3 temporalSchemaLocation ="./temporalSchema.4.xml"/>
4

5 <td : sliceSequence>
6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />

10 <td : slice location ="data.D.3.xml" begin ="2008-09-10" />
11 <td : slice location ="data.E.3.xml" begin ="2008-11-13" />
12 </td : sliceSequence>
13

14 </td : temporalRoot>

12.2.5 Multiple Conventional Schemas

The user now (2008-11-27) wants to create a level of independence between each of the conventional
schemas: when a subschema changes, he does not want to have tochange the main schema. To do this, he
creates a temporal schema for each of the conventional schemas and in the main conventional schema he
references the temporal schema (as opposed to the conventional subschema).

Listings 103 and 104 show the new temporal schemas for the Product and Person subschemas, respec-
tively. Listing 105, lines 9 and 12, shows the main conventional schema referencing the new temporal
schemas while Listing 106 shows the new temporal schema. Finally, Listing 102 shows the temporal docu-
ment for this new configuration.

131

Listing 103:ProductTemporalSchema.xml
<?xml version ="1.0" encoding ="UTF-8"?>
<ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">

<ts : conventionalSchema>
<ts : sliceSequence>

<ts : slice filename ="Product.C.0.xsd" begin ="2008-07-11" />
<ts : slice filename ="Product.E.1.xsd" begin ="2008-11-13" />

</ts : sliceSequence>
</ts : conventionalSchema>

</ts : temporalSchema>

Listing 104:PersonTemporalSchema.xml
<?xml version ="1.0" encoding ="UTF-8"?>
<ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">

<ts : conventionalSchema>
<ts : sliceSequence>

<ts : slice filename ="Person.C.0.xsd" begin ="2008-07-11" />
<ts : slice filename ="Person.D.1.xsd" begin ="2008-09-10" />

</ts : sliceSequence>
</ts : conventionalSchema>

</ts : temporalSchema>

Listing 105:Company.F.xsd
1 <?xml version ="1.0"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 targetNamespace ="http://www.stevescompany.org"
5 xmlns ="http://www.stevescompany.org"
6 elementFormDefault ="qualified"
7 xmlns :per ="http://www.person.org" >
8

9 <xsd : import namespace ="http://www.person.org"
10 schemaLocation ="./PersonTemporalSchema.xml" />
11

12 <xsd : include schemaLocation ="./ProductTemporalSchema.xml" />
13

14 <xsd : element name="Company">
15 <xsd : complexType>
16 <xsd : sequence>
17 <xsd : element name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
18 <xsd : element name="Product" type ="ProductType" maxOccurs ="unbounded"/>
19 </xsd : sequence>
20 </xsd : complexType>
21 </xsd : element>
22

23 </xsd : schema>

132

Listing 106: temporalSchema.5.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <ts : temporalSchema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventionalSchema>
5 <ts : sliceSequence>
6 <ts : slice location ="Company.A.xsd" begin ="2008-01-01" />
7 <ts : slice location ="Company.B.xsd" begin ="2008-05-22" />
8 <ts : slice location ="Company.C.xsd" begin ="2008-07-11" />
9 <ts : slice location ="Company.D.xsd" begin ="2008-09-10" />

10 <ts : slice location ="Company.E.xsd" begin ="2008-11-13" />
11 <ts : slice location ="Company.F.xsd" begin ="2008-11-27" />
12 </ts : sliceSequence>
13 </ts : conventionalSchema>
14

15 <ts : annotationSet>
16 <ts : sliceSequence>
17 <ts : slice location ="annotations.0.xml" begin ="2008-08-04" />
18 </ts : sliceSequence>
19 </ts : annotationSet>
20

21 </ts : temporalSchema>

Listing 107: temporalDocument.5.3.xml
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <td : temporalRoot xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
3 temporalSchemaLocation ="./temporalSchema.5.xml"/>
4

5 <td : sliceSequence>
6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />

10 <td : slice location ="data.D.3.xml" begin ="2008-09-10" />
11 <td : slice location ="data.E.3.xml" begin ="2008-11-13" />
12 </td : sliceSequence>
13

14 </td : temporalRoot>

133

134

13 Review of Related Work

In this section, we review prior related work in the area of schema versioning. Version and source control for
schemas and schema objects is needed, especially in complex, multi-enterprise development environments.
The XML Schema working group at W3C has discussed desirable behaviors for use cases that involve
schema versioning in XML [16]. Various techniques to support evolution of XML schemas, where they
allow for extensibility in the original design have also been proposed [34]. The emphasis of the paper is
to avoid changes to the existing applications, like [24] in temporal databases, by anticipating changes to
the schemas and then designing them for evolution. This is typically achieved through a careful use of
wildcards, allowing extensions through namespaces, allowing applications to ignore unknown objects, and
forcing applications to understand unknown objects when noother option is available. This approach does
not address the whole problem, as many schema changes cannotbe expressed in their limited notations.

Schema versioning has been previously researched in the context of temporal databases [68, 24]. But
an XML schema is a grammar specification, unlike a (relational) database schema, so new techniques are
required. Although various XML schema languages have been proposed in the literature and in the com-
mercial arena, none model schema changes nor provide versioning. We chose to base our research on XML
Schema because it is backed by the W3C and is the most widely-used schema language.

Brahmia et al. propose a six-component taxonomy of schema change operations for use in supporting
schema versioning across both valid and transaction time with XMLSchema [10].

Raghavachari and Shmueli consider a problem different fromthat considered in the present paper: can
a nontemporal XML documentD that is known to be valid according to nontemporal XML schemaS be
efficiently validated against a different schemaS′ [66]. However, their problem and proposed solutions are
relevant to the validation for a temporal document against atemporal schema as considered in the present
paper. As the schema evolves over time, the data is required to also evolve so that he data timestamped with
a transaction time at the new time is consistent with the schema timestamped with that transaction time. It is
possible for the tool constructing that temporal document,or for the SQUASH tool as it considers a schema
change, to efficiently revalidate the data document currently in force against the new schema.

135

136

14 Design Decisions

In this section we outline the design decisions relating to temporal schemas. We use the same terminology
and consider the same goals as presented in Section 4.

(31) A temporal schema will have the root element<temporalSchema> which belongs to theτXSchema
namespace. The root element will have two subelements, onlythe first of which is required.

• <conventionalSchema> . In this element, the user will specify the conventional schema(s)
that belongs to the system.

• <annotationSet> . In this element, the user will specify the annotation(s) that belongs to the
system, if any.

Within each of the two elements there will be four separate ways to specify schemas and annotations.

(a) Listing the URI of each conventional document with a<sliceSequence> element (see Listing
8)

(b) Including a (conventional or temporal) document with a<include> element (see Listing 6 for
an example and decision(34) for more information)

(c) Placing the text of a document directly in the element (see Listing 9)

(d) Omitting the element altogether. In this case, default behavior will be assumed (see, e.g., design
decision(4)). Default behavior would only apply to annotation documents, as a default con-
ventional schema (by perhaps automatically detecting and creating a schema based on the first
conventional document) would be dangerous and might provide unintended semantics.

Providing these different mechanisms allows for substitutability (satisfying design goal(f) in Sec-
tion 4.3), convenience (satisfying goal(a)), and simplicity (satisfying goal(d)).

(32) An <include> element will be used to include a document into the temporal schema; it has the
same semantics of placing the entire actual text of the document into the schema.<include> can
reference any kind of document, including a conventional schema, a temporal schema, and annotation
documents. This element has the effect of removing the root of the included document; see Listings
108 and 109 for an example.

Listing 108: A schema using<include> .
<temporalSchema>

...
<annotationSet>

<include schemaLocation ="anno.xml"/>
</ annotationSet>
...

</ temporalSchema>

Listing 109:anno.xml
<annotationSet>

...
<logical>

...
</ logical>

...
</ annotationSet>

This decision satisfies goal(e) by allowing both the<include> element and the actual text of the
document to have the exact same semantics and goal(c) by keeping consistent syntax as XML Schema
<include> elements.

(33) Both conventional and temporal schemas can<include> any number of conventional and temporal
schemas. See Listing 10 for an example. This decision satisfies goal(f) by permitting temporal data
to occur at any level in the system.

137

(34) There can be one temporal schema for each independent conventional schema present in the system.
In this way, each conventional schema can vary over time independently, as well as have their own
logical and physical annotations. See Figure 46 for an example, and Section 4.5 for more information.

Figure 46: Each conventional schema has a separate corresponding temporal schema.

138

15 Approach

There are several key ideas to our solution. First, atemporal schemaserves the analogous purpose of an
XML Schema document for a static document. So we have a singlepoint of reference for the schema of
a temporal document. Of course, the temporal schema may itself contain versions within it. That means
that the temporal documentsit references must also have associated temporal schema astheir schemas. The
temporal schema is all the user needs for describing the temporal document, just as the conventional XML
Schema is all the user needs for describing an XML document.

Second, as with quicksand, as you venture outward, eventually you reach solid ground. So eventually
you reach a temporal schema containing no versions, or else you reach a static XML Schema document.

The third key idea, which we callschema-constant periods, first appeared in a paper by one of the au-
thors on temporal aggregation [74]. We introduced the concept in Section 18, and explain how we use it.
It is possible, even with versioned schemas having themselves versioned schemas, to identify contiguous
periods of time when there are no schema changes,anywhere. Now, during such schema-constant periods
the data may be (and probably is) versioned, but at least you have a fixed base schema and fixed logical
annotations, each of which has a fixed schema. And since the physical annotations are fixed, the representa-
tion is also fixed, so it is possible to read and interpret the temporal document during that schema-constant
period, and even to validate that portion of the document. (This is just the situation discussed in our Part I,
of a single schema and versions of the data.) So a general temporal document can be viewed as a sequence
of data-varying documents, each over a single schema-constant period. Since we can validate within each
schema-constant period, given the approaches elaborated on earlier, all we have to do is validateacross
schema changes.

The final key idea first appeared in the original presentationof τXSchema [25]: the representational
schema (a) is derivable solely from information in the temporal schema, (b) can be designed to enable some
of the temporal integrity constraints to be checked by a conventional validator, and (c) can be computed and
cached withinτXMLL INT, completely unbeknown to the user.

Of course, there are lots of interesting alleys and excursions during this trip, but these four key ideas
capture most of the approach.

In the remainder of this section, we introduce the architecture through a running example, then describe
how the validator can be extended to validate documents in this seemingly precarious situation of data that
changes over time, while its schema and even its representation are also changing over time.

All times mentioned in this paper are from thetransaction timedimension [73], thoughτXSchema also
supportsvalid time for data versioning. While schema versioning has been considered in the context of
valid time [17], doing so is quite complex and in our opinion not worth this complexity. Thus inτXSchema
schemas vary and are versioned only over transaction time.

We also note that the emphasis here is on capturing a time-varying schema and validating documents
against such a schema. Our approach applies tounmanagedenvironments, where each schema is originally
in a separate document paired with one or more data documentsat particular points of time. We also support
managedenvironments, where a schema editor would be used to maintain the schema(s), which the schema
changes captured in a temporal document.How the schema changes are made, or what kinds of schema
evolution operations are provided, are beyond the scope of this work.

15.1 Supporting Versioned Schemas

For convenience, we review some architectural diagrams from Section 8. Figure 47 illustrates the archi-
tecture ofτXSchema. We now generalize the architecture to also supportversioned schemas. As noted
previously, the PHARMGKB schema has undergone a series of changes. (Our emphasis in this chapter is on

139

Legend of Arrows

10. Representational
Schema

0. XML Schema

7. Physical Annotation

1. TSSchema 2. ASchema 3. ASchema

5. Temporal Schema

6. Logical Annotation

SCHEMA
MAPPER

SQUASH

UNSQUASH

8. Conventional
Document

4. Conventional
Schema

9. Temporal
Document

tXMLLINT

11. Error Messages

RESQUASH

Input/Output References Namespace

Legend of Arrows

Figure 47: Overall Architecture ofτXSchema

how to validate a time-varying document against a time-varying schema. For more discussion ofτXSchema
architecture per se, please consult Part I, Section 8).

This implies that box 3 is actually asequenceof base schemas, three of which are excerpted in List-
ings 110–112. Not only do these base schemas change over time, but the schemas included by them (e.g.,
sequence.xsd , experiment.xsd) can vary over time. Similarly, the temporal annotations (box 5)
and those annotations included by them and the physical annotations (box 6) and those annotations included
by themall can vary over time, resulting in multiple versions.

Listing 110:<ExperimentClass> element in version 3.1
<xsc : complexType name="ExperimentClass">

<xsd : complexContent>
<xsd : extension base ="AccessionObjectClass">

<xsd : sequence>
<xsd : element name="name"

type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1" />

...
<xsd : element name="sampleSet"

minOccurs ="0" maxOccurs ="1" />
<xsd : complexType>

<xsd : complexContent>
<xsd : extension

base ="AccessionObjectClass">
<xsd : sequence>

<xsd : element name="name"

140

type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1"/>

...
</xsd : sequence>

</xsd : extension>
</xsd : complexContent>

</xsd : complexType>
</xsd : element>
...

</xsd : sequence>
</xsd : extension>

</xsd : complexContent>
</xsd : complexType>

Listing 111:<ExperimentClass> element in version 3.1
<xsc : complexType name="ExperimentClass">

<xsd : complexContent>
<xsd : extension base ="AccessionObjectClass">

<xsd : sequence>
<xsd : element name="name"

type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1" />

...
<xsd : element name="sampleSetXref"

type ="XrefClass"
minOccurs ="0" maxOccurs ="1" />

...
</xsd : sequence>

</xsd : extension>
</xsd : complexContent>

</xsd : complexType>
...
<xsd : element name="sampleSet" />

<xsd : complexType>
<xsd : complexContent>

<xsd : extension base ="AccessionObjectClass">
<xsd : sequence>

<xsd : element name="name"
type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1" />

...
</xsd : sequence>

</xsd : extension>
</xsd : complexContent>

</xsd : complexType>
</xsd : element>

Listing 112:<ExperimentClass> element in version 4
...
<xsc : complexType name="ExperimentClass">

<xsd : complexContent>
<xsd : extension

base ="AccessionObjectClass">
<xsd : sequence>

...
<xsd : element name="sampleSetXref"

type ="XrefClass"
minOccurs ="0" maxOccurs ="unbounded"/>

...
</xsd : sequence>

</xsd : extension>
</xsd : complexContent>

</xsd : complexType>
...

141

SCHEMA

Temporal
Constraint

Temporal
Document

Schema
Temporal

Messages
Error

Schema
Representational

MAPPER

Conventional

Validator

Validator

Figure 48: Validating a Document with Time-Varying Data

This versioning is handled by timestamping the<temporalRoot> element, and adding periods to
specify when that annotation element became applicable. Soour PHARMGKB schema would have many
annotation elements, with version 3.1 becoming applicableon April 25, 2003, version 3.2 on May 21, 2003,
and version 4.0 on May 12, 2004.

The schema annotation elements reference individual base schemas. One approach is to have a differ-
ent document (file) for each version, similar to what is shownin box 7. So we might have files named
root.4.25.03.xsd , etc., or perhapsroot.3.1.xsd . etc. Each of these files would reference sub-
sidiary schemas, such assequence.v3.1.xml.xsd or experiment.4.25.03.xsd . As one can
imagine, this becomes rather cumbersome. The problem with this approach is that whenever a subsidiary
schema changes, a new version is produced, with its own URI, which requires the referencing schema docu-
ment to be changed. So a new version ofexperiment.xsd requires a new version ofsequence.xsd ,
which requires a new version ofroot.xsd .

Listing 113: A Temporal Schema for PHARMGKB: temporalschema.xml

1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalSchema
3 xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema "
4 xmlns :tv ="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema " >
5

6 <conventionalSchema>
7 <sliceSequence>
8 <slice location ="root.xsd" />
9 </ sliceSequence>

10 </ conventionalSchema>
11

12 <annotationSet>
13 <sliceSequence>
14 <slice location ="annotations.xml" />
15 </ sliceSequence>
16 </ annotationSet>
17

18 </ temporalSchema>

While this approach is allowed,τXSchema also permitstemporal schemas, in place of multiple versions
of conventional schemas. Consider the sequence of root schemas:root.1.0.xsd , root.2.0.xsd , ...
We write a simple temporal schema for these and invoke the SQUASH utility, which produces a single tem-
poral document,tv snapshot.xml which is then referenced by multiple schema annotation elements.
Similarly, we use SQUASH to generate temporal schemas forsequence.xsd andexperiment.xsd .

142

This rather involved state of affairs, with time-varying documents and time-varying schemas, is illus-
trated with a T Diagram in Figure 49. In this notation, first described over forty years ago [11], the input
of a translator is given on the left arm of the “T” (for example, for SCHEMAMAPPER in the upper right-
hand-side of the figure, the input is the temporal schema document, temp schema.xml), the name of
the translator is given at the base of the “T” (here, “Schema Mapper”), and the output of the translator is
given on the right arm of the “T” (here, a representational schema,rep.xsd). The name of these diagrams
was to the best of our knowledge given by McKeeman, Horning, and Wortman in their classic compiler
book [55].

We extend these diagrams to allow multiple inputs, which unfortunately complicates them somewhat.
As shown in Figure 49, SQUASH takes both a temporal schema and a sequence of conventional documents
and produces a temporal document, and UNSQUASHdoes just the opposite (this is illustrated for the logical
annotations, which are SQUASHed into a singletv anno.xml document, then UNSQUASHed back into
their constituent time slices).

In this figure we show a temporal schema (temp schema.xml , right in the middle of the figure, with
the arrows pointing left) referencing two temporal schemas, one of the base schema and one of the physical
annotations; the temporal schema also references several logical annotation documents. Note that the base
schema for the base schema (!) isXSchema temporalschema.xml , which has as its base schema
XMLSchema.xsd .

15.2 Validating Against a Time-Varying Schema

To validate a time-varying document associated with a time-varying schema,τXMLL INT applies the con-
ventional validator to the document, using the representational schema produced by SCHEMAMAPPER(see
Figure 50). It then determines the times when the schema changes, thus determining the periods when the
schema is constant, termed theschema-constant periods. These periods will be non-overlapping and contin-
uous; between the periods are schema changewalls. For each such period, the time-varying data checker is
invoked to check the temporal integrity constraints over the time-varying data, with thesinglebase schema,
logical annotation, and physical annotation.

During this process,τXMLL INT treats each URI it encounters as the specification of a temporal times-
lice operation to select the appropriate version. The timesliceis as of the time of the document or context
that contains the URI. For example, consider the excerpt in Listing 114.root.xsd is a time-varying doc-
ument, containing several schema versions. In this context, τXMLL INT will utilize the temporal context of
“May 21, 2003” to extract asingleversion of theroot schema. To do so, it calls UNSQUASH, passing it (a)
the temporal schema, (b) the temporal document, and (c) a timestamp. It passes the same information for
all the schemas included by that schema, such assequence andExperimentClass . The underlying
semantics ensures that at any point in time, there is a singlebase schema, a single logical annotation, and a
single physical annotation.

Listing 114: An excerpt from the time-varying Temporal Schema for PHARMGKB
1 <conventionalSchema>
2 <include schemaLocation ="root.xsd"/>
3 </ conventionalSchema>
4

5 <annotationSet>
6 <include schemaLocation ="anno.xml"/>
7 </ annotationSet>

Of course, one can carry this further. Because the base schema is versioned, it is associated with a
temporal schema which could itself have multiple schema annotation elements.τXMLL INT recursively
calls UNSQUASHso that at any point in time, there is a single schema in effect.

143

ASchema.xml

rep.xml

rep.xsd

tv_snapshot.xml

1.0.xml

2.0.xml

3.1.xml

3.2.xml

4.0.xml

Messages
Error

root.1.0.xsd
root.3.0.xsd
root.3.1.xsd
root.3.2.xsd
root.4.0.xsd

SQUASH

SQUASH

MAPPER
SCHEMA

SQUASH

UNSQUASH

anno_1.0.xml

anno_2.0.xml

anno_4.0.xml

tv_anno.xml

XMLLintτ

tv_anno.xml

anno_mon.xml
anno_wed.xml

anno_fri.xml

temp_schema.xml

temp_schema.xml

rep.xml

temp_schema.xml

ASchema.xml

XSchema.xml

F
igure

49:
T

D
iagram

ofV
alidation

144

Slice

Temporal

Temporal
Document

Schema
Temporal

Messages
Error

Schema
Representational

MAPPER

Conventional

Validator

Validator

SCHEMA

Data

Validator
Constraint
Temporal

Temporal
Schema

Figure 50: Validating a Document with a Time-Varying Schema

Let’s examine howτXMLL INT depicted in Figure 50 could handle the versioned schema for PHAR-
MGKB. Recall that prior to Version 3.2, the<ExperimentClass> element of PHARMGKB contained
nested<sampleSet> elements (Listing 110). In Version 3.2, this was replaced with a<sampleSetXref>
element (Listing 111), that just mentioned the unique identifier of the sample set, which was moved to the
top of the document, with apharmgkbId attribute.

This change is reflected in two versions ofexperiment.xsd , one for version 3.1 and one for ver-
sion 3.2, as well as moving the definition of the<sampleSet> element to a newsampleset.xsd sub-
schema document and changingroot.xsd to also include the new sampleset subschema. We could write a
very shortexperimentTemporalSchema.xml , then use SQUASH to create a temporalexperiment.xml
schema, and do the same for the root schema.

What do we do with an actual XML document (such as3.1.xml , version 3.1 of PHARMGKB), whose
schema is the original root schema (root.3.1.xsd)? We take each instance of the<sampleSet> ele-
ment out of its enclosing<ExperimentClass> element and move it up to beneath the root of the docu-
ment (the<pharmgkb> element), replacing it with a<sampleSetXref> element. Then we take the two
documents, the first using the old schema (3.1.xml) and the second the updated document (3.2.xml)
and SQUASH them into a temporal document (rep.xml). (Even better, we could use a temporally-aware
XML editor to make these changes to the document. Such an editor would output the temporal document.
This is themanagedenvironment mentioned earlier.)

What would the representational schema look like for this temporal document? We could see that
schema directly by running SCHEMAMAPPERon our temporal schema. A portion of the temporal document
is shown in Listing 115. Note that every change of the base schema (which is what occurred here) or in
the physical annotation results in a new<schemaVersion i> element andrep i namespace within the
time-varying root (with these names being generated by SCHEMAMAPPER). The conventional validator
can thus check to ensure that prior to the schema change on May25, <ExperimentClass> elements
contained an<sampleSet> element, and afterward, an<sampleSetXref> element. (SQUASH will
ensure that the appropriate<version> is used in the generated temporal document;τXMLL INT will also
check this.)

145

Listing 115: A portion of a temporal document (rep.xml)

1 <?xml version ="0.1" encoding -"UTF-8"?>
2 <sv_root ...>
3

4 <schemaItem>
5 <schemaVersion0>
6 <tTime>May 1, 2004</ tTime>
7 <rep0 : tv_root>
8 <tTime>May 1, 2004</ tTime>
9 <pharmGKB>

10 ...
11 <ExperimentClass>
12 ...
13 <sampleSet> ... </ sampleSet>
14 ...
15 </ ExperimentClass>
16 </ pharmGKB>
17 </rep0 : tv_root>
18 </ schemaVersion0>
19 <schemaVersion1>
20 <tTime>May 29, 2004</ tTime>
21 <rep1 : tv_root>
22 <pharmGKB>
23 ...
24 <ExperimentClass>
25 ...
26 <sampleSetXref>...</ sampleSetXref>
27 ...
28 </ ExperimentClass>
29 <sampleSet>
30 ...
31 </ sampleSet>
32 </ pharmGKB>
33 </rep1 : tv_root>
34 <schemaVersion1>
35 ...
36 </ schemaItem>
37

38 </ sv_root>

Continuing with the example, in Version 4.0 an<ExperimentClass> can now cross-reference more
than one<sampleSet> . (Note theunbounded for maxOccurs in Listing 112.) Additionally, a
<sampleSet> is now a set of<sample> instead of a set of<subject> . The latter change can be
checked by the conventional validator because such sub-elements would themselves be enclosed in a new
<tv version 3> element. The former change, however, possibly cannot be checked by the conventional
validator.

In context of constraints, we made reference to sequenced and non-sequenced distinctions (in Section 6).
A temporal constraint is termed assequencedwith respect to a similar conventional constraint in the schema
document, if the semantics of the temporal constraint can beexpressed as the semantics of the conventional
constraint applied at each point in time [72]. Given a conventional XML Schema constraint, we can define
the corresponding temporal semantics inτXSchema in terms of a sequenced constraint. In the earlier
schema, with amaxOccurs of 1, the temporal semantics of this integrity constraint isthe sequenced
constraint, “at every point in time, there can be a maximum of one such element.” However, depending on
the physical annotations, it may be that the<sampleSet> element is itself versioned, which implies that
an <ExperimentClass> element could have several<sampleSet> elements, each resident at non-
overlapping periods, so that at any one time, there wouldn’tbe more than one. In this case, this integrity
constraint would need to be checked separately by the time-varying data checker component inτXMLL INT,
which knows the temporal extent of the integrity constraint(from the temporal schema), and thus could
check for a maximum of one only before Version 4.0 went into effect. In some cases, the representational

146

schema can be designed such that many sequenced constraintscan be checked directly by the conventional
validator.

τXMLL INT is a direct replacement for the conventional validator. If it is provided with a conventional
schema and a conventional XML document (such asroot.1.0.xsd and1.0.xml), it simply invokes
the conventional validator. The UNSQUASH tool is similarly configured. If it is given a temporal document
(e.g., rep.xml) that references a temporal schema (versioned or not; here,temporalschema.xml),
it will produce a conventional XML document by taking a timeslice atnow (4.0.xml); this conventional
document will reference a conventional XML Schema (root.4.0.xsd), formed by slicing the temporal
schema atnow. If U NSQUASH is given a static XML document, it simply returns that document. Hence UN-
SQUASHcan be invoked before any conventional XML tools. In this way, temporal upward compatibility[3]
is ensured.

147

148

16 Theoretical Framework

There are four aspects that do not show up with time-varying data, but rather are unique to versioned
schemas: (1) an evolving definition of keys, (2) accommodating gaps in lifetimes, (3) the semantics of
mixed data and schema changes, and (4) checking non-sequenced constraints across schema changes. We
examine each in turn in this section.

16.1 Accommodating Evolving Keys

When documents vary over time, it is important to identify which elements in successive snapshots are
in actuality the same item, varying over time. We refer to theprocess of associating elements that persist
across various snapshots asgluing the elements. SQUASH must do this gluing; the time-varying data checker
within τXMLL INT must also on occasion glue elements.

When a pair of elements is glued, anitem is created. An item is an element that evolves over time
through various versions. Determining which elements should be glued depends on two factors: thetypeof
the element, and theitem identifierfor that element’s type. The item identifiers and gluing of elements to
form items is already explained in detail in Section 5.3.

When a schema-change wall is encountered, items across the wall need to be associated. This process
is called ascross-wall gluing, or bridging. Figure 51 depicts the concepts of gluing and bridging.

Gluing
 two

Versions Versions
 two

Gluing

 Item A

 Wall

Bridging

v1

v2

v3
v1

v2

v3

Item A1 Item A2

Figure 51: Gluing and Bridging

In this figure, individual elements in individual versions of an XML document are depicted as small
circles in the center of the figure. Here we see six elements, three of which are determined to be versions
of the same item (A1) and three of which are determined to be versions of another item (A2). The wall
indicates that the schema was changed between the third and fourth version of the document.

Gluing uses the item identifier to associate the first three elements with an item and likewise the next
three elements. Bridging determines that the element that is version 3 of item A1 and the element that is
version 1 of item A2 are actually versions of the same item, item A. So in fact item A hassix versions,
the three elements before the schema change and the three elements after the schema change. Gluing
and bridging occur in different stages within the validator; both conspire to realize an item across schema

149

changes, which is the first step in checking the temporal constraints associated with that item’s definition in
the schema.

What is relevant for our purposes here is that item identifiers specified in the logical annotations, are usu-
ally the (conventional) key of the element type [12] given inthe base schema, and are used byτXMLL INT

to extract the items from the temporal document and then check the temporal constraints on those items.
What if either the conventional key (specified in the base schema) upon which an item identifier is

defined, or if the item identifier itself (specified in a logical annotation) changes? This is a particularly
insidious kind of quicksand. Even worse is when the underlying element type of an item changes. As
an example, if the<athlete> element in thewinolympic.ver1.xsd is replaced by<player> in
the future versions, an item that was a particular<athlete> element before the schema change could
be associated with a particular<player> element in the conventional document associated with the later
schema.

Our solution is to put in the<temporalSchema> element, which signals a change in some aspect of
the schema, an<itemIdentifierCorrespondence> element, specifying how old item identifiers
are to be mapped to new item identifiers. This element has fourattributes:oldRef , a string naming an
item that appears in the old schema,newRef , a string naming an item that appears in the new schema,
mappingType , an XML Schema enumeration, and optionally amappingLocation , which is a URI.
We have defined four mutually exclusive mapping types.

• useNew: The new identifier must also be present in the old element.

• useOld : The old identifier must also be present in the new element.

• useBoth : An attribute’s name is changed, but its value isn’t.

• replace : Use an externally-defined mapping.

This could be best described with an example. Say that in 2002the item identifier is theathID attribute
of the<athlete> element. In January 2005, this attribute is renamedathNumber ; we specify a mapping
type ofuseBoth . In March 2005, the item identifier is changed to theathName element, with a mapping
type ofuseNew. (This attribute has been around since 2002, but it wasn’t used as a key until January 2005.)
Assume that, in June 2005 we add a new attribute,athKey , and specify that as the item identifier, with
a mapping type ofuseOld . Finally, in July 2005, just before the beginning of the games, we replace the
<athlete> element with a<player> element, with aplayerID attribute as the item identifier and a
mapping type ofreplace .

The gluing of elements into items is then done the following way. Before 2005, theathID is used for
gluing. When the schema change occurs sometime in January 2005, we glue across the schema change by
matching theathID value of the element before the schema change with theathNumber value after the
change: these (integer) values must match for the two elements to be glued. In March 2005, we glue across
the schema change by matching up old elements and new elements that have the same (string) value for
their athName element, the new item identifier. The only difference is thatbefore the schema change, that
element was present but wasn’t being used as a key. In a consistent fashion, in June we also glue using the
athName element, which was theold item identifier.

July is the most complex. We need to glue an<athlete> element with an item identifier ofathKey
with a<player> element with an item identifier ofplayerID . For this, we use theMappingLocation
attribute in the temporal schema to access a mapping table that provides a list of pairs, each with anathKey
and aplayerID value.

This list of pairs is termed areplace mapping list. As it is instance-based, containing as it does a list of
key values, the replace mapping list should only be used as a last resort. Its role is to allow bridging for all

150

cases in which the other three mapping types, which have no need for storing instance information in the
schema, are not appropriate.

Of course, the mapping location document can also be time-varying; τXMLL INT extracts the relevant
timeslice with UNSQUASH.

16.2 Accommodating Gaps

Bridging is more involved when there aregapsin the lifetime of an item. Gaps make the process of finding
the correspondence between the items from consecutive schema-constant periods more difficult. If there are
gaps in the lifetime of an item, bridging becomes even more complex.

Figure 52 shows three cases that may arise while bridging theitems from consecutive schema-constant
periods. It shows the data and schema changes along the transaction-time dimension, from left to right.
The schema-change walls are shown as bold vertical lines. The horizontal lines depicts the evolution of
a particular item (in this case, three separate items). The bridging process is shown by the jumpers over
schema change walls. A dotted line indicates when the item did not exist in the database. The first item
existed during the entire transaction time period depictedin this figure. There is a single gap in the existence
time of the second item: it ceased to exist sometime duringP1 but reappeared inP2. The third item had a
much longer gap, reappearing only inP3.

P 1
P 2 P 3

Transaction Time

B

C

A

Figure 52: Cross Wall Gluing

We now now examine each item in turn.

1. The itemA (the first horizontal line) is present throughout schema-constant periodsP1 andP2. Thus
the last snapshot ofP1 and the first snapshot ofP2 contains versions of itemA. Here, no extra work
is needed as the items can be bridged directly using one of theabove four methods.

2. The itemB (the second horizontal line) disappeared for some time inP1 and reappeared about
halfway through inP2. Thus the last snapshot ofP1 and first snapshot ofP2 will not contain ver-
sions of itemB. Bridging these two items in this case involves virtually extending period of itemB’s
last version until the end ofP2 as if it were present during the last snapshot; and virtuallyextending
its first version’s period until the start ofP3; and then performing the bridging using one of the above
four methods. Each virtual extension is depicted as a dashedline with an arrow indicating the direc-
tion the extension was made. In an implementation, this could be done by simply checking item’s last
version fromP1 and first version fromP2.

151

3. An item could also disappear for one or more schema-constant periods and then reappear again. Item
C (the bottom horizontal line) was present for initial part ofP1. It then disappeared over entire period
P2 and again appeared in the later half ofP3. For such cases, bridging involves virtually extending
the period of the itemC ’s last version fromP1 over multiple schema-constant periods followed by
bridging using one of above methods. SoP1’s version is extended to the wall, then bridged to a virtual
element over all ofP2, then bridged to the extended element inP3.

Figure 53 illustrates the most complex situation of cross-gap gluing over multiple schema-constant
periods. Documents in the top right part of the figure show thetemporal schema corresponding to schema-
change walls in March, May and July respectively. The two time lines correspond to an<assay> item.
The top time line is that contained in the March document; thebottom one is that contained in the July
document. Thereplace anduseNew methods are used for item correspondences in July and September,
respectively. The item identifier during this period is the attribute ‘assayKey ’ of <assay> . In July we
replace the<assay> element with a<genotypingAssay> element, with agenoID attribute as the
item identifier and a mapping type ofreplace . In September the item identifier is changed back to the
nameattribute, with a mapping type ofuseNew.

The item is present during the initial part of schema-constant periodP1, but is removed sometime during
June, as indicated by a terminated line in the middle ofP1. A schema change takes place in July. Since this
item is absent duringP2, no item correspondence is necessary in the replace mappinglist.

A second schema-change takes place in the month of September. An <genotypingAssay> element
that is in fact a version of the old<assay> element present in January reappears sometime in November.
At this point the user wants to associate this new element with the old one fromP1 since both represent the
same assay. In order to perform this association, the user will need to add a pair of identifiers to the old
replace mapping list for the month of July to handle this virtually extended element. Multiple versions of
the replace mapping list could also be maintained as a temporal document;τXMLL INTwould then extract
the relevant snapshot from it.

For the first case, no extra work is needed as the items can be bridged directly using one of the above
four methods.

But, to handle cases 2 and 3, the following two approaches were considered.

• Associate the pieces of an item across a schema change wall by virtually extending period of versions
of the item. As an example, in Figure 52, bridging the two pieces of itemB involves virtually extend-
ing period of itemB’s last version until the end ofP2 as if it were present during the last snapshot;
and virtually extending its first version’s period until thestart ofP3; and then performing the bridging
using one of the above four methods. Similarly, for the item corresponding to the third line, bridging
involves virtually extending the period of the itemC ’s last version fromP1 over multiple schema-
constant periods followed by bridging using one of above methods. SoP1’s version is extended to
the wall, then bridged to a virtual element over all ofP2, then bridged to the extended element inP3.

• The second option is not to extend the “item” across a schemachange wall if it does not exist. So
the item matching semantics, e.g., “useNew” matches only those items that exist immediately before
the wall with those that exist immediately after the wall. Asan example, in Figure 52, bridging the
two pieces of itemsB andC having gaps in their existence across the schema change walls is not
possible.

We decided to take the second approach, since we couldn’t really “know” a priori if an item that reap-
pears is the same item or a different one from the earlier one.

152

Transaction Time

P 1

P 1 P 2 P 3
Replace Use New

Replace

July

July

March

March

assayNumber
Item Identifier is

Item Identifier is Item Identifier is

genoID assayID

assayNumber genoID

Item Identifier is Item Identifier is

Time Varying
Temporal Schema
Document

July
September

March

September December

Figure 53: Cross-Gap Gluing

16.3 Semantics for mixed data and schema changes

A data change in XML documents can co-exist with schema changes within a single transaction, and hence
can occur at exactly the same (transaction commit) time. With schema changes coming into picture, we
also need to consider other factors like name and relative path changes for item identifier fields and other
elements that constitute the content of an item, complicating the process of bridging and hence validation.

We considered three ways to handle this situation.

1. Not allow any data change in a transaction containing schema changes. This is the most stringent
option and makes the user’s job more difficult, forcing him tosplit the task into multiple transactions.
This may not be always feasible from real world point of view.Consider a situation where an element
is modified to have a new ‘required attribute’, data change ismandatory in this case and hence cannot
be separated from schema change. It could be argued that thisis achievable with addition of a new
‘optional’ attribute, followed by required data changes and then making the attribute required. But it
requires more work from the user’s side.

2. Allow schema changes to coexist with data changes, exceptfor schema changes to item identifier

153

fields. This will eliminate the need of replace mapping list and the bridging could always be done
using one of the three options ‘useNew’, ‘ useOld ’, or ‘useBoth ’.

3. Allow data changes to coexist with schema changes within atransaction without any restrictions.

We decided to go with the third approach, as it is the most general. A schema change for an element
can consist of changes to its structure or its attributes or to the element definitions nested within it. Thus,
given two schemas, it becomes very difficult to find the difference between the schemas and to validate the
versions. So, we decided not to validate versions of an item across schema change walls if a schema change
is detected for it.

16.4 Non-Sequenced Constraints

A constraint isnon-sequencedif it is applied to a temporal item as a whole (including the lifetime of the
data entity) rather than to individual time slices. They aredefined in a logical annotation as an extension
of conventional XML Schema constraints. An example of a non-sequenced (cardinality) constraint is: “An
item cannot change more than three times in a year.”. This type of constraint cannot be validated using the
conventional validator and thus needs to be validated usingthe ‘Temporal Constraint Checker’ module of
τXMLL INT.

As mentioned earlier, schemas vary only over transaction time. Hence, non-sequenced constraint vali-
dation is easier in valid time, as schema changes cannot occur.

We considered two alternatives for the applicability of a non-sequenced constraint across schema changes:

• The constraint is applicable only within the schema-constant period in which it is defined.

• The constraint once defined becomes applicable to the entire document.

As per the first approach, any violation of a constraint during previous schema-constant-periods is ig-
nored, while in the second approach, the constraint may be violated even when first defined.

Consider a situation shown in Figure 54. It maintains the same conventions as Figure 52. Changes to an
item are shown by X’s. A new non-sequenced constraint is introduced during third schema-constant period
P3 stating that “An item cannot change more than three times in ayear.” But the item has already undergone
four changes during previous schema-constant periodsP1 andP2.

According to first alternative listed above, the constraintis not violated as long as the item does not
change more than three times in the third schema-constant period. Until there are four changes made after
the schema change, the constraint is not considered to be violated.

According to the second alternative semantics, there is immediately a violation of the constraint, due to
activity during the previous two schema-constant periods.

We decided on the first alternative: to apply a non-sequencedconstraint only within the schema-constant
period in which it is defined. Thus the non-sequenced constraints are “turned off” on any schema change.
So for instance a constraint that says that the content must be constant is checked only up to the schema
wall, and then checked within the new schema starting from the wall. In effect the schema change deletes
all the old constraints and then adds them back as new constraints.

154

Constraint
"No more than
3 changes in a year"
introduced

Constraint
dropped

P 1 P 2 P 3

Transaction Time

January March May August

Figure 54: Non-Sequenced Constraints

155

156

17 Implementation

In this section we present the modifications and enhancements to the tools that have been implemented to
support schema versioning. We also discuss the methodologyused byτXMLL INT and its relationship to
the representation used. These descriptions extend those presented in Section 9.

17.1 Overview

The tools are open-source and beta versions are available [65] and the full implementation and architecture
is described by Joshi [47]. Figure 55 shows the overall architecture of the tools as a UML class diagram [61].
The architecture consists of three packages:tau.xml for the interface of each tool;tau.time for classes
that handle time; andtau.util for utility classes common to all tools and classes.

The tools have been implemented in Java using the DOM API [82]. The DOM API was chosen over
SAX API due to its ability to create an object-oriented hierarchical representation of the XML document
in main memory which can be navigated and manipulated at run-time. This capability has proven to be
extremely useful in all of the tools.

Figure 62 on page 173 shows the overall architecture of the tools as they manage XML documents
and their schemas. A sequence of non-temporal documents is input into SQUASH to create a temporal
representation; this document can then be validated usingτXMLL INT and SCHEMAMAPPER. UNSQUASH

can be used to reconstruct the original non-temporal documents from the temporal representation, while
RESQUASH can be used to create a new representation (e.g., different timestamp locations) from a given
representation.

17.2 τXMLL INT

Figure 63 provides the validation procedure used byτXMLL INT. The first step is to pass the temporal
schema intoτXMLL INT, which ensures that the logical and physical annotations are consistent with the
conventional schema and with each other. Once the annotations are found to be consistent, SCHEMAMAP-
PER is invoked to generate a representational schema from the original conventional schema and the logical
and physical annotations. The representational schema is then used as the schema for the temporal document
and input into a conventional validator (in this case, XMLLINT). The next step is to pass the temporal doc-
ument and the temporal schema toTemporal Constraint Validator Module. This step is to enforce temporal
constraints that are not possible to be enforced by the representational schema alone.

The algorithm forτXMLL INT is given in Figure 58.τXMLL INT is able to check for the following
types of temporal constraints.

Content Constant Content of an element cannot vary over time.

Cardinality Constant Cardinality of an element cannot vary over time.

Existence ConstantThe element cannot disappear and reappear again.

Content Varying Applicability The contents of an item cannot change beyond the period specified by the
contentVaryingApplicability element in the annotation.

Valid Time Frequency The element cannot change more than specified number of timesspecified by the
frequency element.

Maximal Existence Period The element can exist only within the period specified by the
maximalExistence element.

157

Figure 55: Overview class diagram for the tools

τXMLL INT enforces each temporal constraint using a simple brute-force approach. For example, for
an item that has a content-constant constraint, theTemporal Constraint Validatorloops through each version
of the item and determines whether the nodes are DOM-equivalent.

17.3 Tool Modifications and Extensions

In order to implement different classes of representations(as described in Section 18), the tools were reor-
ganized to abstract the details of the representation so that these details may vary freely without affecting
the rest of the code. This was achieved by introducing abstract factory methods [35] in each of the tools
(SQUASH, UNSQUASH, SCHEMAMAPPER, τXMLL INT) in place of the original methods; each abstract
factory method would then call the appropriate concrete method based on the type of representation speci-
fied by the user. Figures 59 and 60 show the placement of the abstract factory method.

The changes to allow the edit-based representation to be used within the tools are described in detail in
Section 18.4, and the changes to the item-based representation are described in Section 18.5.

158

Figure 56: Detailed class diagram fortau.xml

17.4 Schema Versioning

To implement schema versioning, the representational schema had to be generalized so that each schema-
constant period corresponds to a new namespace. Each namespace begins with the root element of the slice
and describes all changes within the SCP in the same way as described in previous sections.

In particular, the tools are constructed in a such a way that schema versioning is handled by a different
Java class than schema-constant cases. This allows flexibility in the way that schema-versioning is im-
plemented and provides an abstraction to the developer. Both the schema-versioning and schema-constant
classes implement the same interface so that the other partsof the tools do not need to be aware of the fact
that schemas are changing. The schema-versioning classes make use of the functionality within schema-
constant classes for each SCP; this again reduces code duplication and promotes software reuse.

Figure 61 shows the method for validating a temporal document with a time-varying schema. (This
method was also presented in Section 18.6 as Figure 63.) To validate such a document,τXMLL INT applies
the conventional validator to the document, using the representational schema produced by SCHEMAMAP-
PER. It then determines the times when the schema changes, thus determining schema-constant periods. For
each such period, the time-varying data checker is invoked to check the temporal integrity constraints over
the time-varying data, with the single base schema and annotations. Then thetemporal constraint checker
glues across the schema change walls and performs the temporal checks across these walls.

159

Figure 57: Detailed class diagram fortau.time

The framework for cross-wall validation is described in detail by Joshi [47] and our implementation
closely follows his design. Briefly, the tools must considerthe following issues that arise with schema
versioning.

Accommodating evolving keys. When a schema-change wall is encountered, items across the wall need
to be associated. This process is calledcross-wallgluing or bridging. This becomes especially tricky if
either the conventional key (specified in the base schema) upon which an item is defined, or if the item iden-
tifier itself (specified in the logical annotation) changes.The solution is to use an<itemIdentifier-

Correspondence> element to determine the type of mapping desired, specifying how old item identi-
fiers are to be mapped to new item identifiers. As described in Section 16.1 this element has four at-
tributes: oldRef , a string naming an item that appears in the old schema,newRef , a string naming an
item that appears in the new schema,mappingType , an XML Schema enumeration, and optionally a
mappingLocation , which is a URI. We have defined four mutually exclusive mapping types.

• useNew: The new identifier must also be present in the old element.

• useOld : The old identifier must also be present in the new element.

• useBoth : An attribute’s name is changed, but its value isn’t.

• replace : Use an externally-defined mapping.

160

Figure 58: Algorithm:τXMLL INT

//Inputs
// conventionalSchema- Parsed conventional schema document
// logicalAnnotation- Parsed logical annotation document
// physicalAnnotation- Parsed physical annotation document
// temporalDocument- Parsed temporal document
function doTemporalValidation (conventionalSchema, logicalAnnotation, physicalAnnotation,

temporalDocument):
initialize ahash-tablewith item-identifier as key and item as hash value
if Consistent(conventionalSchema, logicalAnnotation, physicalAnnotation)

repSchema← doSchemaMapping(conventionalSchema, physicalAnnotation)
if conventionalValidator(temporalDocument, repSchema)

for each elemente in the temporalDocumentdo
if isTimeVarying(e, logicalAnnotation)

evaluate the item-identifier
if item-identifierin hash-table

if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version

else
create a new version

else
create a new item inhash-table, with one version

for each item in hash-tabledo
for each sequenced and non-sequenced constraintin temporalAnnotationdo

if the constraint is not satisfied
display errors

else
display errors generated by the conventional validator

else
display errors

161

Conventional

SQUASH Temporal Document
Document

Conventional

Figure 59: SQUASH before abstract factory methods were added.

Conventional

SQUASH

Process_Item

Process_Edit
Edit−based

Type?
Rep.

Item−based

Temporal DocumentDocument
Conventional

Figure 60: SQUASH after abstract factory methods were added.

Slice

Temporal

Temporal
Document

Schema
Temporal

Messages
Error

Schema
Representational

MAPPER

Conventional

Validator

Validator

SCHEMA

Data

Validator
Constraint
Temporal

Temporal
Schema

Figure 61: Validating a document with Time-Varying Data anda Time-Varying Schema.

This could be best described with an example. Say that in 2002the item identifier is theathID attribute
of the<athlete> element. In January 2005, this attribute is renamedathNumber ; we specify a mapping
type ofuseBoth . In March 2005, the item identifier is changed to theathName element, with a mapping
type ofuseNew. (This attribute has been around since 2002, but it wasn’t used as a key until January 2005.)
Assume that, in June 2005 we add a new attribute,athKey , and specify that as the item identifier, with
a mapping type ofuseOld . Finally, in July 2005, just before the beginning of the games, we replace the

162

<athlete> element with a<player> element, with aplayerID attribute as the item identifier and a
mapping type ofreplace .

The gluing of elements into items is then done the following way. Before 2005, theathID is used for
gluing. When the schema change occurs sometime in January 2005, we glue across the schema change by
matching theathID value of the element before the schema change with theathNumber value after the
change: these (integer) values must match for the two elements to be glued. In March 2005, we glue across
the schema change by matching up old elements and new elements that have the same (string) value for
their athName element, the new item identifier. The only difference is thatbefore the schema change, that
element was present but wasn’t being used as a key. In a consistent fashion, in June we also glue using the
athName element, which was theold item identifier.

July is the most complex. We need to glue an<athlete> element with an item identifier ofathKey
with a<player> element with an item identifier ofplayerID . For this, we use theMappingLocation
attribute in the temporal schema to access a mapping table that provides a list of pairs, each with anathKey
and aplayerID value.

Accommodating gaps. When gaps appear in the lifetime of an item, the process of finding the correspon-
dence between the items from corresponding SCPs becomes more difficult. To handle the case of gaps, it
has been decided to create a new item when the element reappears; that is, the first item is not virtually
extended across a schema change wall, since it is difficult orimpossible to know a priori if an item that
reappears is the same item or a different item. Thus, when gaps appear, the tools create a new item and both
the original item and new item are treated like every other item in the evaluation.

Semantics for mixed data and schema changes.When a data change co-exists with a schema change
within a single transaction,τXSchema places no restrictions on the types of changes allowed; this is the most
general and flexible design. However, given two schemas, it becomes very difficult to find the differences
between them and validate the versions. Thus, versions of anitem across schema change walls are not
validated if a schema change is detected for it. This decision leads to no additional work needed from the
tools.

Non-sequenced constraints. Here we consider temporal constraints such as“An item can only be changed
3 times per year.”Note that it has been decided to consider non-sequenced constraints only within a SCP
since the user might introduce unintended complexity when specifying new constraints in the middle of the
year: should the constraint be checked only from that point forward or from the beginning of the docu-
ment’s lifetime? This means that the tools must verify each constraint within each SCP separately, which is
relatively simple. For example, for the above temporal constraint, the tools must simply check the number
of versions of an item and make sure that it is less than or equal to the specified amount. Note that only the
theoretical design exists for some non-sequenced constraints; full implementation is left for future work.

We note that the complete set of features and functionality described above is not yet implemented by
the tools.

17.5 Packages

Here we describe the packages that have been created to support the tools.

tau.xml This package contains interfaces and classes corresponding to toolsτXMLL INT, SCHEMAMAP-
PER, SQUASH, and UNSQUASH. The details of the important classes used for data versioning are given
below.

163

• Item : Provides an abstraction for a logical item. It contains methods for manipulating versions, their
coalescing validation.

• RepItem : Provides an abstraction for actual representation item element in the XML document.
It provides methods for conversion of an XML element to/froma logical item. Both these classes
extend from the base classBaseItem , which provides common functionality.

• ItemIdentifier : Provides an abstraction for item-identifier.

• Primitives : Provides implementation for primitives explained in Section 9.1.

• LogicalAnnotationValidator andPhysicalAnnotationValidator : Provide checks
for the consistency of logical and physical annotations with the conventional schema.

• DoSchemaMapping , DoSquashing , DoUnSquashing , DoTemporalValidation : Pro-
vide the implementation for the algorithms explained in Section 7. Each of the classes implement
corresponding interfaces preceding their name by ‘I ’. As an example,DoSquashing implements
IDoSquashing .

The extended tools for schema versioning use these classes internally to manipulate schema-versionsed
XML documents. The classes used for schema-versioning areDoSVDataSquashing , DoSVDataUn-
Squashing ,DoSVTemporalValidation , andDoSVSchemaMapping ,where ‘SV’ stands for ‘schema-
versioned’. The implementation of these classes first identify schema-constant-periods and call correspond-
ing data-versioning classes on individual schema-constant-periods.

The classesSquash , UnSquash andτXMLL INT provide commond-line tools for the end-user. These
classes accept temporal schemas and temporal documents files as command line parameters and internally
invoke schema-versioning or data-versioning tools depending upon whether the schema is versioned or not.

tau.time This package contains the implementation of classes to handle time. It provides implementation
for both TimePeriod (used for single time dimension) andTemporalRegion (used for bitemporal
elements).

tau.util This package contains utility classes.SchemaPathEvaluator provides abstraction for eval-
uating schemapath expressions. Given a target and reference element, the function checks for the consis-
tency of the target according to the conventional schema. This functionality is used by bothLogical-
AnnotationValidator , PhysicalAnnotationValidator andItemIdentifier .

As explained, the class for every tool implements its corresponding interface. Thus, it is easily pos-
sible to accommodate a new implementation of these tools fora new representations without necessi-
tating many changes to the overall picture. Use of ‘AbstractFactory’ design pattern makes the inte-
gration and selection of the new representation seamless byaddition of just a few lines of codes to the
RepresentationFactory class.

To add a new representation, we need to add new classes implementing the new representation for each
tool. Each class needs to implement the corresponding interface mentioned earlier. Once these classes are
added, a small addition of code is needed to theRepresentationFactory class. Then, any represen-
tation can be easily selected by providing corresponding parameter to theRepresentationFactory
class.

164

18 Representations

In this section we present the design space for temporal representations in XML. We first introduce and
describe some aspects relating to schema versioning. We then characterize the general design space. Then
we elaborate on the edit-based, item-based, and slice-based approaches.

18.1 Schema Versioning Considerations

In the following sections our focus is on the different approaches to representig temporal data. However,
central to each approach is the method of handling schema versioning. This section briefly summarizes
some concepts that are present in each method.

A key idea that first appeared in a paper on temporal aggregation [74] is that ofschema-constant periods
(SCP). It is possible, even with versioned schemas having themselves versioned schemas, to identify con-
tiguous periods of time when there are no schema changes, anywhere. These are termed as schema-constant
periods. These periods are non-overlapping and continuous; between the periods are schema changewalls.
Now, during these periods the data may be (and probably is) versioned, but at least we have a fixed base
schema and fixed logical annotations, each of which has a fixedschema. And since the physical annotations
are fixed, the representation is also fixed, so it is possible to read and interpret the temporal document during
that schema-constant period, and even to validate that portion of the document. So a general temporal doc-
ument can be viewed as a sequence of data-varying documents,each over a single schema-constant period.
Since we can validate each schema-constant period, given the approaches outlined by Joshi [47], all we
have to do is validate across schema changes.

For each of the representation classes below, we will show how schema change walls are handled. How-
ever, for simplicity, most examples will contain a single schema constant period without loss of generality.

18.2 Design Space

Researchers have proposed and evaluated many different temporal representations on an individual basis
[12, 19, 38, 47, 52, 67]. We have found that all extant representations can be categorized into one of four
categories depending on the decisions made to the followingtwo considerations. The first consideration
is whether the resulting representation will keep the entire content of a slice explicitly or use some sort of
compression which requires slices to be reconstructed but eliminates data duplication. We call this decision
Direct or Indirect. The second consideration is whether the resulting representation will explicitly capture
the changes to the XML tree or will only capture changes to thefile itself without any knowledge of XML.
We call this decisionItemedor Flat. As these considerations are orthogonal, they induce four possible
classes of representations, as shown in Table 4. The Flat classes do not consider XML structure and instead
treat the file as a flat text file; the Itemed classes use XML structure within the representation. The Direct
classes maintain full versions of each slice in the representation which may result in data duplication; the
Indirect classes use some sort of compression which requires slices to be reconstructed but alleviates all
data duplication. We now name and briefly describe each classin turn.

Flat Itemed
Direct Slice-based Item-based

Indirect Edit-based Reference-based

Table 4: The design space of temporal representations and the resulting classes.

Theslice-basedrepresentation class maintains the full text content of each slice throughout the entire

165

history of a document and does not use knowledge of XML structure. Each new slice is simply appended
to the representation with the appropriate timestamp. In this way, a full history of slices is maintained
in a single representation. Two advantages of the slice-based scheme are its simplicity and its ease of
implementation: no processing or logic is needed to add a newslice. Another advantage is the ease of
reconstructing an arbitrary slice: one must simply find the requested timestamp and select the corresponding
slice. The major disadvantage of this scheme is the size of the resulting representation: it will grow linearly
with the size and number of slices and will thus require both alarger amount of disk space and a large
amount of memory for processing. We elaborate on this in Section 18.3.

Theedit-basedrepresentation class maintains the full text content of only the most recent slice, storing
reverse edit scripts for each additional slice. It does not use knowledge of XML structure; instead it uses
the well-known diff tool to compute the text differences between two slices. This scheme can often result
in an extremely compact representation but requires extra processing to reconstruct and validate past slices.
More detail is given in Section 18.4.

The item-basedrepresentation class creates and maintains an item for eachtime-varying XML element.
It keeps each slice intact and uses knowledge of XML structure. An item is a collection of versions that
in concert represent the same real-world entity. It is a logical entity that evolves over time through various
slices. This scheme is compact and allows for fast validation. More detail is given in Section 18.5.

The reference-basedrepresentation class is similar to the item-based representation in that it uses the
concept of items. However, the reference-based scheme depends on key identifiers (via XML Schema
<key> elements) in each element node. Here, every item is present as a child of a top level element, and
then each slice representation makes references to one or more of these items. Thus, this scheme factors out
common data items to avoid duplication, but as a result the slices do not remain fully intact. This scheme
provides similar size performance to the item-based schemeon average and performs similarly in validation
time.

Listings 116–121 show two slices of an XML document and the resulting representation in each of
the four classes of representations. In each case, SQUASH is used to transform the two slices into the
single representation, and UNSQUASH can be used to recreate the original two slices from each of the four
representations. Table 4 summarizes the design space.

Listing 116: Slice on 2008-01-01.
<!-- 2008-01-01 -->
<person>

<fname>Steve </ fname>
<age>24</ age>

</ person>

Listing 117: Slice on 2008-03-17.
<!-- 2008-03-17 -->
<person>

<fname>Steve </ fname>
<age>25</ age>

</ person>

Listing 118: Slice-based representation.
<tv_root>

<timestamp begin ="2008-01-01">
<person>

<fname>Steve </ fname>
<age>24</ age>

</ person>
</ timestamp>
<timestamp begin ="2008-03-17">

<person>
<fname>Steve </ fname>
<age>25</ age>

</ person>
</ timestamp>

</ tv_root>

Listing 119: Edit-based representation.
<tv_root>

<timestamp begin ="2008-03-17">
<person>

<fname>Steve </ fname>
<age>25</ age>

</ person>
</ timestamp>

<timestamp begin ="2008-01-11" >
<change lines ="3">

< ; age> ;24< ;/ age> ;
</ change>

</ timestamp>
</ tv_root>

166

Listing 120: Item-based representation.
<tv_root>

<person>
<fname>Steve </ fname>
<age_Item>

<age_Version begin ="2008-01-01">
<age>24</ age>

</ age_Version>

<age_Version begin ="2008-03-17">
<age>25</ age>

</ age_Version>
</ age_Item>

</ person>
</ tv_root>

Listing 121: Reference-based representation.
<tv_root>

<person>
<fname>Steve </ fname>
<age_Item itemRef ="1"/>

</ person>
<age_Item itemID ="1"/>

<age_Version begin ="2008-01-01">
<age>24</ age>

</ age_Version>
<age_Version begin ="2008-03-17">

<age>25</ age>
</ age_Version>

</ age_Item>
</ tv_root>

18.3 Slice-Based Representation

As mentioned previously, theslice-basedrepresentation class maintains the full text content of each slice
throughout the entire history of a document and does not use knowledge of XML structure. Each new slice
is simply appended to the representation with the appropriate timestamp. In this way, a full history of slices
is maintained in a single representation, albeit with obvious data duplication.

Since any data change will result in a new copy of the entire XML tree, and any schema change will
result in a new wall, we can expect the size of the representation to grow linearly with the number of
slices. In some real-world scenarios where each slice is on the order of kilobytes and the number of slices
is measured in the thousands, this size growth can become problematic for both disks (for storage) and
memory (for parsing and processing). However, this approach is extremely simple and so it is often a
researcher’s initial idea.

This approach can be thought of as a special case of the item-based scheme with the physical time-
stamp placed at the root. With this strategy, the slice-based scheme can be trivially implemented into the
τXSchema tools.

18.4 Edit-Based Representation

Theedit-basedscheme (also calleddiff-basedor delta-based) is proposed and described in several research
papers [13, 19, 53]. Briefly, this representation maintainsthe most recent version of the document and then
only the edits necessary to transform each slice into the previous (see Listing 119).

The edit-based scheme has the potential of minimizing the representation size in some cases, and on
average, will result in significantly smaller representation than the slice-based approach. Another advantage
of the edit-based scheme is the relative simplicity of the construction of the representation.

However, the edit-based approach suffers from high processing overhead to reconstruct early versions,
since the edit script has to be applied for every slice in between. It is also difficult to make time-traveling
queries [37] since either the entire version history must first be reconstructed, or a complex analysis of the
edit scripts must be performed. Also, it is important to notethat the edit scripts are saved as text only and
not XML trees; as a result, it is difficult or impossible to validate temporal constraints directly on the edit
scripts.

We have implemented this representation in theτXSchema tools with the following approach. First, we
take the most recent slice in its entirety and place it as a subelement of a<timestamp> element. Then, for
each successive slice, we rundiff -e to compute the difference.diff is a standard command line tool

167

that computes the difference between two files. The-e option formats the output into aned script. We
encode the output ofdiff -e as follows.

Listing 122: diff output.
1 6c
2 <quantity >2</quantity >
3 .

Listing 123: Edit-based encoding.
1 <change lines ="6">
2 < ;quantity > ;2< ;/quantity > ;
3 </ change>

We create a<change> , <add> , or <delete> element depending on the operation specified bydiff

(line 1 of Listing 122), along with thelines attribute. The text content of the new element is set to be the
output of diff with special characters (e.g., angle brackets) encoded to retain valid XML syntax (i.e., “<”
is replaced with“< ”). To recreate an arbitrary slice, we iteratively apply thepatch tool on the diff

output.
One important but easily overlooked detail with this approach is the issue of white space. Since white

space is an important and necessary characteristic ofdiff output, it should be captured and maintained in
the resulting representation. However, the default behavior of DOM and other parsers is to ignore whites-
pace in elements that don’t explicitly set thexml:space attribute to preserved [84], which could cause
problems during thepatch ing stage. For example, consider the simple document shown in Listing 124.
After being parsed by DOM and then written to disk, the resulting file could look something similar to the
document shown in Listing 125.

Listing 124: Original document.
<a>

foo </ b>
</ a>

Listing 125: Parsed and output by DOM.
<a>foo </ b>
</ a>

Since the edit-based representation outputs the latest slice in its entirety and then uses this as the starting
point for the reverse edit scripts, it is crucial that newlines be preserved. To achieve this, we introduce a
filter that is applied to the conventional documents before they are parsed by DOM; the filter encodes each
newline in the original document with a<tXnl> element (meaning “τXSchema new line”). See Listing 126
and 127 for an example filter output.

Listing 126: Original document.
<a>

foo </ b>
</ a>

Listing 127: After filter and DOM mangling.
<a> <tXnl/>< b>foo </ b><tXnl/>
</ a>

We then apply the reverse filter after writing the latest slice to disk (that is, the filter removes all newlines
and then replaces all<tXnl> with newlines) to ensure that the newly written file matches the newline
structure of the original, and thus the reverse edit scriptswill work correctly.

To implement temporal validation of this representation, we use the following approach. For each
schema-constant period, we UNSQUASH the temporal document into individual slices and then SQUASH

them into a slice-based representation. We can then use the tools to validate the new slice-based represen-
tation. This allows us to use the same (unmodified) tools to validate all three representation classes, which
promotes software reuse and reduces complexity. We argue that this approach is necessary in order to val-
idate some temporal constraints, since it is impossible to do so using the edit scripts alone. However, there
is some performance degradation due to the extra steps involved. This tradeoff is quantified in Section 18.7.

Note that the above approach must treat each schema-constant period separately, as opposed to the entire
representation, due to the nature of the edit-based scheme.Section 18.4.2 below elaborates on this idea.

Through this implementation strategy, we are able to fully capture, reproduce, and validate the changes

168

between slices with the help of commonly available tools andcreate a practically useful edit-based repre-
sentation.

18.4.1 Capturing Namespaces

Since the edit-based approach does not represent data changes in an XML format (rather, these changes
are captured in encoded text within an XML element), the issue of capturing namespaces does not arise.
The output of diff does not indicate what kind of change occurred on a line (e.g., namespace change
versus element change), only what lines changed and the new values of those lines. Thus, when namespace
changes occur, we cannot detect them explicitly and so we handle them in the same manner as any other
schema change.

18.4.2 Schema Versioning

Changes to the schema are handled with the following approach. For each schema change, we represent a
wall by inserting a new<schemaVersion X> element. Each<schemaVersionX> is populated with a
set of one or more<tv:timestamp> sub-elements: the first such sub-element contains the entire version
of the most recent slice in the current schema-constant period, and each additional sub-element contains
the edit script produced bydiff . Listing 128 shows an example edit-based representation with schema
versioning.

Listing 128: Edit-based representation with schema versioning.

1 <sv_root>
2 <schemaItem>
3 <schemaVersion0>
4 <tv : timestamp begin ="2008-03-17">
5 <rep0 : person>
6 ...
7 </rep0 : person>
8 </tv : timestamp>
9 <tv : timestamp begin ="2008-01-11" >

10 <change lines ="3">...</ change>
11 </tv : timestamp>
12 <tv : timestamp begin ="2008-01-07" >
13 <change lines ="8">...</ change>
14 </tv : timestamp>
15 ...
16 </ schemaVersion0>
17 <schemaVersion1>
18 <tv : timestamp begin ="2008-04-23">
19 <rep0 : person>
20 ...
21 </rep0 : person>
22 </tv : timestamp>
23 <tv : timestamp begin ="2008-04-10" >
24 <change lines ="3">...</ change>
25 </tv : timestamp>
26 ...
27 </ schemaVersion1>
28 </ sv_root>

The design of this representation is such that each SCP is exactly similar in syntax and format to the static
schema case. The representational schema must then be constructed so that for each SCP the contents of the
base schema are inserted as a sub-element of a timestamp element. Timestamp elements are also permitted
to havechange , add , or delete sub-elements to encode the edit scripts.

169

18.5 Item-Based Representation

Theitem-basedscheme [47] creates and maintains an item for each time-varying element and was the origi-
nal representation type implemented inτXSchema. Anitemis a collection of XML elements that in concert
represent the same real-world entity. It is a logical entitythat evolves over time through various slices. An
item can occur at any level in the XML tree hierarchy, and is specified by the user via a physical annotation.
Every occurrence of the actual time-varying element from the conventional document is replaced by its
corresponding item. The item-based representation has thefollowing features.

• Only elements can be time-varying and can have versions. Theimmediate content (text and at-
tributes), is considered to be an integral part of an elementand therefore does not have a separate
time-varying lifetime.

• A version of an element is created when the immediate contentor attributes of an element change.
This includes text content, sub elements, comments, and processing instructions. The change must
be observable through DOM: only changes observable throughDOM create a new version. This
implies that whitespace and attribute ordering does not create a new version. In contrast, since the
edit-based representation usesdiff to observe changes, whitespace and attribute ordering would
create a new edit script in the representation.

• If an element is glued but remains unchanged, then the lifetime of the current version of the element
is extended; no new version is created. This implies that versions are coalesced [47].

• The timestamp that represents the version’s lifetime is aN -dimensional temporal element. It may
includenow, until changed , and/or indeterminate times.

We now extend the item-based representation to explicitly capture schema versioning and namespaces
with elements. These tasks are accomplished with the use of additional elements and namespaces in the
resulting representation. Briefly, each elemente in the original document with namespacens will take on
the following form in the representation,

<ns:e> ⇒ <rep X Y ns:e>

whereX andY are unique integers for each schema-constant period and namespace change, respectively.
The following sections describe this production in more detail and provide examples.

18.5.1 Capturing Namespaces

A conventional document may have more than one namespace, with each namespace associated with a
different schema. Further, these namespaces may change from slice to slice without a schema changing
(i.e., the namespace mapping in the conventional document changes, but the conventional schema does not
change). To capture and reproduce such situations, each namespace in each slice must be mapped by the
tools to a unique namespace in the representation. Considerthe two slices shown in Listings 129 and 130.

Listing 129: Slice on 2008-01-01.
<!-- 2008-01-01 -->
<a>

<ns1 : b>foo </ns1 : b>
<ns2 : c>bar </ns2 : c>

</ a>

Listing 130: Slice on 2008-03-17.
<!-- 2008-03-17 -->
<a>

<ns1 : b>foo1 </ns1 : b>
<ns2 : c>blah </ns2 : c>

</ a>

In this simple example, three different namespaces are usedand remain constant between slices (specif-
ically, the default namespace,ns1 and ns2). The resulting representation (Listing 131) has one corre-
sponding namespace for each of the original namespaces. Here, the rep namespace corresponds to the
default namespace used by<a> in the slices.

170

Listing 131: Item-based representation of Listings 129 and130.

1 <tv_root>
2 <rep : a>
3 <!-- rep_ns1 is a newly created namespace -->
4 <rep_ns1 : b_RepItem>
5 <rep_ns1 : b_Version begin ="2008-01-01">
6 <ns1 : b>foo </ns1 : b>
7 </rep_ns1 : b_Version>
8 <rep_ns1 : b_Version begin ="2008-03-17">
9 <ns1 : b>foo1 </ns1 : b>

10 </rep_ns1 : b_Version>
11 </rep_ns1 : b_RepItem>
12

13 <!-- rep_ns2 is a newly created namespace -->
14 <rep_ns2 : c_RepItem>
15 <rep_ns2 : c_Version begin ="2008-01-01">
16 <ns2 : c>bar </ns2 : c>
17 </rep_ns2 : c_Version>
18 <rep_ns2 : c_Version begin ="2008-03-17">
19 <ns2 : c>blah </ns2 : c>
20 </rep_ns2 : c_Version>
21 </rep_ns2 : c_RepItem>
22 </rep : a>
23 </ tv_root>

Since no naming conflicts are present in this scenario, the unique integerY is not necessary and is therefore
omitted. Similarly, the unique integerX for the SCP is omitted. To illustrate a scenario where a naming
conflict occurs, consider the following two slices.

Listing 132: Slice on 2008-01-01.
<!-- 2008-01-01 -->
<a>

<ns1 : b>foo </ns1 : b>
<rep_ns1 : c>bar </rep_ns1 : c>

</ a>

Listing 133: Slice on 2008-03-17.
<!-- 2008-01-01 -->
<a>

<ns1 : b>foo1 </ns1 : b>
<rep_ns1 : c>bar </rep_ns1 : c>

</ a>

Since <ns1:b> is time-varying, we need to create an item and thus a new namespace for the item. We
can not userep ns1 in the resulting representation because that namespace already exists in the original
slice and would cause confusion. Instead, we create a new namespacerep 0 ns1 , as shown in Listing 134.

Listing 134: Item-based representation of Listings 132 and133.

1 <tv_root>
2 <rep : a>
3 <rep_0_ns1 : b_RepItem>
4 <rep_0_ns1 : b_Version begin ="2008-01-01">
5 <rep_0_ns1 : b>foo </rep_0_ns1 : b>
6 </rep_0_ns1 : b_Version>
7 <rep_0_ns1 : b_Version begin ="2008-03-17">
8 <rep_0_ns1 : b>foo1 </rep_0_ns1 : b>
9 </rep_0_ns1 : b_Version>

10 </rep_0_ns1 : b_RepItem>
11

12 <rep_rep_ns1 : c>bar </rep_rep_ns1 : c>
13 </rep : a>
14 </ tv_root>

In this scenario, the value0 happens to be the first unique integer that relieves the naming conflict. If
there already exists a namespacerep 0 ns1 in the original document, then the representation would try
rep 1 ns1 . If rep 1 ns1 already exists, this process would iterate until no conflicts remain.

171

18.5.2 Schema Versioning

To achieve schema versioning in the item-based representation class, we introduce one level of abstrac-
tion. For each schema-constant period, we create a new representational schema in the normal way and
define a unique namespace for this schema of the form<rep X Y > as described above. Then, in the main
representational schema, we import the representational schema for each SCP and define a new element
<schemaItem> . Sub-elements of this element correspond to each SCP and thus each <rep X Y > name-
space. Listings 135 and 136 below show an simple example of schema versioning and Listing 137 shows
the representational schema.

Listing 135: Version 1 of a simple schema.
23 ...
24 <element name="athlete">
25 <complexType mixed ="true">
26 <sequence>
27 <element name="athName"
28 type ="string"/>
29 </ sequence>
30 <attribute name="athID"/>
31 <attribute name="age" />
32 </ complexType>
33 </ element>
34 ...

Listing 136: Version 2 of a simple schema.
23 ...
24 <element name="athlete">
25 <complexType mixed ="true">
26 <sequence>
27 <element name="athName"
28 type ="string"/>
29 </ sequence>
30 <attribute name="athNumber"/>
31 <attribute name="age" />
32 </ complexType>
33 </ element>
34 ...

Note that the filesrep0.xsd andrep1.xsd correspond to the representational schemas created for the
two SCPs. Each defines the namespace and elements corresponding to its SCP.

The temporal document then has one<schemaVersion X> element for each SCP and the representa-
tion proceeds in the normal way. Listing 138 shows the temporal document created in the scenario.

18.6 Functionality Placement: Schema vs. Tools

To this point we have focused on how the user describes his temporal documents and their schemas. We now
turn to examine where schema constraint functionality is placed and the issues that arise when validating
temporal constraints. In this section we focus on the latter.

Before facing these issues, it is convenient to discuss the approach that theτXSchema tools take to
validate temporal contraints. Figure 62 shows the overall architecture of the tools as they manage XML
documents and their schemas. A sequence of non-temporal documents is input into SQUASH to create a
temporal representation; this document can then be validated usingτXMLL INT and SCHEMAMAPPER.
UNSQUASH can be used to reconstruct the original non-temporal documents from the temporal representa-
tion, while RESQUASH can be used to create a new representation (e.g., different timestamp locations) from
a given representation.

Figure 63 provides the validation procedure used byτXMLL INT. The first step is to pass the temporal
schema intoτXMLL INT, which ensures that the logical and physical annotations are consistent with the
conventional schema and with each other. Once the annotations are found to be consistent, SCHEMAMAP-
PER is invoked to generate a representational schema from the original conventional schema and the logical
and physical annotations. The representational schema is then used as the schema for the temporal document
and input into a conventional validator (in this case, XMLLINT). The next step is to pass the temporal doc-
ument and the temporal schema toTemporal Constraint Validator Module. This step is to enforce temporal
constraints that are not possible to be enforced by the representational schema alone.

A key design decision during the validation of temporal constraints is the placement of functionality:
should a constraint be implemented in the representationalschema or within the temporal constraint val-
idator? Implementing (orexpressing, or enforcing) constraints in the representational schema may provide

172

Legend of Arrows

10. Representational
Schema

0. XML Schema

7. Physical Annotation

1. TSSchema 2. ASchema 3. ASchema

5. Temporal Schema

6. Logical Annotation

SCHEMA
MAPPER

SQUASH

UNSQUASH

8. Conventional
Document

4. Conventional
Schema

9. Temporal
Document

tXMLLINT

11. Error Messages

RESQUASH

Input/Output References Namespace

Legend of Arrows

Figure 62: The overall architecture ofτXSchema.

SCHEMA

Temporal
Constraint

Temporal
Document

Schema
Temporal

Messages
Error

Schema
Representational

MAPPER

Conventional

Validator

Validator

Figure 63: Validating a document with Time-Varying Data:τXMLL INT.

faster validation since a conventional validator can be invoked directly, but may result in increased size and
complexity of the representational schema. Conversely, implementing constraints in the temporal validator

173

Identity Referential Cardinality Datatype
Sequenced × × X X

Non-sequenced × × × ×

Table 5: The classes of constraints that can be implemented in a representational schema in the general case.

may yield small and compact schemas, but requires more time to perform the validation since the tools must
perform checks across all slices sequentially and individually in the worst case.

In the following sections we explore two issues related to the placement of functionality. First, we
determine which temporal constraints are possible to be expressed in a representational schema using the
item-based representation class9 and which can only be implemented in the temporal constraintvalidator.
Second, for those constraints that can be implemented in both the schema and the temporal constraint
validator, we provide a brief analysis of the tradeoffs between the two placements.

18.6.1 Constraints

In this section we discuss bothsequenced(enforced at each point in time) andnon-sequenced(enforced on
the temporal document as a whole) constraints and determinefor each whether it is possible to express that
constraint in the representational schema. For both sequenced and non-sequenced constraints, we focus on
the following classes of constraints.

Identity constraints These constraints restrict uniqueness of elements and attributes in a given document.
Identity constraints are defined in the schema document using a combination of<selector> and
<field> sub-elements within an<key> or <unique> element.

Referential Integrity constraints These constraints, defined using the<keyref> element, are similar to
the corresponding constraints in the relational model. Each referential integrity constraint refers to a
valid key or unique constraint and ensures that the corresponding key value exists in the document.
For example, a<keyref> can be defined to ensure that only valid product numbers (i.e., those that
exist for a <product> element) are entered for an order.

Cardinality constraints The cardinality of elements in XML documents is restricted by the use ofminOccurs

and maxOccurs in the XML Schema document. The cardinality of attributes isrestricted using
optional , required , or prohibited .

Datatype restrictions Datatype definitions can restrict the structure and contentof elements, and the con-
tent of attributes. For example, a datatype definition can restrict the content of an element<age> to
be between 0 and 100.

Table 5 provides a sneak-peak summary of which of the eight classes of constraints we claim can be imple-
mented in the representational schema in the general case. We now provide an argument for each cell of
this table in turn.

18.6.2 Sequenced Constraints

In this section we examine whether each class of sequenced constraints can be enforced by a representational
schema. Given a conventional XML Schema constraint, we define the corresponding logical semantics in

9Section 18 introduces and describes the four kinds of representation classes and Section 18.6.4 outlines how the other three
classes affect this analysis.

174

XML Schema in terms of asequenced constraint. For example, a conventional (cardinality) constraint,
“There should be between 0 and four 4 URLs for each supplier,”has the following sequenced constraint:
“There should be between 0 and 4 website URLs for each supplier at every point in time.”

For each sequenced constraint below we use the following approach. If we claim that the constraint can
be enforced by a representational schema, we outline a method that can be used by theτXSchema tools
to transform the sequenced constraint syntax into standardXML Schema syntax. If, on the other hand, we
claim that the constraint cannot be enforced by a representational schema, we provide a counter example
that illustrates the specific shortcoming of XML Schema thatforbids the constraint to be enforced.

Identity Constraints We claim that identity constraints of elements and attributescannotbe enforced in
a representational schema in the general case. To see this, consider the following example that begins with
Listings 139 and 140. In this example, we require<zip> elements to have uniquecode attributes via an
identity constraint namedzipUnique .

Listing 139: XML Schema<unique> .
25 ...
26 <xs : unique name="zipUnique">
27 <xs : selector xpath ="zip"/>
28 <xs : field xpath ="@code"/>
29 </xs : unique>
30 ...

Listing 140: Uniquecode s (slice 1).
163 ...
164 <zip code ="85721"> Tucson , AZ </ zip>
165 <zip code ="85001"> Phoenix , AZ </ zip>
166 ...

Now suppose the user were to change thecode for Tucson to be the same as Phoenix (violating the
conventional schema’s identity constraint), and then backagain (see Listings 141 and 142).

Listing 141: Slice 2 (invalid).
163 ...
164 <zip code ="85001"> Tucson , AZ </ zip>
165 <zip code ="85001"> Phoenix , AZ </ zip>
166 ...

Listing 142: Slice 3 (valid).
163 ...
164 <zip code ="85721"> Tucson , AZ </ zip>
165 <zip code ="85001"> Phoenix , AZ </ zip>
166 ...

Assuming that the physical annotations place the timestamps at the <zip> element level, the above
actions would create an item-based representation similarto the one shown in Listing 143.

Listing 143: Squashed version of the three slices.
89 ...
90 <zip_RepItem>
91 <zip_Version begin ="1" end ="1">
92 <zip code ="85721"> Tucson , AZ </ zip>
93 </ zip_Version>
94 <zip_Version begin ="2" end ="2">
95 <zip code ="85001"> Tucson , AZ </ zip>
96 </ zip_Version>
97 <zip_Version begin ="3">
98 <zip code ="85721"> Tucson , AZ </ zip>
99 </ zip_Version>

100 </ zip_RepItem>
101

102 <zip_RepItem>
103 <zip_Version begin ="1">
104 <zip code ="85001"> Phoenix , AZ </ zip>
105 </ zip_Version>
106 </ zip_RepItem>
107 ...

With this representation, there is no way to create an identity constraint in XML Schema that can
detect that bothcode values at time 2 are the same. If the constraint were constructed to restrict all

175

./zip RepItem/zip Version/zip/@code values10 to be unique, this would fail since at times 1 and
3, Tucson has acode value of 85701, and this is legal in our temporal constraint.If the constraint were
constructed to require all./zip Version/zip/@code within each ./zip RepItem to be identical, this
would also fail since the user is allowed to change the zip code from slice to slice.

One could imagine extending the constraint shown in Listing139 to include key specification fields
begin and end for the valid times associated with each version of thezip element, as shown in List-
ing 144 on lines 29 and 30, with the corresponding attributesin the element specification.

Listing 144: XML Schema<unique> with additional fields.
25 ...
26 <xs : unique name="zipUniqueAttempt">
27 <xs : selector xpath ="zip"/>
28 <xs : field xpath ="@code"/>
29 <xs : field xpath ="@begin"/>
30 <xs : field xpath ="@end"/>
31 </xs : unique>
32 ...

As long as thebegin and end attributes are maintained in proper order (which can be checked by
τXMLL INT), the keys will uniquely identify each key within each snapshot. Listing 145 below shows an
example where the addition of such attributes will achieve the desired functionality. Here, the conventional
validator would detect that thezip elements on lines 95 and 104 are in violation of the unique constraint,
which is indeed correct.
However, this approach will not succeed in the general case because it only enforces uniqueness at the
interval end points and not anywhere within the interval. For example, consider the excerpt from a squashed
document shown in Listing 146. We see that the elements on lines 95 and 101 conflict our desired constraint,
but since thebegin attributes are distinct, XML does not detect an error.

Listing 146: Squashed document with multiple changes
89 ...
90 <zip_RepItem>
91 <zip_Version begin ="1" end ="1">
92 <zip code ="85721" begin ="1" end ="1"> Tucson , AZ </ zip>
93 </ zip_Version>
94 <zip_Version begin ="2" end ="2">
95 <zip code ="85001" begin ="2" end ="2"> Tucson , AZ </ zip>
96 </ zip_Version>
97 </ zip_RepItem>
98

99 <zip_RepItem>
100 <zip_Version begin ="1" end ="2">
101 <zip code ="85001" begin ="1" end ="2"> Phoenix , AZ </ zip>
102 </ zip_Version>
103 </ zip_RepItem>
104 ...

We are thus forced to conclude that XML Schema lacks sufficient capability to discriminate time boundaries
in a way that would allow sequenced identity constraints to be enforced.

Referential Integrity Constraints We claim that referential integrity constraintscannotbe implemented
in a representational schema. The argument is similar to that for identity constraints: there is no way to
create a constraint in XML Schema that can both satisfy referential integrity and time issues. Consider the
example shown in Listings 147 and 148.

10This is XPath code [77].

176

Listing 147: A referential constraint.
31 ...
32 <!-- Defines a key named "pNumKey" -->
33 <key name="pNumKey">
34 <selector xpath ="states/state"/>
35 <field xpath ="@id"/>
36 </ key>
37

38 <!-- Says that the "state" attribute -->
39 <!-- in <zip><city></zip> elements -->
40 <!-- must match a pNumKey. -->
41 <keyref name="stateMatcher"
42 refer ="r:pNumKey">
43 <selector xpath ="regions/zip/city"/>
44 <field xpath ="@state"/>
45 </ keyref>
46 ...

Listing 148: Squashed document.
65 ...
66 <regions_RepItem>
67 <regions_Version begin ="1" end ="1">
68 <regions>
69 <zip code ="85701">
70 <city state="1"/>
71 </ zip>
72 </ regions>
73 </ regions_Version>
74 <regions_Version begin ="2" end ="3">
75 <regions>
76 <zip code ="85701">
77 <city state="6"/>
78 </ zip>
79 </ regions>
80 </ regions_Version>
81 </ regions_RepItem>
82

83 <states_RepItem>
84 <states_Version begin ="1" end ="2">
85 <states>
86 <state id ="1">Arizona </ state>
87 <state id ="2">California </ state>
88 </ states>
89 </ states_Version>
90 <states_Version begin ="3" end ="3">
91 <states>
92 <state id ="6">Arizona </ state>
93 <state id ="2">California </ state>
94 </ states>
95 </ states_Version>
96 </ states_RepItem>
97 ...

Here, we have a constraint that says“A city element’s state attribute must match an existing state element’s
id attribute at every point in time.”The squashed document shows that this constraint is satisfied at times
1 and 3, but violated at time 2 since Arizona will point to a non-existent stateid . To construct an XML
Schema that could describe this situation, one would need tobe able to somehow discriminate between
different <regions Version> elements according to theirbegin and end attributes, but there is no
such way to accomplish this without the help from a procedural language like XQuery [79]. We are again
forced to conclude the XML schema lacks sufficient mechanisms to enforce a referential constraint.

Cardinality Constraints We claim that the cardinality of both elements and attributes can be enforced
in the representational schema. Consider an elemente which has created a logical itemi. If the lowest
timestamp is located at a ancestor or descendent ofe, then no change to the definition ofe from the original
schema is necessary, only a direct copy into the representational schema. If a timestamp is located ati, then
the cardinality constraint information must be moved frome up to i in the representational schema. Since
there must be one item for each original element, ensuring that we have a particular number of items is the
same as ensuring that we have a particular number of originalelements.

Listings 149 and 150 below show an example constraint:“The element<supplier> can occur exactly
1 or 2 times.”We first assume that the physical timestamps—specified in thetemporal schema—are placed
at a predecessor or successor element of the<supplier> element. In this case the specification of the
<supplier> element requires no modification in the representational schema.

177

Listing 149: Conventional schema 1.
...

<xs : element name="supplier"
minOccurs ="1" maxOccurs ="2">

...
</xs : element>

...

Listing 150: Representational schema 1.
...

<xs : element name="supplier"
minOccurs ="1" maxOccurs ="2">

...
</xs : element>

...

Listings 151 and 152 show the same example as above, except now the physical timestamps are located
at the level of the<supplier> element. In this case, the transformation pushes the constraints up to the
<supplier RepItem> element.

Listing 151: Conventional schema 2.
...

<xs : element name="supplier"
minOccurs ="1" maxOccurs ="2">

...
</xs : element>

...

Listing 152: Representational schema 2.
...

<xs : element name="supplier_RepItem"
minOccurs ="1" maxOccurs ="2">

...
<xs : element name="supplier_Version">

...
<xs : element name="supplier">
...
</xs : element>

</xs : element>
</xs : element>

...

Datatype Constraints We claim that datatype definitions of both elements and attributescanbe enforced
in the representational schema. This can be achieved by copying the datatype definition for each element
in the original schema into the representational schema. Since datatype restrictions are not affected by the
location of timestamps, the transformation is trivial in all cases. See Listings 153 and 154 for an example
of the datatype constraint:“The element <age> must have a value between 0 and 100, inclusive, at all
times.” No changes to the constraint must be made in the transformation.

Listing 153: Datatype conventional schema.
45 ...
46 <xs : element name="age">
47 <xs : simpleType>
48 <xs : restriction base ="xs:integer">
49 <xs : minInclusive value ="0"/>
50 <xs : maxInclusive value ="100"/>
51 </xs : restriction>
52 </xs : simpleType>
53 </xs : element>
54 ...

Listing 154: Datatype rep. schema.
65 ...
66 <xs : element name="age">
67 <xs : simpleType>
68 <xs : restriction base ="xs:integer">
69 <xs : minInclusive value ="0"/>
70 <xs : maxInclusive value ="100"/>
71 </xs : restriction>
72 </xs : simpleType>
73 </xs : element>
74 ...

18.6.3 Non-sequenced Constraints

Non-sequenced constraintsare constraints applied to a time-varying element as a whole(including the
lifetime of the data entity) rather than individual time slices. Non-sequenced constraints are not defined on
conventional XML Schema equivalents. An example of a non-sequenced (cardinality) constraint is: “There
should be no more than 10 URLs for each supplierin any year.”

We claim that in general it isnotpossible to enforce non-sequenced constraints within a representational
schema. Since non-sequenced constraints can reference arbitrary sections of time that don’t necessarily cor-

178

respond to slice lifetimes or schema change (schema wall) boundaries, it is impossible to use XML Schema
to isolate and thus validate these sections. For example, consider the simple non-sequenced cardinality con-
straint: “There should be two or three unique suppliers in any given year.” If the document were changed
at intervals that were less than one year in duration, we could have a representation that looked similar to
Listing 155.

Listing 155: Squashed version. One day equals one unit of time.
33 ...
34 <suppliers_RepItem>
35 <suppliers_Version begin ="1" end ="1">
36 <supplier id ="1">IBM </ supplier>
37 <supplier id ="2">HP </ supplier>
38 </ suppliers_Version>
39 <suppliers_Version begin ="2" end ="100">
40 <supplier id ="1">IBM </ supplier>
41 <supplier id ="3">Sun </ supplier>
42 </ suppliers_Version>
43 <suppliers_Version begin ="100" end ="600">
44 <supplier id ="3">Sun </ supplier>
45 <supplier id ="4">Apple </ supplier>
46 </ suppliers_Version>
47 </ suppliers_RepItem>
48 ...

It is easy to see that there are in fact four suppliers betweenthe times 1 and 365, violating our example
contraint. However, there is no way to construct an XML Schema to successfully validate this, since we
would need some way to accumulate the number of unique<supplier> s across<supplier Version>

and then check this number against the constraint; but thereis no such way to perform this accumulation in
XML Schema.

However, we do note that there exist specific circumstances in which non-sequenced constraintsmay
be validated. Again consider the non-sequenced cardinality constraint: “There should be 2 or 3 unique
suppliers in any given year.”Also suppose that the timestamps were placed at some elementabove the
<supplier> element and that slices were created exactly once per year. The result will be a representation
that closely mimics the individual slices. We see that it is possible to create a representational schema to
enforce this constraint (Listings 156 and 157).

Listing 156: Item-based temporal representation
#1.

66 ...
67 <company_RepItem>
68 <company_Version begin ="1" end ="2">
69 <company>
70 <suppliers>
71 <supplier id ="123"/>
72 <supplier id ="456"/>
73 </ suppliers>
74 </ company>
75 </ company_Version>
76 ...
77 ...

Listing 157: Non-sequenced representational
schema #1.

80 ...
81 <xs : element name="company_RepItem"
82 ...
83 <xs : element name="company_Version">
84 ...
85 <xs : element name="supplier">
86 minOccurs ="2" maxOccurs ="3">
87 ...
88 </xs : element>
89 </xs : element>
90 </xs : element>
91 ...

In this case, we are guaranteed to have one<suppliers> element per year. Thus, validating each element
in each company version will validate the constraint.

As another example, consider the non-sequenced cardinality constraint: “There should be between 2
and 4 players on the team in any given year.”If the slices happen to have a one-to-one correspondence with
the boundaries for a year, and the timestamp happens to be at or above the<team> element, then we could
have the following representational schema.

179

Listing 158: Item-based temporal representation
#2.

12 ...
13 <team_RepItem>
14 <team_Version begin ="1" end ="1">
15 <team>
16 <player>Steve </ player>
17 <player>Bob</ player>
18 <player>Mark </ player>
19 <player>Paul </ player>
20 </ team>
21 </ team_Version>
22 <team_Version begin ="2" end ="2">
23 <team>
24 <player>Steve </ player>
25 </ team>
26 </ team_Version>
27 </ team_RepItem>
28 ...

Listing 159: Non-sequenced representational
schema #2.

45 ...
46 <xs : element name="player"
47 minOccurs ="2" maxOccurs ="4">
48 ...
49 </xs : element>
50 ...

In general, we see that such special cases can be constructedwhen both of the following conditions are
met.

• Placing the physical timestamp at or above the highest element that is involved in the constraint.
• Versioning the conventional document so that the lifetime of each slice matches the time unit speci-

fied by the constraint (e.g., if the constraint involves one year, then there would be exactly one slice
per year).

Clearly, these situations are of limited practical use since they are constricting and unlikely to occur natu-
rally. Nevertheless, one might argue that the tools could simply adopt the following strategy. “If a special
case occurs, place the functionality in the representational schema; otherwise, place the functionality in the
tools.” We argue that this process would add complexity thatis not justified by the marginal performance
gains, especially when there are multiple constraints defined and only some would meet the special-case
criteria.

18.6.4 Functionality of Other Representation Classes

In the above sections we considered whether constraints could be expressed in an XML schema using
the item-based representation class. We now provide a briefcommentary on the ability of each of the
remaining three representation classes to express constraints. Briefly, the remaining three representation
classes provide the same or worse level of capability as the item-based class.

The slice-based class allows the same set of constraints to be expressed as the item-based class. This is
because the slice-based class is a special case of the item-based class; it possesses no unique characteristics
and thus the same limitations apply. The reference-based class also allows the same set to be expressed.
This can be seen by viewing the reference-based class as an optimized, but similar version of the item-based
class. The reference-based class has the same structure as the item-based class (e.g., items, versions, phys-
ical timestamps); the only difference is that the reference-based class avoids data duplication by providing
multiple references to subtrees that occur more than once. This process does not gain the reference-based
class any benefits that can be used to enforce constraints. The edit-based class is not able to express any
temporal constraints within the representational schema since it reduces changes to the XML tree to simple
text content that cannot reliably be parsed and examined.

180

18.6.5 Placement of Functionality

For those constraints that can be implemented within eitherthe representational schema or the tools (i.e.,
sequenced cardinality and datatype constraints), the question remains: where should the functionality be
placed? To address this question, we provide a discussion below.

Consider the model of validation used byτXMLL INT shown in Figure 63. First, the temporal doc-
ument is validated against the representational schema using a conventional validator (i.e., XMLLINT).
Then theTemporal Constraint Validator Moduleis invoked to explicitly and exhaustively check all tempo-
ral constraints. This module uses DOM to parse and traverse each slice and manually checks each constraint
present in the logical annotation set. From the descriptionof these steps we draw two simple observations.
First, the conventional validator is always invoked on the temporal document, no matter which constraints
are being implemented in the representational schema. Second, temporal constraints which are “hard” to
implement are done so using DOM. Thus, since the conventional validator is empirically much faster than
DOM, and is being invoked anyway, we argue that all constraints, when possible, should be implemented
within the representational schema. This will provide muchbetter performance in terms of time required,
and as we have shown in the previous sections, will not greatly increase the complexity of the representa-
tional schema. Furthermore, SCHEMAMAPPER will not require extensive modifications in order to create
a schema that can enforce these constraints, since the transformation is trivial in most cases and relatively
simple in the rest.

For these reasons, we conclude that the functionality of sequenced cardinality and datatype constraints
be placed within the representational schema and not withinthe temporal constraint validator.

18.7 Evaluation of Representation Classes

This section presents a detailed empirical analysis of eachrepresentation class in a variety of scenarios. The
goal is to determine how each class performs with respect to four metrics: size of representation, time to
construct the representation, time to validate the representation, and time to reconstruct an arbitrary slice.
We first describe the motivation for this evaluation and present the methodology used in our experiments.
We then analyze the results of the experiments and we conclude with general observations and recommen-
dations.

18.7.1 Motivation

When choosing a representation for a temporal XML document,we consider several characteristics in the
decision making process. Consider the following examples.

• A user wants to transmit a document across the country on the internet. Here, thesize of the repre-
sentationis the most important feature.

• A user makes frequent updates to a file, resulting in frequentcreations of the representation. Here,
thetime taken to create the representationwill be the most important feature.

• A user wants to frequently select different versions of a document, an operation called temporal
slicing. Here, thetime taken to extract the original documentsis the most important feature.

• A user makes frequent updates to a file and must always validate the document to ensure correctness.
Here, both thetime taken to createandvalidate the representationare the most important features.

It is not clear whether any single representation class can best meet the needs of every user in every scenario.
Our aim is to quantify the features of each class so that informed decisions can be made by the user, taking
into account their particular needs.

181

18.7.2 Methodology

Given the above motivation, we will address the following questions about each representation class. Is
the size of the representation linear in the number and size of slices, or does it provide some level of
compression? Does the overhead of the representation result in a large amount of time required to squash
and unsquash? Can we validate the representation quickly enough to allow practical use?

To answer these questions, we first extended theτXSchema tools to support each representation type11

and then ran a set of experiments to test and evaluate each representation. In these experiments, we were
interested in how the representation would respond to several independent variables: the amount of change
from slice to slice, the types of changes within each slice, the number of slices in the system, and the
size of each individual slice. To quantify the changes, we measured several dependent variables: the size
of the resulting representation, the time taken to create the representation from the original documents,
the time taken to extract the original documents from the representation, and the time taken to validate
the representation against the original schema(s) and temporal constraints. Tables 6 and 7 summarize the
experiment.

Independent Variables
Name Expressed as Values

Slice Size Number of elements 10, 20, 40, 80, ..., 2000
Number of Slices Number of files 10, 20, 40, 80, ..., 2000
Amount of Change Percentage of changed elements 0, 2, 4, 8, 16, 32, 64
Type of Change Percent value change vs. new element(0, 100), (25, 75), (50, 50), (75, 25), (0, 100)

Table 6: The independent variables considered in the experiments.

Dependent Variables
Name Measured by

Representation size Kilobytes on disk of the representation
Time taken to squash files Seconds of execution
Time taken to unsquash filesSeconds of execution
Time taken to validate files Seconds of execution

Table 7: The dependent variables measured in the experiments.

We have created tools12 to help build temporal cases dynamically based on the four experiment param-
eters and to automate the run process and output the results.The experiments were executed on a machine
running Ubuntu 8.10 with a 2.83 GHz Intel Core2 quad-core processor and 8 GB main memory. The testing
scripts were created in Perl and the data was analyzed in Matlab.

Note that all of the following experiments were run with the temporal constraint functionality placed
at the tool level as opposed to the representational schema level as described in Section 18.6. Also note
that schema-versioning is not considered in the following examples due to the complexity it adds to the
creation of large, random scenarios. However, we believe that these results will provide a good initial
understanding of the behavior of each representation classsince each schema change results in a new wall,
with the representation structure remaining the same within each wall. Thus, a schema change will have the
same effect across all representation types.

11Due to time and tool constraints, we could not evaluate the reference-based representation. However, it is believed that this
representation would perform similarly to the item-based representation under typical circumstances.

12See Appendix B for details.

182

We note here that the execution times presented in the following sections contain both I/O and execution
times—the entire execution time of the process. Since caching was not disabled during the experiments, it is
possible that some experiments unfairly report smaller execution times; this might happen if an experiment
involved reading a file that was already in the O/S cache.

18.7.3 Initial Sensitivity to Parameters

Initial experiments were run to test the sensitivity of eachrepresentation type to the variables that controlled
the amount and type of change in each slice. In particular, weperformed runs with the amount of change set
to 1%, 2%, 4%, ..., 64% and with the type of change set to (0% newversion, 100% new item), (25%, 75%),
(50%, 50%), (75%, 25%), and (100%, 0%). We also varied the size of each slice (values of 10 and 100)
and number of slices (values of 10 and 200). For each combination of parameters, we ran 30 repetitions for
each representation class and took the minimum result (since we are interested in the performance of the
tools in isolation, but the experiments were conducted on a time-shared machine with background processes
running). Interestingly, the results showed that all representation classes were relatively insensitive to the
change-related parameters. This is likely because for eachrepresentation class, the amount of computation
overhead for each additional change per file is small when compared to the execution of the entire tool (e.g.,
file I/O for each slice, DOM parsing of each file, etc). Appendix C provides the detailed results of these
executions.

As a consequence of these results, for each of our experiments described in the following sections, we
held the amount of change constant at 32% and the type of change constant at (75%, 25%), which represent
intermediate values for each.

18.7.4 SQUASH Results

We first consider the amount of time required for each representation class to squash a temporal document.
Figure 64 displays the results with all classes on the same plot (with a band stretching across the document
size parameter for each class) while Figure 65(a)–65(c) shows each representation class individuallly. We
immediately see that the item-based scheme is particularlysensitive to the parameters and even modest
increases result in a large increase in time. We now briefly investigate why this happens.

Figures 66(a) and 66(b) show the execution traces of the SQUASH algorithm for the item-based and edit-
based representation classes, respectively. Note that in each case, only the steps that required a significant
portion of the execution time are shown. Table 8 summarizes the actual exectution time for each step in
both classes for three simple scenarios. We immediately seethat for the item-based representation, the bulk
of the execution time is being spent on task 1.2.2 (physical to temporal conversion), specifically in the push
down operation. The push down operation recursively calls itself to “push down” the items from the root
node down to the<part> elements; this algorithm involves merging similar versions of an item into a
single version. In these executions, the push down operation is called a total of 342, 642, and 1282 times for
the three input sets, respectively. The edit-based scheme does not have the concept of items, and thus avoids
the penalty of the push down operation. Further, thediff -e call that the edit-based scheme employs
between each slice is relatively inexpensive: on the order of 0.001 seconds to compare two files with 20
elements each, 0.03 seconds to compare files with 1000 elements each, and 0.2 seconds to compare files
with 10,000 elements each, and 1.65 seconds to compare files with 100,000 elements each.

In order to further investigate the time required for the slice-based and edit-based schemes under heavier
conditions we increased the magnitude of the parameters andthe results are shown in Figures 65(d)–65(f).
We see again that the edit-based scheme has better performance when compared to the slice-based scheme
under the same parameters. Figure 65(f) shows the parameterset that first starts to stress the performance

183

(a) Full view. The item-based class requires orders of
magnitude more time to squash than the slice-based and
edit-based classes.

(b) Zoom view of the slice-based and edit-based classes.

Figure 64: Time required to squash a temporal document. The three band colors correspond to the different
representation types. Each band stretches across{5, 10, 20, 50} elements per slice.

20 40 60 80 100
0

1

2

3

4

Number of Slices

T
im

e
(s

ec
on

ds
)

Slice−based

5

10

20

50

(a) Slice-based

20 40 60 80 100
0

1

2

3

4

Number of Slices

T
im

e
(s

ec
on

ds
)

Edit−based

5

10

20

50

(b) Edit-based

20 40 60 80 100
0

50

100

150

200

Number of Slices

T
im

e
(s

ec
on

ds
)

Item−based

5

10

20

50

(c) Item-based

50 100 150
0

10

20

30

Number of Slices

T
im

e
(s

ec
on

ds
)

Slice−based

10

40

80

160

(d) Slice-based

50 100 150
0

2

4

6

8

10

Number of Slices

T
im

e
(s

ec
on

ds
)

Edit−based

10

40

80

160

(e) Edit-based

500 1000 1500
0

10

20

30

40

50

Number of Slices

T
im

e
(s

ec
on

ds
)

Edit−based

10

100

500

1000

(f) Edit-based (larger)

Figure 65: Time required to squash a temporal document. Here, the lines correspond to different document
sizes, shown in number of elements.

of the edit-based scheme (i.e., the parameters that first cause the execution time to show larger than linear
growth); these parameters are roughly 10x the parameters that stressed the slice-based scheme.

Figures 67(a)–67(c) show the size on disk of the resulting temporal document. As expected, the slice-

184

1 Squash

1.1 Parse Input
1.2 Squash_Item

1.2.1 Loop Through Slices
1.2.2 Physical to Temporal

1.2.2.3 Coalesce
1.2.2.2 Push Down
1.2.2.1 Mark Items

1.2.3 Temporal to Physical

(a) Item-based

1 Squash

1.1 Parse Input

1.2.1 Loop Through Slices

1.2 Squash_Edit

(b) Edit-based

Figure 66: The main methods (in terms of time) entered duringthe execution of SQUASH.

Step # Item-based Edit-based Slice-based
(10, 10) (10, 20) (20, 20) (10, 10) (10, 20) (20, 20) (10, 10) (10, 20) (20, 20)

1 2.15 3.99 9.59 0.85 0.99 1.09 0.91 1.13 1.70
1.1 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01
1.2 1.63 3.47 9.04 0.33 0.46 0.56 0.39 0.59 1.15
1.2.1 0.06 0.10 0.14 0.28 0.43 0.51 0.07 0.10 1.14
1.2.2 1.43 3.21 8.46 - - - 0.19 0.24 0.14
1.2.2.1 0.57 1.06 2.38 - - - 0.01 0.02 0.04
1.2.2.2 0.80 2.08 5.67 - - - 0.03 0.05 0.05
1.2.2.3 0.04 0.05 0.09 - - - 0.14 0.17 0.19
1.2.3 0.10 0.11 0.39 - - - 0.08 0.18 0.61

Table 8: The execution times (in seconds) in SQUASH for each task, broken up by representation type and
shown for three different input sets. In these runs, the amount of change was set to.32 and the type of
change was set to(75%, 25%).

20 40 60 80 100
0

100

200

300

400

500

Number of Slices

S
iz

e
of

 R
ep

re
se

nt
at

io
n

(K
B

)

Slice−based

5

10

20

50

(a) Slice-based

20 40 60 80 100
0

10

20

30

40

50

Number of Slices

S
iz

e
of

 R
ep

re
se

nt
at

io
n

(K
B

)

Edit−based

5

10

20

50

(b) Edit-based

20 40 60 80 100
0

20

40

60

80

Number of Slices

S
iz

e
of

 R
ep

re
se

nt
at

io
n

(K
B

)

Item−based

5

10

20

50

(c) Item-based

Figure 67: Size of the resulting temporal document. Note thedifferent scales on they-axis.

based scheme grows linearly with the number of slices and thesize of the representation; this is because this
scheme keeps the entire unmodified slice in the representation. However, the edit- and item-based schemes
are able to provide a large amount of compression and keep thefile size relatively low.

185

20 40 60 80
0

2

4

6

8

10

Number of Slices

T
im

e
(s

ec
on

ds
)

Slice−based

10

20

40

80

(a) Slice-based

20 40 60 80
0

200

400

600

800

Number of Slices

T
im

e
(s

ec
on

ds
)

Edit−based

10

20

40

80

(b) Edit-based

20 40 60 80
0

2

4

6

8

10

Number of Slices

T
im

e
(s

ec
on

ds
)

Item−based

10

20

40

80

(c) Item-based

Figure 68: Time required to validate the temporal document.Note the different scales on the time axis; the
edit-based scheme takes orders of magnitude longer.

100 200 300 400
0

5

10

15

Number of Slices

T
im

e
(s

ec
on

ds
)

Slice−based

20

80

160

400

(a) Slice-based

20 40 60 80 100
0

5

10

15

Number of Slices

T
im

e
(s

ec
on

ds
)

Item−based

10

40

70

100

(b) Item-based

Figure 69: Time required to validate the temporal document.Note the different scales on thex-axis. The
slice-based scheme can handle roughly four times the numberof slices within the same time period.

18.7.5 τXMLL INT Results

Here we considered the validation time required for a singletemporal cardinality constraint. Figures 68(a)–
68(c) show the amount of time required to validate scenarioswith modest number of slices and size for
each slice. We see that while the slice-based and item-basedschemes can handle these parameter ranges
with relative ease, the edit-based scheme takes orders of magnitude more time. This is due to the nature
of the current implementation of the edit-based scheme: thetemporal document is first unsquashed into a
series of slices; then these slices are squashed into an item-based representation with the timestamp at the
root; finally, the item-based representation is validated in the normal way. Although this implementation
benefits from the reuse of several existing software modulesand is logically correct, it suffers from both high
overhead and the bad performance of the item-based squashing module. These factors add up to significant
values, with the majority of the time coming again from the push down operation of the item-based scheme
(70% of the total execution time).

Figure 69 shows the slice-based and item-based schemes under heavier conditions to illustrate the mag-
nitude of the parameters that first cause a noticable increase in execution time. We see that the slice-based
scheme can handle roughly four times the number of slices as the item-based scheme within the same time
period. This is because the slice-based scheme requires no preprocessing before validation can begin, while
the item-based scheme must undergo a number of operations tobe in the correct form for validation.

186

50 100 150
0

5

10

15

20

Number of Slices

T
im

e
(s

ec
on

ds
)

Slice−based

10

40

80

160

(a) Slice-based

50 100 150
0

1

2

3

4

Number of Slices

T
im

e
(s

ec
on

ds
)

Edit−based

10

40

80

160

(b) Edit-based

20 40 60 80 100
0

20

40

60

80

Number of Slices

T
im

e
(s

ec
on

ds
)

Item−based

10

40

70

100

(c) Item-based

Figure 70: The amount of time required to extract all slices from a temporal document. Note the differentx
andy axes.

18.7.6 UNSQUASH Results

Figure 70 shows the amount of time required to extract all slices from the temporal document. We see that,
like the SQUASH results, the edit-based scheme has the best performance, while the item-based scheme re-
quires significantly more time than the other two schemes. Anexecution analysis similar to that for SQUASH

was performed and the same conclusions were reached. In particular, during the unsquash operation, the
item-based scheme must perform the opposite of merging items and pushing down timestamps: it must push
up timestamps and unmerge items. These operations result ina huge number of recursive calls and loops
for every item. In contrast, the edit-based scheme only needs to run the patch command for each edit
script. The slice-based scheme must simply loop though the temporal document and extract each slice with
a copy-and-paste-like method; no preprocessing is needed.Even still, it does not perform as well as the
edit-based scheme.

18.7.7 Representation Conclusions and Recommendations

The above results show that, as anticipated, no representation scheme provides the best performance under
all conditions. In particular, while the edit-based schemeshows the fastest time to squash and unsquash as
well as the smallest representation size, it suffers from tremendous overhead during validation13. On the
other hand, the slice-based scheme can be squashed, unsquashed, and validated quickly but the resulting
representation is very large. Further, the item-based scheme results in a smaller representation and can be
validated quickly, but suffers from a large amount of time tosquash and unsquash. Table 9 summarizes the
findings.

Our current recommendation would be to use the edit-based scheme for all activities that do not require
temporal validation (although under this assumption, a conventional validator may still make sense to vali-
date the last instance and the one representation in its entirety), and to use the slice-based scheme in all cases
that do require temporal validation. However, if improvements can be made to the item-based squashing and
unsquashing methodologies (i.e., the “push up” and “push down” operations) in terms of execution time,
then the item-based scheme would become most attractive in all scenarios. In this case, additional analysis
would be required to study the effects of using an item-basedscheme in its original form versus a hybrid
between the item-based and the edit-based. For example, onecould imagine storing the representation on

13It should be noted that although the current implementationof edit-based validation is not very efficient, it would be difficult
to find any implementation that would be. The problem lies in the inability to enforce complex temporal constraints by examining
the edit scripts alone. This implies that the first step during validation would always have to be reconstructing the original slices.
Only then could the validation process—whatever that may be—begin.

187

Representation SQUASH Time SQUASH Size UNSQUASH Time τXMLL INT Time
Rank Ratio Rank Ratio Rank Ratio Rank Ratio

Slice-based 2 1.1 3 3.9 2 2.6 1 -
Edit-based 1 - 1 - 1 - 3 41.1
Item-based 3 15.7 2 1.5 3 13.0 2 1.6

Table 9: The overall results of the analysis. TheRankcolumns indicate the performance of this represen-
tation when compared to the other two (e.g., a rank of2 means it was the second best). TheRatiocolumn
indicates how much worse this representation performed compared to the top ranking representation, mea-
sured as the average ratio between the two representations.

disk using the edit-based method, while converting into theitem-based scheme for all in-memory operations
(e.g, adding or extracting slices, enforcing temporal constraints). Further, one might consider using a mix of
representation types for different parts of the timeline. For example, a user could use the slice-based scheme
for the five most recent slices, the item-based scheme for thenext 300 slices, and the edit-based scheme for
all other slices. This might allow efficient extraction of recent files, efficient validation for all files in the
recent past, and efficient storage for files not likely to be queried often. The time and space tradeoffs for
these options are left for future work.

188

Listing 137: Representational schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsd : schema xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
3 targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a"
4 xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a"
5 xmlns :rep0 ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a0"
6 xmlns :rep1 ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a1"
7 xmlns :tv ="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema ">
8

9 <xsd : import namespace ="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema "
10 schemaLocation ="TVSchema.xsd" />
11 <xsd : import namespace ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a0"
12 schemaLocation ="rep0.xsd" />
13 <xsd : import namespace ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a1"
14 schemaLocation ="rep1.xsd" />
15

16 <xsd : element name="sv_root">
17 <xsd : complexType>
18 <xsd : sequence>
19 <xsd : element name="schemaItem">
20 <xsd : complexType>
21 <xsd : sequence>
22

23 <xsd : element maxOccurs ="1" minOccurs ="1" name ="schemaVersion0">
24 <xsd : complexType>
25 <xsd : sequence>
26 <xsd : element maxOccurs ="1" minOccurs ="1" ref ="tv:timestamp" />
27 <xsd : element maxOccurs ="1" minOccurs ="1" ref ="rep0:tv_root" />
28 </xsd : sequence>
29 </xsd : complexType>
30 </xsd : element>
31

32 <xsd : element maxOccurs ="1" minOccurs ="1" name ="schemaVersion1">
33 <xsd : complexType>
34 <xsd : sequence>
35 <xsd : element maxOccurs ="1" minOccurs ="1" ref ="tv:timestamp" />
36 <xsd : element maxOccurs ="1" minOccurs ="1" ref ="rep1:tv_root" />
37 </xsd : sequence>
38 </xsd : complexType>
39 </xsd : element>
40

41 </xsd : sequence>
42 </xsd : complexType>
43 </xsd : element>
44 </xsd : sequence>
45 <xsd : attribute name="temporalSchema" type ="xsd:string">
46 </xsd : complexType>
47 </xsd : element>
48

49 </xsd : schema>

189

Listing 138: Temporal document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <sv_root xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a"
3 xmlns :rep0 ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a0"
4 xmlns :rep1 ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a1"
5 xmlns :tv ="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema ">
6

7 <schemaItem>
8 <schemaVersion0>
9 <tv : timestamp begin ="2002-01-01" end ="2005-01-01" />

10 <rep0 : tv_root>
11 <rep0 : athlete>
12 ...
13 </rep0 : athlete>
14 </rep0 : tv_root>
15 </ schemaVersion0>
16 <schemaVersion1>
17 <tv : timestamp begin ="2002-01-01" end ="2005-01-01" />
18 <rep1 : tv_root>
19 <rep1 : athlete>
20 ...
21 </rep1 : athlete>
22 </rep1 : tv_root>
23 </ schemaVersion1>
24 </ schemaItem>
25

26 </ sv_root>

Listing 145: Squashed document with multiple changes
89 ...
90 <zip_RepItem>
91 <zip_Version begin ="1" end ="1">
92 <zip code ="85721" begin ="1" end ="1"> Tucson , AZ </ zip>
93 </ zip_Version>
94 <zip_Version begin ="2" end ="2">
95 <zip code ="85001" begin ="2" end ="2"> Tucson , AZ </ zip>
96 </ zip_Version>
97 </ zip_RepItem>
98

99 <zip_RepItem>
100 <zip_Version begin ="1" end ="1">
101 <zip code ="85001" begin ="1" end ="1"> Phoenix , AZ </ zip>
102 </ zip_Version>
103 <zip_Version begin ="2" end ="2">
104 <zip code ="85001" begin ="2" end ="2"> Phoenix , AZ </ zip>
105 </ zip_Version>
106 </ zip_RepItem>
107 ...

190

19 Example Schema and Instance Documents

19.1 Conventional Schemas

Listing 160: Conventional schema on 1 January 2002.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault ="qualified"
5 attributeFormDefault ="unqualified">
6

7 <xsd : element name="winOlympic">
8 <xsd : complexType mixed ="true">
9 <xsd : sequence>

10 <xsd : element ref ="country" minOccurs ="0" maxOccurs ="unbounded"/>
11 </xsd : sequence>
12 </xsd : complexType>
13 </xsd : element>
14 <xsd : element name="country">
15 <xsd : complexType mixed ="false">
16 <xsd : sequence>
17 <xsd : element ref ="athleteTeam"/>
18 </xsd : sequence>
19 <xsd : attribute name="countryName" type ="xsd:string" use ="required"/>
20 </xsd : complexType>
21 </xsd : element>
22 <xsd : element name="athleteTeam">
23 <xsd : complexType mixed ="true">
24 <xsd : sequence>
25 <xsd : element name="teamName" minOccurs ="1" maxOccurs ="1" type ="xsd:string"/>
26 <xsd : element ref ="athlete" maxOccurs ="unbounded"/>
27 </xsd : sequence>
28 <xsd : attribute name="numAthletes" type ="xsd:positiveInteger" use ="optional"/>
29 </xsd : complexType>
30 </xsd : element>
31 <xsd : element name="athlete">
32 <xsd : complexType mixed ="true">
33 <xsd : sequence>
34 <xsd : element name="athName" type ="xsd:string"/>
35 <xsd : element name="phone" type ="phoneNumType" minOccurs ="0" maxOccurs ="unbounded"/>
36 </xsd : sequence>
37 </xsd : complexType>
38 </xsd : element>
39 <xsd : simpleType name="phoneNumType">
40 <xsd : restriction base ="xsd:string">
41 <xsd : length value ="12"/>
42 <xsd : pattern value ="\d{3}-\d{3}-\d{4}"/>
43 </xsd : restriction>
44 </xsd : simpleType>
45 </xsd : schema>

Listing 161: Conventional schema on 1 January 2005.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsd : schema
3 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault ="qualified"
5 attributeFormDefault ="unqualified">
6

7 <xsd : element name="winOlympic">
8 <xsd : complexType mixed ="true">
9 <xsd : sequence>

10 <!--numEvents added on Wednesday-->
11 <xsd : element name="numEvents" type ="xsd:nonNegativeInteger"/>
12 <xsd : element ref ="country" minOccurs ="0" maxOccurs ="unbounded"/>

191

13 </xsd : sequence>
14 </xsd : complexType>
15 </xsd : element>
16 <xsd : element name="country">
17 <xsd : complexType mixed ="false">
18 <xsd : sequence>
19 <xsd : element ref ="athleteTeam"/>
20 </xsd : sequence>
21 <xsd : attribute name="countryName" type ="xsd:string" use ="required"/>
22 <xsd : attribute name="countryLead" type ="xsd:string" use ="required"/>
23 </xsd : complexType>
24 </xsd : element>
25 <xsd : element name="athleteTeam">
26 <xsd : complexType mixed ="true">
27 <xsd : sequence>
28 <xsd : element name="teamName" minOccurs ="1" maxOccurs ="1" type ="xsd:string"/>
29 <xsd : element ref ="athlete" maxOccurs ="unbounded"/>
30 </xsd : sequence>
31 <xsd : attribute name="numAthletes" type ="xsd:positiveInteger" use ="optional"/>
32 </xsd : complexType>
33 </xsd : element>
34 <xsd : element name="athlete">
35 <xsd : complexType mixed ="true">
36 <xsd : sequence>
37 <xsd : element name="athName" type ="xsd:string"/>
38 <xsd : element name="phone" type ="phoneNumType" minOccurs ="0" maxOccurs ="unbounded"/>
39 </xsd : sequence>
40 </xsd : complexType>
41 </xsd : element>
42 <xsd : simpleType name="phoneNumType">
43 <xsd : restriction base ="xsd:string">
44 <xsd : length value ="12"/>
45 <xsd : pattern value ="\d{3}-\d{3}-\d{4}"/>
46 </xsd : restriction>
47 </xsd : simpleType>
48 </xsd : schema>

19.2 Annotations

Listing 162: Annotation document on 1 January 2002.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <annotationSet xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema ">
3

4 <physical>
5 <stamp target ="/winOlympic">
6 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
7 </ stamp>
8

9 <stamp target ="/winOlympic/country">
10 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
11 </ stamp>
12

13 <stamp target ="/winOlympic/country/athleteTeam">
14 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
15 </ stamp>
16

17 <stamp target ="/winOlympic/country/athleteTeam/athlete">
18 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
19 </ stamp>
20 </ physical>
21

22 <logical>
23 <item target ="/winOlympic">
24 <transactionTime content ="varying" existence ="constant"/>

192

25 <itemIdentifier name="olympicId1" timeDimension ="transactionTime">
26 <field path ="./text"/>
27 </ itemIdentifier>
28 </ item>
29

30 <item target ="/winOlympic/country">
31 <transactionTime content ="varying" existence ="varyingWithGaps"/>
32 <itemIdentifier name="countryId1" timeDimension ="transactionTime">
33 <field path ="./@countryName"/>
34 </ itemIdentifier>
35 </ item>
36

37 <item target ="/winOlympic/country/athleteTeam">
38 <transactionTime content ="varying" existence ="varyingWithGaps"/>
39 <itemIdentifier name="teamName" timeDimension ="transactionTime">
40 <field path ="./teamName/text"/>
41 </ itemIdentifier>
42 </ item>
43

44 <item target ="/winOlympic/country/athleteTeam/athlete">
45 <transactionTime content ="varying" existence ="varyingWithGaps"/>
46 <itemIdentifier name="atheleteId1" timeDimension ="transactionTime">
47 <field path ="./athName/text"/>
48 </ itemIdentifier>
49 </ item>
50 </ logical>
51

52 </ annotationSet>

Listing 163: Annotation document on 1 January 2005.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <annotationSet xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema ">
3

4 <physical>
5 <stamp target ="/winOlympic">
6 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
7 </ stamp>
8

9 <stamp target ="/winOlympic/country">
10 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
11 </ stamp>
12

13 <stamp target ="/winOlympic/country/athleteTeam">
14 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
15 </ stamp>
16

17 <stamp target ="/winOlympic/country/athleteTeam/athlete">
18 <stampKind timeDimension ="transactionTime" stampBounds ="extent"/>
19 </ stamp>
20 </ physical>
21

22 <logical>
23 <item target ="/winOlympic">
24 <transactionTime content ="varying" existence ="constant"/>
25 <itemIdentifier name="olympicId1" timeDimension ="transactionTime">
26 <field path ="./text"/>
27 </ itemIdentifier>
28 </ item>
29

30 <item target ="/winOlympic/country">
31 <transactionTime content ="varying" existence ="varyingWithGaps"/>
32 <itemIdentifier name="countryId1" timeDimension ="transactionTime">
33 <field path ="./@countryName"/>
34 <field path ="./@countryLead"/>
35 </ itemIdentifier>
36 </ item>
37

193

38 <item target ="/winOlympic/country/athleteTeam">
39 <transactionTime content ="varying" existence ="varyingWithGaps"/>
40 <itemIdentifier name="teamName" timeDimension ="transactionTime">
41 <field path ="./teamName/text"/>
42 </ itemIdentifier>
43 </ item>
44

45 <item target ="/winOlympic/country/athleteTeam/athlete">
46 <transactionTime content ="varying" existence ="varyingWithGaps"/>
47 <itemIdentifier name="atheleteId1" timeDimension ="transactionTime">
48 <field path ="./athName/text"/>
49 </ itemIdentifier>
50 </ item>
51 </ logical>
52

53 </ annotationSet>

19.3 Conventional Documents

Listing 164: Conventional document on 1 January 2002.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="schema1.xsd">
4 There are
5 events in the Olympics .
6 <country countryName ="Norway">
7 <athleteTeam numAthletes ="95">
8 <teamName>Norway_Army </ teamName>
9 Athletes will take part in various events . The athletes participating are listed below

10 <athlete>
11 <athName>
12 Kjetil Andre Aamodt
13 </ athName>
14 </ athlete>
15 <athlete>
16 <athName>
17 Trine Bakke -Rognmo
18 </ athName>
19 His phone numbers are :
20 <phone>123-402-0340</ phone>
21 <phone>123-402-0000</ phone>
22 </ athlete>
23 <athlete>
24 <athName>
25 Lasse Kjus
26 </ athName>
27 </ athlete>
28 </ athleteTeam>
29 </ country>
30 </ winOlympic>

Listing 165: Conventional document on 1 January 2003.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="winOlympic.ver1.xsd">
4 There are
5 events in the Olympics .
6 <country countryName ="Norway">
7 <athleteTeam numAthletes ="95">
8 <teamName>Norway_Army </ teamName>
9 Athletes will take part in various events . The athletes participating are listed below

10 <athlete>
11 <athName>

194

12 Kjetil Andre Aamodt
13 </ athName>
14 </ athlete>
15 <athlete>
16 <athName>
17 Andre Agassi
18 </ athName>
19 </ athlete>
20 <athlete>
21 <athName>
22 Trine Bakke -Rognmo
23 </ athName>
24 His phone numbers are :
25 <phone>123-402-0340</ phone>
26 <phone>123-402-0000</ phone>
27 </ athlete>
28 <athlete>
29 <athName>
30 Lasse Kjus
31 </ athName>
32 </ athlete>
33 </ athleteTeam>
34 </ country>
35 </ winOlympic>

Listing 166: Conventional document on 1 January 2005.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="schema2.xsd">
4 There are
5 <numEvents>11</ numEvents>
6 events in the Olympics .
7 <country countryName ="Norway" countryLead ="Andre Agassi">
8 <athleteTeam numAthletes ="95">
9 <teamName>Norway_Army </ teamName>

10 Athletes will take part in various events . The athletes participating are listed below
11 <athlete>
12 <athName>
13 Kjetil Andre Aamodt
14 </ athName>
15 </ athlete>
16 <athlete>
17 <athName>
18 Andre Agassi
19 </ athName>
20 </ athlete>
21 <athlete>
22 <athName>
23 Trine Bakke -Rognmo
24 </ athName>
25 His phone numbers are :
26 <phone>123-402-0340</ phone>
27 <phone>123-402-0000</ phone>
28 </ athlete>
29 <athlete>
30 <athName>
31 Lasse Kjus
32 </ athName>
33 </ athlete>
34 </ athleteTeam>
35 </ country>
36 </ winOlympic>

195

Listing 167: Conventional document on 1 January 2006.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <winOlympic xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance"
3 xsi :noNamespaceSchemaLocation ="schema2.xsd">
4 There are
5 <numEvents>11</ numEvents>
6 events in the Olympics .
7 <country countryName ="Norway" countryLead ="Andre Agassi">
8 <athleteTeam numAthletes ="95">
9 <teamName>Norway_Army </ teamName>

10 Athletes will take part in various events . The athletes participating are listed below
11 <athlete>
12 <athName>
13 Kjetil Andre Aamodt
14 </ athName>
15 </ athlete>
16 <athlete>
17 <athName>
18 Andre Agassi
19 </ athName>
20 </ athlete>
21 <athlete>
22 <athName>
23 Trine Bakke -Rognmo
24 </ athName>
25 His phone numbers are :
26 <phone>123-402-0340</ phone>
27 <phone>123-402-0000</ phone>
28 </ athlete>
29 <athlete>
30 <athName>
31 Lasse Kjus
32 </ athName>
33 </ athlete>
34 </ athleteTeam>
35 </ country>
36 </ winOlympic>

19.4 Temporal Schema

Listing 168: Temporal Schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalSchema xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TS">
3

4 <conventionalSchema>
5 <sliceSequence>
6 <slice location ="schema1.xsd" begin ="2002-01-01" />
7 <slice location ="schema2.xsd" begin ="2005-01-01" />
8 </ sliceSequence>
9 </ conventionalSchema>

10

11 <annotationSet>
12 <sliceSequence>
13 <slice location ="annotations1.xml" begin ="2002-01-01" />
14 <slice location ="annotations2.xml" begin ="2005-01-01" />
15 </ sliceSequence>
16 </ annotationSet>
17

18 </ temporalSchema>

196

19.5 Representational Schemas

Listing 169: Representational schema for 2002-01-01 to 2005-01-01.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsd : schema attributeFormDefault ="unqualified"
3 elementFormDefault ="unqualified"
4 targetNamespace ="http://www.cs.arizona.edu/tau/RepSchema0"
5 xmlns ="http://www.cs.arizona.edu/tau/RepSchema0"
6 xmlns :tv ="http://www.cs.arizona.edu/tau/TVSchema"
7 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
8 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance">
9 <xsd : import namespace ="http://www.cs.arizona.edu/tau/TVSchema" schemaLoca tion ="TVSchema.xsd" />

10 <xsd : simpleType name="phoneNumType">
11 <xsd : restriction base ="xsd:string">
12 <xsd : length value ="12" />
13 <xsd : pattern value ="\d{3}-\d{3}-\d{4}" />
14 </xsd : restriction>
15 </xsd : simpleType>
16 <xsd : element name="tv_root">
17 <xsd : complexType>
18 <xsd : sequence>
19 <xsd : element ref ="winOlympic_RepItem" />
20 </xsd : sequence>
21 <xsd : attribute name="begin" type ="xsd:date" />
22 <xsd : attribute name="end" type ="xsd:date" />
23 </xsd : complexType>
24 </xsd : element>
25 <xsd : element name="athleteTeam_RepItem">
26 <xsd : complexType>
27 <xsd : sequence>
28 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
29 name="athleteTeam_Version">
30 <xsd : complexType>
31 <xsd : sequence>
32 <xsd : element ref ="tv:timestamp_TransExtent" />
33 <xsd : element name="athleteTeam">
34 <xsd : complexType mixed ="true">
35 <xsd : sequence>
36 <xsd : element maxOccurs ="1"
37 minOccurs ="1" name ="teamName" type ="xsd:string" />
38 <xsd : element
39 maxOccurs ="unbounded" ref ="athlete_RepItem" />
40 </xsd : sequence>
41 <xsd : attribute name="numAthletes"
42 type ="xsd:positiveInteger" use ="optional" />
43 </xsd : complexType>
44 </xsd : element>
45 </xsd : sequence>
46 </xsd : complexType>
47 </xsd : element>
48 </xsd : sequence>
49 <xsd : attribute name="isItem" type ="xsd:string" />
50 <xsd : attribute name="originalElement" type ="xsd:string" />
51 </xsd : complexType>
52 </xsd : element>
53 <xsd : element name="country_RepItem">
54 <xsd : complexType>
55 <xsd : sequence>
56 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
57 name="country_Version">
58 <xsd : complexType>
59 <xsd : sequence>
60 <xsd : element ref ="tv:timestamp_TransExtent" />
61 <xsd : element name="country">
62 <xsd : complexType mixed ="false">
63 <xsd : sequence>
64 <xsd : element

197

65 ref ="athleteTeam_RepItem" />
66 </xsd : sequence>
67 <xsd : attribute name="countryName"
68 type ="xsd:string" use ="required" />
69 </xsd : complexType>
70 </xsd : element>
71 </xsd : sequence>
72 </xsd : complexType>
73 </xsd : element>
74 </xsd : sequence>
75 <xsd : attribute name="isItem" type ="xsd:string" />
76 <xsd : attribute name="originalElement" type ="xsd:string" />
77 </xsd : complexType>
78 </xsd : element>
79 <xsd : element name="winOlympic_RepItem">
80 <xsd : complexType>
81 <xsd : sequence>
82 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
83 name="winOlympic_Version">
84 <xsd : complexType>
85 <xsd : sequence>
86 <xsd : element ref ="tv:timestamp_TransExtent" />
87 <xsd : element name="winOlympic">
88 <xsd :annotation >
89 <xsd :documentation >
90 Schema for recording non
91 temporal country information
92 </xsd :documentation >
93 </xsd :annotation >
94 <xsd : complexType mixed ="true">
95 <xsd : sequence>
96 <xsd : element
97 maxOccurs ="unbounded" minOccurs ="0" ref ="country_RepItem" />
98 </xsd : sequence>
99 </xsd : complexType>

100 </xsd : element>
101 </xsd : sequence>
102 </xsd : complexType>
103 </xsd : element>
104 </xsd : sequence>
105 <xsd : attribute name="isItem" type ="xsd:string" />
106 <xsd : attribute name="originalElement" type ="xsd:string" />
107 </xsd : complexType>
108 </xsd : element>
109 <xsd : element name="athlete_RepItem">
110 <xsd : complexType>
111 <xsd : sequence>
112 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
113 name="athlete_Version">
114 <xsd : complexType>
115 <xsd : sequence>
116 <xsd : element ref ="tv:timestamp_TransExtent" />
117 <xsd : element name="athlete">
118 <xsd : complexType mixed ="true">
119 <xsd : sequence>
120 <xsd : element name="athName"
121 type ="xsd:string" />
122 <xsd : element
123 maxOccurs ="unbounded" minOccurs ="0" name ="phone"
124 type ="phoneNumType" />
125 </xsd : sequence>
126 </xsd : complexType>
127 </xsd : element>
128 </xsd : sequence>
129 </xsd : complexType>
130 </xsd : element>
131 </xsd : sequence>
132 <xsd : attribute name="isItem" type ="xsd:string" />

198

133 <xsd : attribute name="originalElement" type ="xsd:string" />
134 </xsd : complexType>
135 </xsd : element>
136 </xsd : schema>

Listing 170: Representational schema for 2002-01-01 to 2005-01-01.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsd : schema attributeFormDefault ="unqualified"
3 elementFormDefault ="unqualified"
4 targetNamespace ="http://www.cs.arizona.edu/tau/RepSchema1"
5 xmlns ="http://www.cs.arizona.edu/tau/RepSchema1"
6 xmlns :tv ="http://www.cs.arizona.edu/tau/TVSchema"
7 xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
8 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance">
9 <xsd : import namespace ="http://www.cs.arizona.edu/tau/TVSchema" schemaLoca tion ="TVSchema.xsd" />

10 <xsd : simpleType name="phoneNumType">
11 <xsd : restriction base ="xsd:string">
12 <xsd : length value ="12" />
13 <xsd : pattern value ="\d{3}-\d{3}-\d{4}" />
14 </xsd : restriction>
15 </xsd : simpleType>
16 <xsd : element name="tv_root">
17 <xsd : complexType>
18 <xsd : sequence>
19 <xsd : element ref ="winOlympic_RepItem" />
20 </xsd : sequence>
21 <xsd : attribute name="begin" type ="xsd:date" />
22 <xsd : attribute name="end" type ="xsd:date" />
23 </xsd : complexType>
24 </xsd : element>
25 <xsd : element name="athleteTeam_RepItem">
26 <xsd : complexType>
27 <xsd : sequence>
28 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
29 name="athleteTeam_Version">
30 <xsd : complexType>
31 <xsd : sequence>
32 <xsd : element ref ="tv:timestamp_TransExtent" />
33 <xsd : element name="athleteTeam">
34 <xsd : complexType mixed ="true">
35 <xsd : sequence>
36 <xsd : element maxOccurs ="1"
37 minOccurs ="1" name ="teamName" type ="xsd:string" />
38 <xsd : element
39 maxOccurs ="unbounded" ref ="athlete_RepItem" />
40 </xsd : sequence>
41 <xsd : attribute name="numAthletes"
42 type ="xsd:positiveInteger" use ="optional" />
43 </xsd : complexType>
44 </xsd : element>
45 </xsd : sequence>
46 </xsd : complexType>
47 </xsd : element>
48 </xsd : sequence>
49 <xsd : attribute name="isItem" type ="xsd:string" />
50 <xsd : attribute name="originalElement" type ="xsd:string" />
51 </xsd : complexType>
52 </xsd : element>
53 <xsd : element name="country_RepItem">
54 <xsd : complexType>
55 <xsd : sequence>
56 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
57 name="country_Version">
58 <xsd : complexType>
59 <xsd : sequence>
60 <xsd : element ref ="tv:timestamp_TransExtent" />
61 <xsd : element name="country">

199

62 <xsd : complexType mixed ="false">
63 <xsd : sequence>
64 <xsd : element
65 ref ="athleteTeam_RepItem" />
66 </xsd : sequence>
67 <xsd : attribute name="countryName"
68 type ="xsd:string" use ="required" />
69 <xsd : attribute name="countryLead"
70 type ="xsd:string" use ="required" />
71 </xsd : complexType>
72 </xsd : element>
73 </xsd : sequence>
74 </xsd : complexType>
75 </xsd : element>
76 </xsd : sequence>
77 <xsd : attribute name="isItem" type ="xsd:string" />
78 <xsd : attribute name="originalElement" type ="xsd:string" />
79 </xsd : complexType>
80 </xsd : element>
81 <xsd : element name="winOlympic_RepItem">
82 <xsd : complexType>
83 <xsd : sequence>
84 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
85 name="winOlympic_Version">
86 <xsd : complexType>
87 <xsd : sequence>
88 <xsd : element ref ="tv:timestamp_TransExtent" />
89 <xsd : element name="winOlympic">
90 <xsd :annotation >
91 <xsd :documentation >
92 Schema for recording non
93 temporal country information
94 </xsd :documentation >
95 </xsd :annotation >
96 <xsd : complexType mixed ="true">
97 <xsd : sequence>
98 <!--numEvents added on Wednesday-->
99 <xsd : element name="numEvents"

100 type ="xsd:nonNegativeInteger" />
101 <xsd : element
102 maxOccurs ="unbounded" minOccurs ="0" ref ="country_RepItem" />
103 </xsd : sequence>
104 </xsd : complexType>
105 </xsd : element>
106 </xsd : sequence>
107 </xsd : complexType>
108 </xsd : element>
109 </xsd : sequence>
110 <xsd : attribute name="isItem" type ="xsd:string" />
111 <xsd : attribute name="originalElement" type ="xsd:string" />
112 </xsd : complexType>
113 </xsd : element>
114 <xsd : element name="athlete_RepItem">
115 <xsd : complexType>
116 <xsd : sequence>
117 <xsd : element maxOccurs ="unbounded" minOccurs ="1"
118 name="athlete_Version">
119 <xsd : complexType>
120 <xsd : sequence>
121 <xsd : element ref ="tv:timestamp_TransExtent" />
122 <xsd : element name="athlete">
123 <xsd : complexType mixed ="true">
124 <xsd : sequence>
125 <xsd : element name="athName"
126 type ="xsd:string" />
127 <xsd : element
128 maxOccurs ="unbounded" minOccurs ="0" name ="phone"
129 type ="phoneNumType" />

200

130 </xsd : sequence>
131 </xsd : complexType>
132 </xsd : element>
133 </xsd : sequence>
134 </xsd : complexType>
135 </xsd : element>
136 </xsd : sequence>
137 <xsd : attribute name="isItem" type ="xsd:string" />
138 <xsd : attribute name="originalElement" type ="xsd:string" />
139 </xsd : complexType>
140 </xsd : element>
141 </xsd : schema>

Listing 171: Final Representational schema.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsd : schema xmlns :xsd ="http://www.w3.org/2001/XMLSchema"
3 elementFormDefault ="unqualified"
4 targetNamespace ="http://www.cs.arizona.edu/tau/RepSchema"
5 xmlns ="http://www.cs.arizona.edu/tau/RepSchema"
6 xmlns :rep0 ="http://www.cs.arizona.edu/tau/RepSchema0"
7 xmlns :rep1 ="http://www.cs.arizona.edu/tau/RepSchema1"
8 xmlns :tv ="http://www.cs.arizona.edu/tau/TVSchema"
9 xmlns :xsi ="http://www.w3.org/2001/XMLSchema-instance">

10 <xsd : import namespace ="http://www.cs.arizona.edu/tau/TVSchema" schemaLoca tion ="TVSchema.xsd" />
11 <xsd : import namespace ="http://www.cs.arizona.edu/tau/RepSchema0" schemaLo cation ="rep0.xsd" />
12 <xsd : import namespace ="http://www.cs.arizona.edu/tau/RepSchema1" schemaLo cation ="rep1.xsd" />
13 <xsd : element name="sv_root">
14 <xsd : complexType>
15 <xsd : sequence>
16 <xsd : element name="schemaItem">
17 <xsd : complexType>
18 <xsd : sequence>
19 <xsd : element maxOccurs ="1" minOccurs ="1"
20 name="schemaVersion0">
21 <xsd : complexType>
22 <xsd : sequence>
23 <xsd : element maxOccurs ="1"
24 minOccurs ="1" ref ="tv:timestamp_TransExtent" />
25 <xsd : element maxOccurs ="1"
26 minOccurs ="1" ref ="rep0:tv_root" />
27 </xsd : sequence>
28 </xsd : complexType>
29 </xsd : element>
30 <xsd : element maxOccurs ="1" minOccurs ="1"
31 name="schemaVersion1">
32 <xsd : complexType>
33 <xsd : sequence>
34 <xsd : element maxOccurs ="1"
35 minOccurs ="1" ref ="tv:timestamp_TransExtent" />
36 <xsd : element maxOccurs ="1"
37 minOccurs ="1" ref ="rep1:tv_root" />
38 </xsd : sequence>
39 </xsd : complexType>
40 </xsd : element>
41 </xsd : sequence>
42 </xsd : complexType>
43 </xsd : element>
44 </xsd : sequence>
45 <xsd : attribute name="temporalSchema" type ="xsd:string">
46 </xsd : complexType>
47 </xsd : element>
48 </xsd : schema>

201

19.6 Temporal Document

Listing 172: Temporal Document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <temporalRoot xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3 <temporalSchemaSet>
4 <temporalSchema location ="temporalSchema.xml"/>
5 </ temporalSchemaSet>
6

7 <sliceSequence>
8 <slice location ="slice1.xml" begin ="2002-01-01" end ="2003-01-01" />
9 <slice location ="slice2.xml" begin ="2003-01-01" end ="2005-01-01" />

10 <slice location ="slice3.xml" begin ="2005-01-01" end ="2006-01-01" />
11 <slice location ="slice4.xml" begin ="2006-01-01"/>
12 </ sliceSequence>
13

14 </ temporalRoot>

Listing 173: Squashed document.
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <rep : sv_root xmlns :rep ="http://www.cs.arizona.edu/tau/RepSchema"
3 temporalSchema="winolympic_tempSchema.xml"
4 xmlns :rep0 ="http://www.cs.arizona.edu/tau/RepSchema0"
5 xmlns :rep1 ="http://www.cs.arizona.edu/tau/RepSchema1"
6 xmlns :tv ="http://www.cs.arizona.edu/tau/TVSchema">
7

8 <schemaItem>
9 <schemaVersion0>

10 <tv : timestamp_TransExtent begin ="2002-01-01"
11 end="2005-01-01" />
12 <rep0 : tv_root
13 xmlns :rep0 ="http://www.cs.arizona.edu/tau/RepSchema0"
14 begin ="2002-01-01" end ="2005-01-01">
15 <rep0 : winOlympic_RepItem isItem ="y"
16 originalElement ="winOlympic">
17 <winOlympic_Version>
18 <tv : timestamp_TransExtent begin ="2002-01-01"
19 end="2005-01-01" />
20 <winOlympic>
21 There are events in the Olympics .
22 <rep0 : country_RepItem isItem ="y"
23 originalElement ="country">
24 <country_Version>
25 <tv : timestamp_TransExtent
26 begin ="2002-01-01" end ="2005-01-01" />
27 <country countryName ="Norway">
28 <rep0 : athleteTeam_RepItem
29 isItem ="y" originalElement ="athleteTeam">
30 <athleteTeam_Version>
31 <tv : timestamp_TransExtent
32 begin ="2002-01-01" end ="2003-01-01" />
33 <athleteTeam
34 numAthletes ="95">
35 <teamName>
36 Norway_Army
37 </ teamName>
38 Athletes will take part in various events . The athletes
39 participating are listed below
40 <rep0 : athlete_RepItem
41 isItem ="y" originalElement ="athlete">
42 <athlete_Version>
43 <tv : timestamp_TransExtent
44 begin ="2002-01-01" end ="2003-01-01" />
45 <athlete>
46 <athName>

202

47 Kjetil Andre Aamodt
48 </ athName>
49 </ athlete>
50 </ athlete_Version>
51 </rep0 : athlete_RepItem>
52 <rep0 : athlete_RepItem
53 isItem ="y" originalElement ="athlete">
54 <athlete_Version>
55 <tv : timestamp_TransExtent
56 begin ="2002-01-01" end ="2003-01-01" />
57 <athlete>
58 <athName>
59 Trine
60 Bakke -Rognmo
61 </ athName>
62 His phone numbers are :
63 <phone>
64 123-402-0340
65 </ phone>
66 <phone>
67 123-402-0000
68 </ phone>
69 </ athlete>
70 </ athlete_Version>
71 </rep0 : athlete_RepItem>
72 <rep0 : athlete_RepItem
73 isItem ="y" originalElement ="athlete">
74 <athlete_Version>
75 <tv : timestamp_TransExtent
76 begin ="2002-01-01" end ="2003-01-01" />
77 <athlete>
78 <athName>
79 Lasse Kjus
80 </ athName>
81 </ athlete>
82 </ athlete_Version>
83 </rep0 : athlete_RepItem>
84 </ athleteTeam>
85 </ athleteTeam_Version>
86 <athleteTeam_Version>
87 <tv : timestamp_TransExtent
88 begin ="2003-01-01" end ="2005-01-01" />
89 <athleteTeam
90 numAthletes ="95">
91 <teamName>
92 Norway_Army
93 </ teamName>
94 Athletes will take part in various events . The athletes
95 participating are listed below
96 <rep0 : athlete_RepItem
97 isItem ="y" originalElement ="athlete">
98 <athlete_Version>
99 <tv : timestamp_TransExtent

100 begin ="2003-01-01" end ="2005-01-01" />
101 <athlete>
102 <athName>
103 Kjetil Andre Aamodt
104 </ athName>
105 </ athlete>
106 </ athlete_Version>
107 </rep0 : athlete_RepItem>
108 <rep0 : athlete_RepItem
109 isItem ="y" originalElement ="athlete">
110 <athlete_Version>
111 <tv : timestamp_TransExtent
112 begin ="2003-01-01" end ="2005-01-01" />
113 <athlete>
114 <athName>

203

115 Andre Agassi
116 </ athName>
117 </ athlete>
118 </ athlete_Version>
119 </rep0 : athlete_RepItem>
120 <rep0 : athlete_RepItem
121 isItem ="y" originalElement ="athlete">
122 <athlete_Version>
123 <tv : timestamp_TransExtent
124 begin ="2003-01-01" end ="2005-01-01" />
125 <athlete>
126 <athName>
127 Trine
128 Bakke -Rognmo
129 </ athName>
130 His phone numbers are :
131 <phone>
132 123-402-0340
133 </ phone>
134 <phone>
135 123-402-0000
136 </ phone>
137 </ athlete>
138 </ athlete_Version>
139 </rep0 : athlete_RepItem>
140 <rep0 : athlete_RepItem
141 isItem ="y" originalElement ="athlete">
142 <athlete_Version>
143 <tv : timestamp_TransExtent
144 begin ="2003-01-01" end ="2005-01-01" />
145 <athlete>
146 <athName>
147 Lasse Kjus
148 </ athName>
149 </ athlete>
150 </ athlete_Version>
151 </rep0 : athlete_RepItem>
152 </ athleteTeam>
153 </ athleteTeam_Version>
154 </rep0 : athleteTeam_RepItem>
155 </ country>
156 </ country_Version>
157 </rep0 : country_RepItem>
158 </ winOlympic>
159 </ winOlympic_Version>
160 </rep0 : winOlympic_RepItem>
161 </rep0 : tv_root>
162 </ schemaVersion0>
163 <schemaVersion1>
164 <tv : timestamp_TransExtent begin ="2005-01-01"
165 end="9999-12-31" />
166 <rep1 : tv_root
167 xmlns :rep1 ="http://www.cs.arizona.edu/tau/RepSchema1"
168 begin ="2005-01-01" end ="9999-12-31">
169 <rep1 : winOlympic_RepItem isItem ="y"
170 originalElement ="winOlympic">
171 <winOlympic_Version>
172 <tv : timestamp_TransExtent begin ="2005-01-01"
173 end="9999-12-31" />
174 <winOlympic>
175 There are
176 <numEvents>11</ numEvents>
177 events in the Olympics .
178 <rep1 : country_RepItem isItem ="y"
179 originalElement ="country">
180 <country_Version>
181 <tv : timestamp_TransExtent
182 begin ="2005-01-01" end ="9999-12-31" />

204

183 <country countryLead ="Andre Agassi"
184 countryName ="Norway">
185 <rep1 : athleteTeam_RepItem
186 isItem ="y" originalElement ="athleteTeam">
187 <athleteTeam_Version>
188 <tv : timestamp_TransExtent
189 begin ="2005-01-01" end ="9999-12-31" />
190 <athleteTeam
191 numAthletes ="95">
192 <teamName>
193 Norway_Army
194 </ teamName>
195 Athletes will take part in various events . The athletes
196 participating are listed below
197 <rep1 : athlete_RepItem
198 isItem ="y" originalElement ="athlete">
199 <athlete_Version>
200 <tv : timestamp_TransExtent
201 begin ="2005-01-01" end ="9999-12-31" />
202 <athlete>
203 <athName>
204 Kjetil Andre Aamodt
205 </ athName>
206 </ athlete>
207 </ athlete_Version>
208 </rep1 : athlete_RepItem>
209 <rep1 : athlete_RepItem
210 isItem ="y" originalElement ="athlete">
211 <athlete_Version>
212 <tv : timestamp_TransExtent
213 begin ="2005-01-01" end ="9999-12-31" />
214 <athlete>
215 <athName>
216 Andre Agassi
217 </ athName>
218 </ athlete>
219 </ athlete_Version>
220 </rep1 : athlete_RepItem>
221 <rep1 : athlete_RepItem
222 isItem ="y" originalElement ="athlete">
223 <athlete_Version>
224 <tv : timestamp_TransExtent
225 begin ="2005-01-01" end ="9999-12-31" />
226 <athlete>
227 <athName>
228 Trine
229 Bakke -Rognmo
230 </ athName>
231 His phone numbers are :
232 <phone>
233 123-402-0340
234 </ phone>
235 <phone>
236 123-402-0000
237 </ phone>
238 </ athlete>
239 </ athlete_Version>
240 </rep1 : athlete_RepItem>
241 <rep1 : athlete_RepItem
242 isItem ="y" originalElement ="athlete">
243 <athlete_Version>
244 <tv : timestamp_TransExtent
245 begin ="2005-01-01" end ="9999-12-31" />
246 <athlete>
247 <athName>
248 Lasse Kjus
249 </ athName>
250 </ athlete>

205

251 </ athlete_Version>
252 </rep1 : athlete_RepItem>
253 </ athleteTeam>
254 </ athleteTeam_Version>
255 </rep1 : athleteTeam_RepItem>
256 </ country>
257 </ country_Version>
258 </rep1 : country_RepItem>
259 </ winOlympic>
260 </ winOlympic_Version>
261 </rep1 : winOlympic_RepItem>
262 </rep1 : tv_root>
263 </ schemaVersion1>
264 </ schemaItem>
265 </rep : sv_root>

206

Part III

Common
In this part, we conclude and discuss future work. Section 21provides a short summary of all elements and
attributes defined inτXSchema.

207

208

20 Overall Conclusions and Future Work

In this report we have considered how to accommodate and validate time-varying data within XML Schema.
We have presented the constructs of Temporal XML Schema (τXSchema), which is an extension of XML
Schema. This report also discusses infrastructure and a suite of tools to support the creation and validation
of time-varying documents, without requiring any changes to XML Schema.

In Section 4.2, we introduced ten desiderata for our language and tools. We now revisit these desiderata
and evaluate our design against them.

• Simplify the representation of time for the user.

The SQUASH tool enables a temporal document to be constructed directlyfrom a sequence of conven-
tional documents, by providing only a list of these documents and their timestamps. A conventional
schema may optionally be provided; no further (temporal) schemas are required, as the defaults allow
all the logical and physical annotations to be omitted.

The user can later provide more details, such as exactly where the timestamps are to be placed, which
representation is to be used, and what portions of the document can vary over time.

• Support a three-level architecture to provide data independence, so that changes in the logical and
physical level are isolated.

Our approach ensures data independence by separating (i) the conventional schema document for the
instance document, (ii) information concerning what portion(s) of the instance document can vary
over time, and (iii) where timestamps should be placed and precisely how the time-varying aspects
should be represented. Since these three aspects are orthogonal, our approach allows each aspect to
be changed independently.

This three-level schema specification approach is exploited in supporting tools; several new, quite
useful toolsτXMLL INT, SCHEMAMAPPER, SQUASH, UNSQUASH, and RESQUASH are introduced
that enable the logical and physical data independence provided by our approach. Additionally, this
independence enables existing tools (e.g., the XML Schema validator, XQuery, and DOM) to be used
in the implementation of their temporal counterparts.

• Retain full upward compatibly with existing standards andnot require any changes to these standards.

Data and schema versioning are supported in a fashion consistent and upwardly-compatible with
XML, XML Schema, and conventional XML validators.

• Augment existing tools such as validating parsers for XML in such a way that those tools are also
upward compatible. Ideally, any off-the-shelf validatingparser (for XML Schema) can be used for
(partial) validation.

We introduced the following tools forτXMLL INT: SCHEMAMAPPER, SQUASH, UNSQUASH, and
RESQUASH and extended them to support schema versioning. The tools comprise in concert around
10K source lines of code including comments. Two new schemasTSSchemaandASchemacom-
prise more than 500 lines of XML code. The framework contains50-odd Java interfaces and classes.

• Support both valid time and transaction time.

Both kinds of time are fully supported inτXSchema.

• Accommodate a variety of physical representations for time-varying data.

• Accommodate different kinds of time, such as indeterminate times, unknown times, the current time,
and times at a variety of temporal granularities.

209

• Support instance versioning.

τXSchema provides an efficient way to define time-varying element types; specifically, an element
type that can vary over time, describes how to associate time-varying elements across snapshots, and
provides some temporal constraints that broadly characterize how a time-varying element can change
over time.

• Support schema versioning. Different versions of a document may conform to different versions of a
schema, as both a document and schema are modified over time. Support for schema versioning will
ensure that the schema’s history can be kept and correctly utilized.

τXSchema fully supports schema versioning, including (time-varying) schemas that include or refer-
ence other (time-varying) schemas. In doing so, we leveraged both conventional XML Schema and
related tools (principally, the conventional validator),as well asτXMLL INT for data versioning.

By identifying when schema changes occur, the schema-constant periods can be identified. Such
periods have the very useful property that there is an unchanging schema (comprised of a single base
schema, a single temporal annotation document, and a singlephysical annotation). The dance between
the conventional validator, the time-varying data checker, and the temporal constraint checker ensures
that most of the checking is done by the conventional validator, with most of the remaining checking
done by the time-varying data checker.

τXSchema andτXMLL INT can be further enhanced to provide a better system and more features.

• Future work includes extending theτXSchema model to fulfill the issues not addressed during the ini-
tial implementation. One of the goals in the desiderata thatwere not fulfilled is of supporting temporal
granularity and indeterminacy. However, it is easy to augment theτXSchema model timestamps with
concepts of granularity and incorporate additional physical representations for valid and transaction
time that account for indeterminacy, since these extensions would require additions to the TSSchema,
ASchema and the generated Representational Schema (Figure20, boxes 1, 2 and 9), but no changes
to the user designed schema documents (boxes 3-6). These augmentations would maintain upward
compatibility with previous versions ofτXSchema and be transparent to the user.

• Another broad area of work is optimization and efficiency. Although we do talk about the space-
efficiency of the tools described in Section 9, we haven’t given much attention to their performance.
New representations can be proposed, incorporated and evaluated to improve the space-efficiency of
the temporal document. We have seen that the DOM API could prove to be a memory bottleneck
for huge documents. So instead of parsing the complete document at once, other options need to be
evaluated.

One option is to validate the document in parts, bringing only one item at a time in the memory. This
could be achieved by replacing the immediate descendant item elements by their dummy equivalents
and then validating the item for its sequenced and non-sequenced constraints. This would result in
less memory utilization since only a part of the document is being kept in the memory. As few
changes would be required to manage the items one at a time, a major part of the existing algorithm
for τXMLL INT could be reused. Here, if a DOM-based parser is used, the whole document needs to
be parsed at least once, even if we are validating one item at atime. This could be avoided by using
an event-based SAX parser and building an in-memory tree of only the required elements in order to
perform those aspects of the validation that are synchronized with the parsing. This approach would
require complex memory management and parsing of the document multiple times, but memory use
would be greatly reduced.

210

As described earlier, all the tools are based on the elementary functionspushUp, pushDown and
coalesce. If we can modify them to use a SAX parser instead of a document-object-model, we can
easily convert all the tools to use a SAX parser. We think that, convertingpushDown to use a SAX
parser woule be easier; the timestamps could be pushed down easily as the document is being parsed
from start to end. After initial thought it appears that,pushUp would need building of an in-memory
tree, pushing the timestamps up and then serializing the tree. This could also be achieved by building
the tree in parts resulting in more complexity.coalesce would also need to build a tree in memory.
But instead of building a complete tree at once, it can build asubtree for each item at a time and then
coalesce it.

• Future work also includes enabling the legacy applications or the data inconsistent with a subsequently
changed schema, by exploiting information about the evolving schema that is already captured in the
temporal schema.

• Current implementation of tools does not support all described features ofτXSchema completely.
These features need to be implemented to provide completeness to the tools. The unimplemented
features, the anticipated changes and the estimated efforts required to implement them are listed
below. The estimated effort does not include becoming familiarized with the architecture and the
source code.

– Support for the ‘Step’ representation of timestamp: Some changes to the classes Item and
RepItem would be needed to support the ’Step’ representation. Some changes would also be
needed to the algorithms implemented in classPrimitives . 15–20 hours of work is antici-
pated.

– Support for the generic validation of non-sequenced constraints: Currently, the validation for
each non-sequenced constraints is implemented using a separated function insideItem class.
To provide a framework for the generic support of non-sequenced constraints, a ‘Visitor’ pattern
could be used. In that case, the validator for each non-sequenced constraint will be implemented
in a separate class and a reference to an Item element will be passed to it. The addition of a new
constraint could be made easier by some properties file; thiswill eliminate any changes to the
Item class for addition/modification of constraints. 15–20 hours of work is anticipated.

– Support for the schemaPath expressions containing ‘wildcards’ characters and shortcut rep-
resentation: This will change the way targets are being evaluated. Changes to the classes
SchemaPathEvaluator , Item and ItemIdentifier would be needed. Around 30–
40 hours of work is anticipated.

– Support for the item-identifiers specified in terms of existing items or schema keys, and targets
containing ‘wildcard’ characters: Some changes to the classesItem andItemIdentifier
would be needed. Some changes to the functions from classPrimitive may also be needed
since the procedure for coalescing may change. 20–30 hours of work is anticipated for this
change.

– Support for nested time-varying schemas: We anticipate, this would result in a considerable
change to all the tools. A couple of weeks of work may be neededto support this feature.

– Support for RESQUASHing of a temporal document using a new temporal annotation: The
changes needed for this functionality are mentioned in the Section 9.6. 4–5 hours of work
should be sufficient for this change.

• In this work, only conceptual support for the bitemporal elements is defined. The tools need to be
extended to support bitemporal elements.

211

• τXSchema should be integrated with a schema-aware XML-basededitor like XMLSpy [88]. Schema-
aware editors generate easy-to-use templates for updatingeach type of element defined in a schema.
But they do not track changes to either the schema or the data.Enabling versioning for both will sup-
port unlimited undo/redo, improve change tracking, and aidin cooperative editing. Another direction
of future work is to add versioning to XUpdate [89]. XUpdate is a language for specifying changes
to the XML document.

• τXSchema can also be extended to support generic aspects [29]. In that approach, we generalized
τXSchema to represent any generic aspect instead of just timestamps.

• We plan to extend our approach to also accommodate intensional XML data [58] which refer to
programs that generate data. Some of these programs may be evaluated (a process termed mate-
rialization), with the results replacing the programs in the document. There are several interesting
time-varying aspects of intensional XML data: (i) the programs themselves may change over time,
(ii) even if the programs are static, the results of program evaluations may change over time, as exter-
nal data the programs access changes, and (iii) even if the programs and the external data are static,
different versions of the program evaluators (e.g., Java compiler) may be present, may generate dif-
ferent results due to incompatibilities between versions.It is challenging to manage this combination
of schema and instance versioning over time.

• Currently there is no separation of elements or attributesbased on the relative frequency of update. In
the situation that some elements (for example) vary at a significantly different rate than other elements,
it may prove more efficient to split the schema up into pieces such that elements with similar “rates
of change” are together [56, 62, 71]. This would avoid redundant repetition of elements that do not
change as frequently. Related to optimization, there is theissue of optimizing the use of time-varying
loose text. For instance it may be desirable to capture orderamong different loose text pieces within
an element (e.g., different pieces may be used to describe a particular sub-element and may therefore
vary with a frequency strongly correlated to the sub-element’s temporal characteristics). We want
to incorporate recently proposed representations (e.g., [7, 13, 19, 22] into our physical annotations.
Finally, the efficiency of the tools mentioned in Sections 7 and 13 can be improved. For example, it
would be interesting to investigate whether incremental validation approaches [5, 9, 63] are applicable
in the temporal schema validator.

• In Section 6 we discussed temporal augmentations to XML Schema constraints. For non-sequenced
uniqueness constraints, we do not currently support the specification of a constraint that applies solely
between nodes. For example, given the constraint on employee email addresses in Listing 24, if we
wished to refine it to say: “the same employee could have a repetition of an email address over time,
but two different people were not allowed to have the same address over time”, we need to extend our
work to support it. We leave for the future a detailed discussion of and specification of the syntax and
semantics for such unique constraints that apply solely between nodes.

• Another extension for constraints (Section 6) is to consider the constraints under temporal indetermi-
nate times. So for instance, suppose we don’t know when exactly an employee is employed. We have
some time that we know he is employed (e.g., 2005–2009), but some fuzziness on each end of that
employment (exactly which month and day). Then the evaluation of each constraint can be done with
respect to what is definite and what is possible. For example if we have a sequenced constraint that
each employee’s email has to be unique, if two employees havethe same e-mail but the time at which
they co-exist is indeterminate then the constraint may possibly be maintained, rather than definitely
violated (the user would chose the validation semantics).

212

The three-level schema specification approach introduced in this work byτXSchema, the infrastruc-
ture, and a suite of tools provide a system for creation and validation of data-versioned XML documents,
without requiring any changes to the XML Schema specification. By clever use of schema-constant peri-
ods and cross-wall validation, schema versioning is also integrated in the framework with the support for
time-varying documents in a fashion consistent and upwardly-compatible with XML, XML Schema, and
conventional XML validators. This work has shown that by utilizing schema-constant periods and cross-
wall validation, it is possible to realize a comprehensive system for representing and validating data- and
schema-versioned XML documents, while remaining fully compatible with the XML standards.

213

214

21 τXSchema Reference

21.1 Conventions

The following are conventions used in this section.

• Indented text is used to specify a sub-element.

• “Datatype” refers to the “base datatype” which may be restricted or extended via datatype definitions.
The restrictions are specified in the “Notes” column.

• The column for “[min:max]” is used both for elements (minOccurs , maxOccurs) and attributes
(optional , required). For example, optional is denoted using [0:1], while required is denoted
with a [1:1]. The value “U” is used to denote “unbounded” formaxOccurs .

21.2 TSSchema

• Filename:TSSchema.xsd

• Purpose: Defines temporal schemas used to associate schemas and annotations

• Target Namespace:http://www.cs.arizona.edu/tau/tauXSchema/TSSchema

• Root Element:temporalSchema

• Details:

Table 10 sub-elements oftemporalSchema

Table 11 sub-elements of multiple elements

Table 12 sub-elements ofitemIdentifierCorrespondence

21.3 ASchema

• Filename:ASchema.xsd

• Purpose: Schema for Logical and Physical Annotations

• Target Namespace:http://www.cs.arizona.edu/tau/tauXSchema/ASchema

• Root Element:annotationSet

• Details:

Table 13 sub-elements ofannotationSet

Table 14 sub-elements oflogical

Tables 15 and 16sub-elements ofitem

Table 17 sub-elements ofitemIdentifier

Table 18 sub-elements ofvalidTime

Table 19 sub-elements ofattribute

Table 20 sub-elements ofdefaultTimeFormat

Table 21 sub-elements ofnonSeqUnique

215

Table 22 sub-elements ofnonSeqKey

Table 23 sub-elements ofuniqueNullRestricted

Table 24 sub-elements ofnonSeqKeyref

Table 25 sub-elements ofcardConstraint

Table 26 sub-elements oftransitionConstraint

Table 27 sub-elements ofphysical

Table 28 sub-elements ofstamp

Table 29 sub-elements oforderBy

21.4 TDSchema

• Filename:TDSchema.xsd

• Purpose: Defines Temporal Documents

• Target Namespace:http://www.cs.arizona.edu/tau/tauXSchema/TDSchema

• Root Element: temporalDocument

• Details:

Table 30 sub-elements oftemporalDocument

21.5 MDSchema

• Filename:MDSchema.xsd

• Purpose: Defines mapping pairs to associate old an new item identifier values

• Target Namespace:http://www.cs.arizona.edu/tau/tauXSchema/MDSchema

• Root Element: mappings

• Details:

Table 31 sub-elements ofmappings

Table 32 sub-element ofoldValue andnewValue

216

Element Notes [min:max]
conventionalSchema specifies the conventional schema(s) [1:1]

sliceSequence see details of sub-element in Table 11 [0:1]

include see details of sub-element in Table 11 [0:1]

annotationSet specifies the annotation schema(s) [1:1]

sliceSequence see details of sub-element in Table 11 [0:1]

include see details of sub-element in Table 11 [0:1]

Table 10: TSSchema: Sub-elements oftemporalSchema

217

Element Attribute Notes datatype [min:max]
include includes another document into current document [0:1]

schemaLocation the URI of the document to include xs:string [1:1]
sliceSequence specifies a sequence of slices [0:1]

slice details about a single slice [0:U]

location the URI of the slice document xs:string [1:1]

begin the begin date for the slice xs:date [1:1]

end the end date for the slice xs:date [0:1]

itemIdentifierCorrespondence specifies how to bridge item identifiers between
instance documents

[0:U]

Table
11:

S
liceS

equence:
S

ub-elem
ents

ofm
ultiple

elem
ent

s
218

Element Attribute Notes datatype [min:max]
oldRef references the identifier in the old logical

annotation
xs:string [1:1]

newRef references the identifier in the succeeding logical
annotation

xs:string [0:1]

mappingType mapping type, one ofuseBoth , useOld ,
useNew, replace

xs:string [0:1]

mappingLocation location of mapping file containing old and new
values that correspond (schema for this file is
provided in a separate Appendix)

xs:anyURI [0:1]

Table
12:

T
S

S
chem

a:
S

ub-elem
ents

of
ite

m
Id

e
n

tifie
rC

o
rre

sp
o

n
d

e
n
ce

219

Element Notes [min:max]
logical contains all logical annotations see details of sub-elements

in Table 14
[0:1]

physical contains all physical annotations see details of
sub-elements in Table 27

[0:1]

Table 13: ASchema: sub-elements ofannotationSet

220

Element Attribute Notes datatype [min:max]
include contains the location / URI of one or more

(possibly time-varying) logical or physical
annotation files.

[0:U]

annotationLocation URI for location xs:anyURI [1:1]

defaultTimeFormat default time format used in the document (details
in Table 20 below)

[0:1]

item [subelements in
Table 15]

defines a time varying item [0:U]

target location of the element being annotated xs:anyURI [1:1]

Table
14:

A
S

chem
a:

S
ub-elem

ents
of

lo
g

ica
l

221

Element Attribute Notes datatype [min:max]
validTime
[subelements in
Table 18]

information on the valid time annotations for the
element

[0:1]

kind the time kind, eitherstate or event xs:string [1:1]

content if the content of an element changes over time (if leaf
element), or its loose text / order of sub-elements
change (if not leaf element), eitherconstant or
varying

xs:string [0:1]

existence if the element itself can exist / not-exist over time, one
of: constant , varyingWithGaps ,
varyingWithoutGaps

xs:string [0:1]

transactionTime describes if the element varies in transaction time [0:1]

frequency frequency of change for the annotated item xs:string [0:1]

itemIdentifier
[subelements in
Table 17]

item identifier definitions, required for all
time-varying elements; if not defined defaults to the
contents of the element (i.e.,//text)

[0:1]

name unique (across the current logical annotation file)
name of the item-identifier to allow it to be referenced
by other identifier definitions

xs:string [0:1]

timeDimension time dimension applicable, one ofvalidTime ,
transactionTime , bitemporal ; default is
validTime

xs:string [0:1]

Table
15:

A
S

chem
a:

S
ub-elem

ents
of

ite
m

222

attribute
[subelements in
Table 19]

defines a time varying attribute [0:U]

name name of the attribute being annotated xs:string [1:1]

nonSeqUnique
[details in Table 21]

defines a non-sequenced Unique constraint [0:U]

nonSeqKey [details in
Table 22]

defines a non-sequenced Key constraint [0:U]

uniqueNullRestricted
[details in Table 23]

defines a non-sequenced Unique constraint with Null
value restrictions

[0:U]

nonSeqKeyref
[details in Table 24]

defines a non-sequenced referential integrity
Constraint

[0:U]

cardConstraint
[details in Table 25]

defines a non-sequenced Cardinality constraint [0:U]

transitionConstraint
[details in Table 26]

defines a non-sequenced transition constraint [0:U]

Table
16:

A
S

chem
a:

S
ub-elem

ents
of

ite
m

,cont.

223

Element Attribute Notes datatype [min:max]
keyref information on the referenced keys [0:U]

refName the name of the referenced key xs:string [1:1]

refType whether the keyref is to a conventional key, an
item identifier

xs:string [0:1]

field information on the location of the key elements
and/or attributes

[0:U]

path simplified XPath expression to specify the
element / attribute picked as part of the key

xs:string [0:1]

Table
17:

A
S

chem
a:

S
ub-elem

ents
of

ite
m

Id
e

n
tifie

r

224

Element Attribute Notes datatype [min:max]
contentVaryingApplicability captures the periods over which the content can

vary (inapplicable if content isconstant). The
max occurrence is set to unbounded to allow for
temporal elements.

[0:U]

begin the earliest time the content of the element or
attribute may vary

xs:string [0:1]

end the latest time the content of the element or
attribute may vary

xs:string [0:1]

maximalExistence captures the periods over which the existence can
vary (for elements: inapplicable if existence is
constant ; can only take on a single period if it
is varyingWithoutGaps ; for attributes:
inapplicable if attribute is required)

[0:U]

begin restriction on the earliest time of existence for an
element or attribute

xs:string [0:1]

end restriction on the latest time of existence for an
element or attribute

xs:string [0:1]

frequency frequency of change for the annotated attribute xs:string [0:1]

Table
18:

A
S

chem
a:

S
ub-elem

ents
of

va
lid

T
im

e
elem

entw
ithite

m

225

validTime
[subelements similar
to those in Table 18
with nomaximal-
Existence]

information on the valid time annotations for the
attribute

[0:1]

kind the time kind, eitherstate or event xs:string [1:1]

content if the content of an attribute changes over time, either
varying or constant

xs:string [1:1]

transactionTime describes if the attribute varies in transaction time [0:1]

frequency frequency of change for the annotated attribute xs:string [0:1]

Table
19:

A
S

chem
a:

S
ub-elem

ents
of

a
ttrib

u
te

226

Element Attribute Notes datatype [min:max]
defaultTimeFormat default time format used [0:1]

plugin plugin used:tauZaman , unix , XMLSchema/
etc.

xs:string [0:1]

granularity granularity of the time format (ifXMLSchemais
the plugin, it refers to the datatype)

xs:string [0:1]

calendar calendric system used, e.g.,Gregorian xs:string [0:1]

properties date format properties xs:string [0:1]

valueSchema value schema used for the date xs:anyURI [0:1]

Table
20:

A
S

chem
a:

S
ub-elem

ents
of

d
e

fa
u

ltT
im

e
F

o
rm

a
t

227

Element Attribute Notes datatype [min:max]
name The name of the constraint xs:string [0:1]

conventionalIdentifier The referenced conventional identifier xs:string [0:1]

dimension validTime , transactionTime , or
bitemporal (default:validTime

xs:string [0:1]

evaluationWindow Time window over which the constraint should
be checked (default: lifetime of document)

xs:string [0:1]

slideSize Size of the slide for successive evaluation
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow

xs:string [0:1]

applicability When the constraint is applicable (default:
lifetime of document)

[0:1]

(begin , end) Temporal element to specify applicability; we
use a series of intervals (indicated bybegin and
end)

xs:date ,
xs:date

[0:U]

selector For the definition of a new constraint. [0:1]

field For the definition of a new constraint. [0:U]

Table
21:

A
S

chem
a:

A
ttributes

and
sub-elem

ents
for

n
o

n
S

e
q

U
n

iq
u

e

228

Element Attribute Notes datatype [min:max]
name The name of the constraint xs:string [0:1]

conventionalIdentifier The referenced conventional identifier xs:string [0:1]

dimension validTime , transactionTime , or
bitemporal (default:validTime

xs:string [0:1]

evaluationWindow Time window over which the constraint should
be checked (default: lifetime of document)

xs:string [0:1]

slideSize Size of the slide for successive evaluation
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow

xs:string [0:1]

applicability When the constraint is applicable (default:
lifetime of document); if a value is specified
(e.g.,lifetime)—thebegin , end sub-elements
should be empty

[0:1]

(begin , end) Temporal element to specify applicability, with a
series of intervals

xs:date ,
xs:date

[0:U]

selector For the definition of a new constraint. It is
similar to theselector sub-element in the
uniqueConstraint definition

[0:1]

field For the definition of a new constraint. It is
similar to thefield sub-element in the
uniqueConstraint definition

[0:U]

Table
22:

A
S

chem
a:

A
ttributes

and
sub-elem

ents
for

n
o

n
S

e
q

K
e

y

229

Element Attribute Notes datatype [min:max]

name The name of the constraint xs:string [0:1]
conventionalIdentifier The referenced conventional identifier xs:string [0:1]

nullCountMin The number of null values allowable (either this
attribute ornullCountMax should have a
value)

xs:nonNeg -
ativeInt -
eger

[0:1]

nullCountMax The number of null values allowable (used only
within uniqueNullRestricted)

xs:nonNeg -
ativeInt -
eger

[0:1]

dimension validTime , transactionTime , or
bitemporal (default:validTime)

xs:string [0:1]

evaluationWindow Time window over which the constraint should
be checked (default: lifetime of document)

xs:string [0:1]

slideSize Size of the slide for successive evaluation
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow

xs:string [0:1]

applicability When the constraint is applicable (default:
lifetime of document)

[0:1]

(begin , end) Temporal element to specify applicability, with a
series of intervals

xs:date ,
xs:date

[0:U]

selector For the definition of a new constraint. It is
similar to theselector sub-element in the
uniqueConstraint definition

[0:1]

field For the definition of a new constraint. It is
similar to thefield sub-element in the
uniqueConstraint definition

[0:U]

Table
23:

A
S

chem
a:

A
ttributes

and
sub-elem

ents
for

u
n

iq
u

e
N

u
llR

e
stricte

d

230

Element Attribute Notes datatype [min:max]
name The name of the constraint xs:string [0:1]

refer The referenced identifier or referential integrity
constraint

xs:string [0:1]

applicability When the constraint is applicable (default: the
lifetime of the document)

[0:U]

selector Used in the definition of a new constraint [0:1]

field Used in the definition of a new constraint [0:U]

Table
24:

A
S

chem
a:

A
ttributes

and
sub-elem

ents
for

n
o

n
S

e
q

K
e

yre
f

231

Element Attribute Notes datatype [min:max]
name The name of the constraint xs:string [0:1]
restrictionTarget One ofchildList , childSet ,

valueList , valueSet
xs:string [1:1]

itemIdentifierRef Name of a referenced item identifier—only used
with childSet

xs:string [0:1]

dimension EithervalidTime or transactionTime
(default:validTime)

xs:string [0:1]

evaluationWindow Time window over which the constraint should
be checked (default: lifetime of document)

xs:string [0:1]

slideSize Size of the slide for successive evaluation
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow

xs:string [0:1]

sequenced If it is a sequenced constraint (default:false) [0:1]
aggLevel The level at which the aggregation is performed

(default: parent level); a string (prefix) of the
selector

xs:string [0:1]

min minOccurs equivalent (default:0) [0:1]
max maxOccurs equivalent (default:unbounded) [0:1]

selector Role and definition is similar to theselector
sub-element in the conventional XML Schema
constraint definitions (e.g., forkeyref
constraints)

[1:1]

field Similar to thefield sub-element in the
conventional XML Schema constraint
definitions. Allowing for multiplefield
elements lets us constraint combinations of
entities.

[1:U]

applicability When the constraint is applicable (default:
lifetime of the document)

[0:U]

Table
25:

A
S

chem
a:

A
ttributes

and
sub-elem

ents
for

ca
rd

C
o

n
stra

in
t

232

Element Attribute Notes datatype [min:max]
name The name of the constraint xs:string [0:1]

dimension EithervalidTime or transactionTime
(default:validTime)

xs:string [0:1]

selector Role and definition is similar to theselector
sub-element in the conventional XML Schema
constraint definitions (e.g., forkeyref
constraints)

[1:1]

field Similar to thefield sub-element in the
conventional XML Schema constraint
definitions. Allowing for multiplefield
elements lets us constraint combinations of
entities.

[1:U]

valuePair Sub-element listing possible pairs for discrete
changes

[0:U]

old , new Sub-elements ofvaluePair

valueEvolution Sub-element specifying direction of continuous
changes

[0:1]

applicability When the constraint is applicable (default:
lifetime of document)

[0:1]

Table
26:

A
S

chem
a:

A
ttributes

and
sub-elem

ents
for

tra
n

sitio
n

C
o

n
stra

in
t

233

Element Attribute Notes datatype [min:max]
include contains the location or URL of one or more

(possibly time-varying) physical annotation files.
[0:U]

annotationLocation location or URL of (possibly many) physical
annotation files being included

xs:anyURI [1:1]

defaultTimeFormat
[sub-elements in Ta-
ble 20]

default time format used in the document [0:1]

stamp [subelements in
Table 28] target path of the element or attribute being annotatedxs:string [0:1]

dataInclusion specifies sub-element representation, one of
expandedEntity , referencedEntity ,
expandedVersion , referencedVersion

xs:string [0:1]

Table
27:

A
S

chem
a:

S
ub-elem

ents
of

p
h

ysica
l

234

Element Attribute Notes datatype [min:max]

stampKind contains the stamp time dimension and
representation of bounds

[1:1]

timeDimension time dimension applicable, one ofvalidTime ,
transactionTime , bitemporal

xs:string [0:1]

stampBounds eitherstep or extent xs:string [0:1]

defaultTimeFormat
[sub-elements in Ta-
ble 20]

format for the timestamp xs:string [0:1]

orderBy [sub-
elements in Table 29

ordering instructions for elements in temporal
data; order the multiple instances of this element
by: time or specified target

xs:string [0:1]

Table
28:

A
S

chem
a:

S
ub-elem

ents
of

sta
m

p

235

Element Attribute Notes datatype [min:max]
field ordering field [0:1]

target path of element or attribute to order by xs:string [0:1]

time [0:1]
dimension time dimension to order by, eithervalidTime

or transactionTime
xs:string [0:1]

Table
29:

A
S

chem
a:

sub-elem
ents

of
o

rd
e

rB
y

236

Element Attribute Notes datatype [min:max]
sliceSequence see details of sub-element in Table 11 [0:1]

include see details of sub-element in Table 11 [0:1]

Table
30:

T
D

S
chem

a:
S

ub-elem
ents

of
te

m
p

o
ra

lD
o

cu
m

e
n

t

237

Element Attribute Notes datatype [min:max]
pair information about the mapping pair to link old

and new item identifiers
[1:U]

oldValue specifies value of the item identifier in old data
(sub-element description in Table 32)

[1:1]

newValue specifies value of the item identifier in old data
(sub-element description in Table 32)

[1:1]

Table
31:

M
D

S
chem

a:
S

ub-elem
ents

of
m

a
p

p
in

g
s

238

Element Attribute Notes datatype [min:max]
field contains the data value for the old / new item

identifier
xs:anyType [1:U]

Table
32:

M
D

S
chem

a:
S

ub-elem
entof

o
ld

V
a

lu
e

and
n

e
w

V
a

lu
e

239

240

Acknowledgements

We thank Lingeshwaran Palaniappan for the development of the initial version of the logical to represen-
tational mapper and the temporal data validator. NSF grantsIIS-0100436, IIS-0415101, IIS-0515101, IIS-
0639106, IIS-0803229, and EIA-0080123 and grants from the Boeing Corporation and Microsoft provided
partial support for this work.

241

242

References

[1] Serge Abiteboul, Angela Bonifati, Gregory Cobena, Ioana Manolescu, and Tova Milo. Dynamic
XML documents with distribution and replication. InACM SIGMOD International Conference on
Management of Data, pages 527–538, San Diego, CA, 2003.

[2] Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura. A data model for temporal XML
documents. InDEXA ’00: Proceedings of the 11th International Conferenceon Database and Expert
Systems Applications, pages 334–344, London, UK, 2000. Springer-Verlag.

[3] John Bair, Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Notions of upward
compatibility of temporal query languages.Business Informatics (Wirtschafts Informatik), 39(1):25–
34, 1997.

[4] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. Incremental validation of XML docu-
ments.ACM Transactions on Database Systems, 29(4):710–751, 2004.

[5] Denilson Barbosa, Alberto Mendelzon, Leonid Libkin, Laurent Mignet, and Marcelo Arenas. Effi-
cient incremental validation of XML documents. In Meral Ozsoyoglu and Stan Zdonik, editors,20th
International Conference on Data Engineering, Boston, MA, 2004. IEEE Computer Society.

[6] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring XML Schema definitions from XML
data. InVLDB ’07: Proceedings of the 33rd international conferenceon Very large data bases, pages
998–1009. VLDB Endowment, 2007.

[7] Dorian Birsan, Harm Sluiman, and Stacey-Anne Fernz. Xmldiff and merge tool, 1999.

[8] Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Temporal statement modifiers.
ACM Transactions on Database Systems, 25(4):407–456, 2000.

[9] Beatrice Bouchou and Mirian Halfeld-Ferrari. Updates and incremental validation of XML documents.
In Georg Lausen and Dan Suciu, editors,9th International Workshop on Data Base Programming
Languages, Potsdam, Germany, 2003. Springer.

[10] Zouhaier Brahmia and Rafik Bouaziz. Schema versioning in multi-temporal XML databases. InICIS
08: Seventh IEEE/ACIS International Conference on Computer and Information Science, 2008, pages
158–164. IEEE Computer Society, 2008.

[11] Harvey Bratman. A alternate form of the “uncol diagram”. Communications of the ACM, 4(3):142,
1961.

[12] Peter Buneman, Susan Davidson, Weifei Fan, Carmem Hara, and WangChiew Tan. Keys for XML.
Computer Networks, 39(5):473–487, 2002.

[13] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and WangChiew Tan. Archiving scientific data. In
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki,editors,ACM SIGMOD International
Conference on Management of Data, pages 1–12, Madison, WI, 2002. ACM.

[14] Thomas Burns, Elizabeth N. Fong, David Jefferson, Richard Knox, Leo Mark, Christopher Reedy,
Louis Reich, Nick Roussopoulos, and Walter Truszkowski. Reference model for dbms standardiza-
tion, database architecture framework task group of the ansi/x3/sparc database system study group.
SIGMOD Record, 15(1):19–58, 1986.

243

[15] Marcela Campo and Alejandro Vaisman. Consistency of temporal XML documents. InXSym 2006:
Database and XML Technologies. 4th International XML Database Symposium, Proceedings, Lec-
ture Notes in Computer Science Vol. 4156, pages 31–45, Seoul, South Korea, 2006. Springer-Verlag.
9144700, temporal XML document, temporal data representation, historical information tracking, doc-
ument state recovery, temporal XML abstract model, temporal constraint, document validation, tem-
poral XML consistency.

[16] XML Schema Versioning Use Cases. Framework for discussion of versioning, 2006. URL http:
//www.w3.org/XML/2005/xsd-versioning-use-cases, Viewed January 15th, 2007.

[17] Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. Schema versioning for multitemporal rela-
tional databases.Information Systems, 22(5):249–290, 1997.

[18] Sudarshan S. Chawathe, Serge Abiteboul, and Jennifer Widom. Representing and querying changes
in semistructured data. In14th International Conference on Data Engineering, pages 4–13, Orlando,
FL, USA, 1998. IEEE Computer Society.

[19] Shu Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo. Efficient schemes for managing multiver-
sionXML documents.The VLDB Journal, 11(4):332–353, 2002.

[20] Junghoo Cho and Hector Garcia-Molina. Estimating frequency of change.ACM Transactions on
Internet Technology, 3(3):256–290, 2003.

[21] James Clifford, Curtis Dyreson, Tomás Isakowitz, Christian S. Jensen, and Richard Thomas Snod-
grass. On the semantics of “now” in databases.ACM Transactions on Database Systems, 22(2):171–
214, 1997.

[22] Gregory Cobena, Serge Abiteboul, and Amelie Marian. Detecting changes in XML documents. In
18th International Conference on Data Engineering, pages 41–52, San Jose, California, 2002. IEEE
Computer Society.

[23] Roger L. Costello and Melissa Utzinger. Impact of XML schema versioning on system design, 2007.
URL http://www.xfront.com/SchemaVersioning.html, Viewed February 7th, 2007.

[24] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema evolution: the prism
workbench. InVery Large Data Base (VLDB), 2008.

[25] Faiz Currim, Sabah Currim, Curtis E. Dyreson, and Richard T. Snodgrass. A tale of two schemas:
Creating a temporal XML schema from a snapshot schema withτxschema. In9th International Con-
ference on Extending Database Technology, pages 559–560, Heraklion-Crete, Greece, 2004. Springer
Berlin / Heidelberg.

[26] Faiz Currim and Sudha Ram. Conceptually modeling windows and bounds for space and time in
database constraints.Commun. ACM, 51(11):125–129, 2008.

[27] Curtis Dyreson. Towards a temporal world-wide web: A transaction time web server. In12th Aus-
tralasian Database Conference, volume 23, pages 169–175, Gold Coast, Australia, 2001.

[28] Curtis Dyreson, Richard T. Snodgrass, Faiz Currim, andSabah Currim. Schema-mediated exchange
of temporal XML data. InER 2006: Proceedings of the 25th International Conference on Conceptual
Modeling, Lecture Notes in Computer Science, Vol. 4215, pages 212–227, Tucson, AZ, USA, 2006.
Springer-Verlag. 9496307, schema-mediated temporal XML data exchange, Web servers, temporal
data collection.

244

[29] Curtis Dyreson, Richard T. Snodgrass, Faiz Currim, Sabah Currim, and Shailesh Joshi. Weaving
temporal and reliability aspects into a schema tapestry.Data and Knowledge Engineering, 63(3):752–
773, 2007.

[30] Curtis E. Dyreson, Michael Böhlen, and Christian S. Jensen. Capturing and querying multiple aspects
of semistructured data. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B.
Zdonik, and Michael L. Brodie, editors,25th International Conference on Very Large Data Bases,
pages 290–301, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[31] Curtis E. Dyreson, Hui ling Lin, and Yingxia Wang. Managing versions of web documents in a
transaction-time web server. InWWW ’04: Proceedings of the 13th international conference on World
Wide Web, pages 422–432, New York, NY, USA, 2004. ACM.

[32] Massimo Franceschet, Angelo Montanari, and DonatellaGubiani. Modeling and validating spatio-
temporal conceptual schemas in XML schema. In18th International Conference on Database and Ex-
pert Systems Applications, pages 25–9, Regensburg, Germany, 2007. IEEE. 9876499, spatio-temporal
conceptual schema validation, W3C XML schema language, Java library.

[33] Enrico Franconi, Fabio Grandi, and Federica Mandreoli. Schema evolution and versioning: A logical
and computational characterisation. In Herman Balsters, Bert de Brock, and Stefan Conrad, edi-
tors, 9th International Workshop on Foundations of Models and Languages for Data and Objects,
FoMLaDO/DEMM 2000, Database Schema Evolution and Meta-Modeling, pages 85–99, Dagstuhl,
Germany, 2000. Springer.

[34] Jim Gabriel. How to version schemas. InXML-Conference and Exhibition, Washington DC, November,
2004, 2004. URL http://www.idealliance.org/proceedings/xml04/papers/74/howToVersionSchemas.
html, Viewed February 7th, 2007.

[35] E Gamma.Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[36] Dengfeng Gao and Richard T. Snodgrass. Syntax, semantics, and evaluation in theτxquery temporal
XML query language. Technical Report Technical Report TR-72, TimeCenter, February 2003.

[37] Dengfeng Gao and Richard T. Snodgrass. Temporal slicing in the evaluation of XML queries. In
VLDB ’2003: Proceedings of the 29th international conference on Very large data bases, pages 632–
643. VLDB Endowment, 2003.

[38] Manolis Gergatsoulis and Yannis Stavrakas. Representing changes in XML documents using dimen-
sions. InDatabase and XML Technologies, volume 2824 ofLecture Notes in Computer Science, pages
208–222. Springer-Verlag Berlin, Berlin, 2003. ISI Document Delivery No.: BY03G Heidelberg Platz
3, D-14197 Berlin, Germany.

[39] Ana Isabel González-Tablas, L. M. Salas, Benjamı́n Ramos, and Arturo Ribagorda. Providing person-
alization and automation to spatial-temporal stamping services. InProceedings - International Work-
shop on Database and Expert Systems Applications, DEXA, volume 2006, pages 219–225, Copen-
hagen, Denmark, 2006. Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-
5997, United States. Compilation and indexing terms, Copyright 2008 Elsevier Inc. 064010145615,
Stamping services, Spatial-temporal stamping, Information model, Personalization.

[40] Fabio Grandi. A bibliography on temporal and evolutionaspects in the world wide web. Technical
Report Technical Report TR-75, TimeCenter, September 2003.

245

[41] Fabio Grandi and Federica Mandreoli. The valid web: itstime to go. Technical Report Technical
Report TR-46, TimeCenter, October 1999.

[42] Fabio Grandi and Federica Mandreoli. The valid web: An XML/XSL infrastructure for temporal
management of web documents. InADVIS ’00: Proceedings of the First International Conference on
Advances in Information Systems, pages 294–303, London, UK, 2000. Springer-Verlag.

[43] Bo Huang, Shanzhen Yi, and Weng Tat Chan. Spatio-temporal information integration in xml.Future
Generation Computer Systems, 20(7):1157–1170, 2004. ISI Document Delivery No.: 861BM.

[44] Mizuho Iwaihara, Somchai Chatvichienchai, ChutipornAnutariya, and Vilas Wuwongse. Relevancy
based access control of versioned XML documents. InSACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 85–94, New York, NY, USA, 2005.
ACM.

[45] Christian S. Jensen and Curtis E. Dyreson. A consensus glossary of temporal database concepts, 1998.

[46] Christian S. Jensen and Richard T. Snodgrass. Temporaldata management. Technical Report Technical
Report TR-17, TimeCenter, June 1997.

[47] Shailesh Joshi.τXSchema - support for data- and schema-versioned XML documents. Master’s thesis,
Computer Science Department, University of Arizona, August 2007.

[48] Vijay Khatri, Sudha Ram, and Richard T. Snodgrass. Augmenting a conceptual model with geospa-
tiotemporal annotations.IEEE Transactions on Knowledge and Data Engineering, 16(11):1324–1338,
2004.

[49] Dongwon Lee and Wesley W. Chu. Comparative analysis of six XML schema languages.SIGMOD
Record, 29(3):76–87, 2000.

[50] Libxml. The XML C parser and toolkit of Gnome, version 2.7.2, 2008. http://xmlsoft.org/, Viewed
February 5, 2009.

[51] Federica Mandreoli, Riccardo Martoglia, and Enrico Ronchetti. Supporting temporal slicing in XML
databases. InEDBT 2006: 10th International Conference on Extending Database Technology. Pro-
ceedings, (Lecture Notes in Computer Science Vol.3896), pages 295–312, Munich, Germany, 2006.
Springer-Verlag. 8923096.

[52] Amélie Marian. Detecting changes in XML documents. InICDE ’02: Proceedings of the 18th In-
ternational Conference on Data Engineering, page 41, Washington, DC, USA, 2002. IEEE Computer
Society.

[53] Amélie Marian, Serge Abiteboul, Gregory Cobena, and Laurent Mignet. Change-centric management
of versions in an XML warehouse. InVLDB ’01: Proceedings of the 27th International Conferenceon
Very Large Data Bases, pages 581–590, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

[54] Jason McHugh and Jennifer Widom. Query optimization for XML. In Malcolm P. Atkinson, Maria E.
Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors,25th International
Conference on Very Large Databases, pages 315–326, Edinburgh, Scotland, UK, 1999. Morgan Kauf-
mann.

246

[55] William M. McKeeman, James J. Horning, and David B. Wortman.A Compiler Generator. Prentice-
Hall, Englewood Cliffs, NJ, 1970.

[56] L. Edwin McKenzie and Richard T. Snodgrass. An evaluation of relational algebras incorporating the
time dimension in databases.ACM Computing Surveys, 23(4):501–543, December 1991.

[57] Alberto O. Mendelzon, Flavio Rizzolo, and Alejandro Vaisman. Indexing temporal XML documents.
In In Proceedings of the 30th International Conference on VeryLarge Databases, pages 216–227,
2004.

[58] Tova Milo, Serge Abiteboul, Bernd Amann, Omar Benjelloun, and Fred Dang Ngoc. Exchanging
intensional XML data. InACM SIGMOD International Conference on Management of Data, pages
289–300, San Diego, CA, 2003.

[59] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, andMehai Preda. Monitoring XML data on the
web. In Timos Sellis, editor,ACM SIGMOD International Conference on Management of Data, pages
437–448, Santa Barbara, CA, 2001.

[60] Kjetil Nørvåg. Algorithms for temporal query operators in XML databases. InEDBT Workshops,
pages 169–183, 2002.

[61] OMG. Unified modeling language (UML), v2.2, February 2009.

[62] Gultekin Ozsoyoglu and Richard T. Snodgrass. Temporaland real-time databases:a survey.IEEE
Transactions on Knowledge and Data Engineering, 7(4):513–532, August 1995.

[63] Yannis Papakonstantinou and Victor Vianu. Incremental validation of XML documents. In Diego Cal-
vanese, Maurizio Lenzerini, and Rajeev Motwani, editors,9th International Conference on Database
Theory, pages 47–63, Siena, Italy, 2003. Springer.

[64] SAX project. Sax project, official website, 2007. URL http://www.saxproject.org, Viewed March 26,
2007.

[65] TAU Project. τxschema, computer science department at the university of arizona, 2007. URL http:
//www.cs.arizona.edu/projects/tau/txschema/index.htm, Viewed March 26, 2007.

[66] Mukund Raghavachari and Oded Shmueli. Efficient revalidation of XML documents.IEEE Transac-
tions on Knowledge and Data Engineering, 19(4):554–567, 2007. 1041-4347.

[67] Flavio Rizzolo and Alejandro A. Vaisman. Temporal XML:modeling, indexing, and query processing.
The VLDB Journal The International Journal on Very Large Data Bases, 17(5):1179–1212, 2008.

[68] John F. Roddick. Schema evolution in database systems:an annotated bibliography.SIGMOD Rec.,
21(4):35–40, 1992.

[69] John F. Roddick. A survey of schema versioning issues for database systems.Information and Software
Technology, 37(7):383–393, 1995.

[70] Richard Snodgrass. The temporal query language TQuel.ACM Transactions on Database Systems,
12(2):247–298, 1987.

[71] Richard T. Snodgrass. Temporal object oriented databases: A critical comparison. In W. Kim, editor,
Modern Database Systems: The Object Model, Interoperability and Beyond, pages 386–408. Addison-
Wesley/ACM Press, 1995.

247

[72] Richard T. Snodgrass.Developing time-oriented database applications in SQL. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000.

[73] Richard T. Snodgrass and Ilsoo Ahn. Temporal databases. IEEE Computer, 19(9):35–42, 1986.

[74] Richard Thomas Snodgrass, S. Gomez, and E. McKenzie. Aggregates in the temporal query language
tquel. IEEE Transactions on Knowledge and Data Engineering, 5(5):826–842, 1993.

[75] Na Tang, Yong Tang, and MiaoMiao Cai. Bitemporal extension and mapping of XML data model. In
Proceedings of the 2007 11th International Conference on Computer Supported Cooperative Work in
Design, pages 757–61, Melbourne, Vic., Australia, 2007. IEEE. 9720117.

[76] Abdullah Uz Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie Segev, and Richard Snodgrass,
editors. Temporal databases: theory, design, and implementation. Benjamin-Cummings Publishing
Co., Inc., Redwood City, CA, USA, 1993.

[77] W3C. XML path language (XPath), version 1.0, w3c recommendation, november 1999, 1999. URL
http://www.w3.org/TR/xpath, Viewed February 5, 2008.

[78] W3C. XML schema part 2: Datatypes, May 02 2001.

[79] W3C. XQuery 1.0: An XML query language, W3C working draft 16 august 2002, August 16 2002.

[80] W3C. XML schema part 1: Structures second edition, W3C recommendation, october 2004, October
2004. URL http://www.w3.org/TR/xquery, Viewed February 5, 2008.

[81] W3C. XML schema, second edition, W3C recommendation, 2004. URL http://www.w3.org/XML/
Schema.html, Viewed March 25, 2009.

[82] W3C. Document object model, 2007. http://www.w3.org/DOM, Viewed March 26, 2007.

[83] W3C. Document type definition (DTD) language, 2007. URLhttp://www.w3.org/TR/REC-xml/
dt-doctype, Viewed March 25, 2007.

[84] W3C. Extensible Markup Language (XML) 1.0, August 2006. http://www.w3.org/TR/REC-xml,
Viewed August 25, 2008.

[85] Fusheng Wang and Carlo Zaniolo. Temporal queries and version management in XML-based docu-
ment archives.Data and Knowledge Engineering, 65(2):304–324, 2008. Compilation and indexing
terms, Copyright 2008 Elsevier Inc.081411182348 0169-023X.

[86] Raymond K. Wong and Nicole Lam. Managing and querying multi-version XML data with update
logging. InDocEng ’02: Proceedings of the 2002 ACM symposium on Document engineering, pages
74–81, New York, NY, USA, 2002. ACM.

[87] Vilas Wuwongse, Masatoshi Yoshikawa, and Toshiyuki Amagasa. Temporal versioning of XML doc-
uments. In7th International Conference on Asian Digital Libraries, ICADL 2004. Proceedings (Lec-
ture Notes in Computer Science Vol.3334), Digital Libraries: International Collaboration and Cross-
Fertilization, pages 419–28, Shanghai, China, 2004. Springer-Verlag. 8411139.

[88] XMLSpy. XML editor for modeling, editing, transforming, & debugging XML technologies., 2007.
URL http://www.altova.com/products/xmlspy/xmleditor.html, Viewed April 18, 2007.

248

[89] XUpdate. XML update language, working draft 2000-09-14, 2000. URL http://xmldb-org.
sourceforge.net/xupdate/xupdate-wd.html, Viewed April18, 2007.

[90] Lucie Xyleme. Xyleme: A dynamic warehouse for XML data of the web. InIDEAS ’01: Proceedings
of the International Database Engineering & Applications Symposium, pages 3–7, Washington, DC,
USA, 2001. IEEE Computer Society.

[91] Cong Yu and Lucian Popa. Semantic adaptation of schema mappings when schemas evolve. InVLDB
’05: Proceedings of the 31st international conference on Very large data bases, pages 1006–1017.
VLDB Endowment, 2005.

249

250

A Base Schemas

A.1 TSSchema: Schema for Temporal Schema

Listing 174:TSSchema.xsd
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xs : schema targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema "
3 xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema "
4 xmlns :xs ="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault ="qualified"
6 version ="December 5, 2008">
7

8 <xs : include schemaLocation ="./SliceSequence.xsd"/>
9

10 <xs : element name="temporalSchema">
11 <xs : complexType>
12 <xs : sequence>
13

14 <xs : element name="conventionalSchema" minOccurs ="1" maxOccurs ="1">
15 <xs : complexType>
16 <xs : choice>
17 <xs : element name="sliceSequence" type ="ts:sliceSequenceType"/>
18 <xs : element name="include" type ="ts:includeType"/>
19 </xs : choice>
20 </xs : complexType>
21 </xs : element>
22

23 <xs : element name="annotationSet" minOccurs ="0" maxOccurs ="1">
24 <xs : complexType>
25 <xs : choice>
26 <xs : element name="sliceSequence" type ="ts:sliceSequenceType"/>
27 <xs : element name="include" type ="ts:includeType"/>
28 </xs : choice>
29 </xs : complexType>
30 </xs : element>
31

32 </xs : sequence>
33 </xs : complexType>
34 </xs : element>
35 </xs : schema>

A.2 ASchema: Schema for Annotation Schema

Listing 175:ASchema.xsd
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xs : schema targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
3 xmlns : a="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
4 xmlns :xs ="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault ="qualified"
6 version ="December 5, 2008">
7

8

9 <xs : element name="annotationSet">
10 <xs : complexType>
11 <xs : all>
12

13 <xs : element name="logical" type ="a:logicalType" minOccurs ="0" maxOccurs ="1" />
14 <xs : element name="physical" type ="a:physicalType" minOccurs ="0" maxOccurs ="1"/>
15

16 </xs : all>
17 </xs : complexType>
18 </xs : element>

251

19

20

21 <xs : complexType name="logicalType">
22 <xs : sequence>
23 <xs : element name="include" minOccurs ="0" maxOccurs ="unbounded">
24 <xs : complexType>
25 <xs : attribute name="annotationLocation" type ="xs:anyURI"/>
26 </xs : complexType>
27 </xs : element>
28 <xs : element name="defaultTimeFormat" minOccurs ="0">
29 <xs : complexType>
30 <xs : sequence>
31 <xs : element name="format" minOccurs ="0">
32 <xs : complexType>
33 <xs : attribute name="plugin" type ="xs:string" use ="optional"/>
34 <xs : attribute name="granularity" type ="xs:string" use ="optional"/>
35 <xs : attribute name="calendar" type ="xs:string" use ="optional"/>
36 <xs : attribute name="properties" type ="xs:string" use ="optional"/>
37 <xs : attribute name="valueSchema" type ="xs:anyURI" use ="optional"/>
38 </xs : complexType>
39 </xs : element>
40 </xs : sequence>
41 </xs : complexType>
42 </xs : element>
43 <xs : element name="item" minOccurs ="0" maxOccurs ="unbounded">
44 <xs : complexType>
45 <xs : sequence>
46 <xs : element name="validTime" minOccurs ="0">
47 <xs : complexType>
48 <xs : sequence>
49 <xs : element name="contentVaryingApplicability"
50 minOccurs ="0" maxOccurs ="unbounded">
51 <xs : complexType>
52 <xs : attribute name="begin" type ="xs:string" use ="optional"/>
53 <xs : attribute name="end" type ="xs:string" use ="optional"/>
54 </xs : complexType>
55 </xs : element>
56 <xs : element name="maximalExistence" minOccurs ="0">
57 <xs : complexType>
58 <xs : attribute name="begin" type ="xs:string" use ="optional"/>
59 <xs : attribute name="end" type ="xs:string" use ="optional"/>
60 </xs : complexType>
61 </xs : element>
62 <xs : element name="frequency" type ="xs:string" minOccurs ="0"/>
63 </xs : sequence>
64 <xs : attribute name="kind"
65 type ="a:kindType" use ="optional"/>
66 <xs : attribute name="content"
67 type ="a:contentType" use ="optional"/>
68 <xs : attribute name="existence"
69 type ="a:existenceType" use ="optional"/>
70 </xs : complexType>
71 </xs : element>
72 <xs : element name="transactionTime" minOccurs ="0">
73 <xs : complexType>
74 <xs : sequence>
75 <xs : element name="frequency" type ="xs:string" minOccurs ="0"/>
76 </xs : sequence>
77 <xs : attribute name="kind" type ="a:kindType" use ="optional"/>
78 <xs : attribute name="content" type ="a:contentType" use ="optional"/>
79 <xs : attribute name="existence" type ="a:existenceType" use ="optional"/>
80 </xs : complexType>
81 </xs : element>
82 <xs : element name="itemIdentifier" minOccurs ="0">
83 <xs : complexType>
84 <xs : sequence>
85 <xs : element name="keyref" minOccurs ="0" maxOccurs ="unbounded">
86 <xs : complexType>

252

87 <xs : attribute name="refName"
88 type ="xs:string" use ="required"/>
89 <xs : attribute name="refType"
90 type ="a:keyrefTypeII" use ="optional"/>
91 </xs : complexType>
92 </xs : element>
93 <xs : element name="field" minOccurs ="0" maxOccurs ="unbounded">
94 <xs : complexType>
95 <xs : attribute name="path" type ="xs:string" use ="required"/>
96 </xs : complexType>
97 </xs : element>
98 </xs : sequence>
99 <xs : attribute name="name"

100 type ="xs:string" use ="optional"/>
101 <xs : attribute name="timeDimension"
102 type ="a:timeDimensionType" use ="optional"/>
103 </xs : complexType>
104 </xs : element>
105 <xs : element name="attribute" minOccurs ="0" maxOccurs ="unbounded">
106 <xs : complexType>
107 <xs : sequence>
108 <xs : element name="validTime" minOccurs ="0">
109 <xs : complexType>
110 <xs : sequence>
111 <xs : element name="contentVaryingApplicability"
112 minOccurs ="0" maxOccurs ="unbounded">
113 <xs : complexType>
114 <xs : attribute name="begin"
115 type ="xs:string" use ="optional"/>
116 <xs : attribute name="end"
117 type ="xs:string" use ="optional"/>
118 </xs : complexType>
119 </xs : element>
120 <xs : element name="frequency" type ="xs:string" minOccurs ="0"/>
121 </xs : sequence>
122 <xs : attribute name="kind"
123 type ="a:kindType" use ="required"/>
124 <xs : attribute name="content"
125 type ="a:contentType" use ="optional"/>
126 </xs : complexType>
127 </xs : element>
128 <xs : element name="transactionTime" minOccurs ="0">
129 <xs : complexType>
130 <xs : sequence>
131 <xs : element name="frequency" type ="xs:string" minOccurs ="0"/>
132 </xs : sequence>
133 </xs : complexType>
134 </xs : element>
135 </xs : sequence>
136 <xs : attribute name="name" type ="xs:string" use ="optional"/>
137 </xs : complexType>
138 </xs : element>
139 </xs : sequence>
140 <xs : attribute name="target" type ="xs:anyURI" use ="required"/>
141 </xs : complexType>
142 </xs : element>
143 </xs : sequence>
144 </xs : complexType>
145

146 <!-- Simple Types used by the logical annotations above -->
147 <xs : simpleType name="kindType">
148 <xs : restriction base ="xs:string">
149 <xs : enumeration value ="state"/>
150 <xs : enumeration value ="event"/>
151 </xs : restriction>
152 </xs : simpleType>
153 <xs : simpleType name="keyrefTypeII">
154 <xs : restriction base ="xs:string">

253

155 <xs : enumeration value ="snapshot"/>
156 <xs : enumeration value ="itemIdentifier"/>
157 </xs : restriction>
158 <!-- II in "keyrefTypeII" stands for ItemIdentifier -->
159 </xs : simpleType>
160 <xs : simpleType name="contentType">
161 <xs : restriction base ="xs:string">
162 <xs : enumeration value ="constant"/>
163 <xs : enumeration value ="varying"/>
164 </xs : restriction>
165 </xs : simpleType>
166 <xs : simpleType name="existenceType">
167 <xs : restriction base ="xs:string">
168 <xs : enumeration value ="constant"/>
169 <xs : enumeration value ="varyingWithGaps"/>
170 <xs : enumeration value ="varyingWithoutGaps"/>
171 </xs : restriction>
172 </xs : simpleType>
173 <xs : simpleType name="timeDimensionType">
174 <xs : restriction base ="xs:string">
175 <xs : enumeration value ="validTime"/>
176 <xs : enumeration value ="transactionTime"/>
177 <xs : enumeration value ="bitemporal"/>
178 </xs : restriction>
179 </xs : simpleType>
180

181

182 <xs : complexType name="physicalType">
183 <xs : sequence>
184 <xs : element name="include" minOccurs ="0" maxOccurs ="unbounded">
185 <xs : complexType>
186 <xs : attribute name="annotationLocation" type ="xs:anyURI"/>
187 </xs : complexType>
188 </xs : element>
189 <xs : element name="defaultTimeFormat" minOccurs ="0">
190 <xs : complexType>
191 <xs : sequence>
192 <xs : element name="format" minOccurs ="0">
193 <xs : complexType>
194 <xs : attribute name="plugin"
195 type ="xs:string" use ="optional"/>
196 <xs : attribute name="granularity"
197 type ="xs:string" use ="optional"/>
198 <xs : attribute name="calendar"
199 type ="xs:string" use ="optional"/>
200 <xs : attribute name="properties"
201 type ="xs:string" use ="optional"/>
202 <xs : attribute name="valueSchema"
203 type ="xs:string" use ="optional"/>
204 </xs : complexType>
205 </xs : element>
206 </xs : sequence>
207 </xs : complexType>
208 </xs : element>
209 <xs : element name="stamp" minOccurs ="0" maxOccurs ="unbounded">
210 <xs : complexType>
211 <xs : sequence>
212 <xs : element name="stampKind">
213 <xs : complexType>
214 <xs : sequence>
215 <xs : element name="format" minOccurs ="0">
216 <xs : complexType>
217 <xs : attribute name="plugin"
218 type ="xs:string" use ="optional"/>
219 <xs : attribute name="granularity"
220 type ="xs:string" use ="optional"/>
221 <xs : attribute name="calendar"
222 type ="xs:string" use ="optional"/>

254

223 <xs : attribute name="properties"
224 type ="xs:string" use ="optional"/>
225 <xs : attribute name="valueSchema"
226 type ="xs:string" use ="optional"/>
227 </xs : complexType>
228 </xs : element>
229 </xs : sequence>
230 <xs : attribute name="timeDimension"
231 type ="a:timeDimensionType" use ="optional"/>
232 <xs : attribute name="stampBounds"
233 type ="a:stampType" use ="optional"/>
234 </xs : complexType>
235 </xs : element>
236 <xs : element name="orderBy" minOccurs ="0">
237 <xs : complexType>
238 <xs : sequence>
239 <xs : element name="field" maxOccurs ="unbounded">
240 <xs : complexType>
241 <xs : choice>
242 <xs : element name="target" type ="xs:string"/>
243 <xs : element name="time">
244 <xs : complexType>
245 <xs : attribute name="dimension" type ="a:timeDimensionType"/>
246 </xs : complexType>
247 </xs : element>
248 </xs : choice>
249 </xs : complexType>
250 </xs : element>
251 </xs : sequence>
252 </xs : complexType>
253 </xs : element>
254 </xs : sequence>
255 <xs : attribute name="target"
256 type ="xs:string" use ="required"/>
257 <xs : attribute name="dataInclusion"
258 type ="a:dataInclusionType" use ="optional"/>
259 </xs : complexType>
260 </xs : element>
261 </xs : sequence>
262 </xs : complexType>
263

264

265 <xs : simpleType name="stampType">
266 <xs : restriction base ="xs:string">
267 <xs : enumeration value ="step"/>
268 <xs : enumeration value ="extent"/>
269 </xs : restriction>
270 </xs : simpleType>
271 <xs : simpleType name="dataInclusionType">
272 <xs : restriction base ="xs:string">
273 <xs : enumeration value ="expandedEntity"/>
274 <xs : enumeration value ="referencedEntity"/>
275 <xs : enumeration value ="expandedVersion"/>
276 <xs : enumeration value ="referencedVersion"/>
277 </xs : restriction>
278 </xs : simpleType>
279

280 </xs : schema>

255

A.3 SliceSequenceSchema: Schema for Slice Sequences

Listing 176:SliceSequence.xsd
1 <?xml version ="1.0"?>
2 <xs : schema
3 xmlns :xs ="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault ="qualified">
5

6 <xs : complexType name="sliceSequenceType">
7 <xs : sequence>
8 <xs : element name="slice" minOccurs ="1" maxOccurs ="unbounded">
9 <xs : complexType>

10 <xs : attribute name="location" type ="xs:string" use ="required"/>
11 <xs : attribute name="begin" type ="xs:date" use ="required"/>
12 <xs : attribute name="end" type ="xs:date" use ="optional"/>
13 </xs : complexType>
14 </xs : element>
15 </xs : sequence>
16 </xs : complexType>
17

18 <xs : complexType name="includeType">
19 <xs : attribute name="schemaLocation" type ="xs:string" use ="required"/>
20 </xs : complexType>
21 </xs : schema>

A.4 TDSchema: Schema for Temporal Document

Listing 177:TDSchema.xsd
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xs : schema targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/TDSchema "
3 xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TDSchema "
4 xmlns :xs ="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault ="qualified"
6 version ="December 5, 2008">
7

8 <xs : include schemaLocation ="./SliceSequence.xsd"/>
9

10 <xs : element name="temporalDocument">
11 <xs : complexType>
12 <xs : sequence>
13

14 <xs : element name="temporalSchemaSet" minOccurs ="1" maxOccurs ="1">
15 <xs : complexType>
16 <xs : sequence>
17 <xs : element name="temporalSchema" minOccurs ="1" maxOccurs ="unbounded">
18 <xs : complexType>
19 <xs : attribute name="location" type ="xs:string"/>
20 </xs : complexType>
21 </xs : element>
22 </xs : sequence>
23 </xs : complexType>
24 </xs : element>
25

26 <xs : element name="sliceSequence" type ="td:sliceSequenceType"/>
27

28 </xs : sequence>
29 </xs : complexType>
30 </xs : element>
31 </xs : schema>

256

B Evaluation Tools

B.1 Slice Generator

Listing 178: Slice Generator script
1 #!/usr/bin/perl -w
2

3 ### #############
4

5 #
6

7 # Author: Stephen W. Thomas
8

9 # Date: Fall 2008
10

11 # Purpose: To generate a large number of XML slices. The
12

13 # output of this script is a set of sliceXX.xml
14

15 # files along with config.xml file used in the
16

17 # tools.
18

19 #
20

21 ### ##############
22

23

24

25 if ($#ARGV < 3){
26

27 print "Usage: $0 amountChange docSize changeKind numSlices\n";
28

29 exit 1;
30

31 }
32

33

34

35 $amountChange = $ARGV[0];
36

37 $docSize = $ARGV[1];
38

39 $changeKind = $ARGV[2];
40

41 $numSlices = $ARGV[3];
42

43

44

45 # Set begin date
46

47 $lastDate = "2008-01-01";
48

49

50

51 my $numParts = $docSize;
52

53

54

55 # Probability that any given element is changed
56

57 my $pNewVersion = $amountChange * $changeKind;
58

59

60

61 # Probability that a new item (element) is created

257

62

63 my $pNewItem = $amountChange * (1.0-$changeKind);
64

65

66

67 #Initialize values
68

69 $totalPossible = $numParts * (10 * $numSlices);
70

71 my @partQuant;
72

73 for ($j=0; $j < $totalPossible; ++$j){
74

75 $partQuant[$j] = $j;
76

77 }
78

79

80

81 # Print header of config document
82

83 open(CONFIG, ">config.xml");
84

85 print CONFIG "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";
86

87 print CONFIG "<config bundle=\"./test_bundle.xml\"
88

89 xmlns=\"http://www.cs.arizona.edu/tau/tauXSchema/Co nfigSchema\">\n";
90

91

92

93 # Print each slice to disk, and add the name of the slice to the c onfig file
94

95 for ($i = 0; $i <= $numSlices; ++$i){
96

97 printLargeFile($i);
98

99 addSnapshotToConfig($i);
100

101 }
102

103 print CONFIG "</config>\n";
104

105

106

107

108

109 # Adds an entry into the config file
110

111 sub addSnapshotToConfig{
112

113 $outfile = "slice$i.xml";
114

115 $date1 = $lastDate;
116

117 $lastDate = incrementDate($date1);
118

119 print CONFIG
120

121 " <snapshot file=\"$outfile\" beginDate=\"$date1\" endD ate=\"$lastDate\"/>\n";
122

123 }
124

125

126

127

128

129 # Increments a simple date format "YYYY-MM-DD" with wrappin t

258

130

131 sub incrementDate{
132

133 $firstDate = shift(@_);
134

135 $incMonth = 0;
136

137 $incYear = 0;
138

139

140

141 @ar = split("-", $firstDate);
142

143 $firstYear = $ar[0];
144

145 $firstMonth = $ar[1];
146

147 $firstDay = $ar[2];
148

149

150

151 $newDay = $firstDay + 1;
152

153 if ($newDay > 28){
154

155 $newDay = 1;
156

157 $incMonth = 1;
158

159 }
160

161 $newMonth = $firstMonth + $incMonth;
162

163 if ($newMonth > 12){
164

165 $newMonth = 1;
166

167 $incYear = 1;
168

169 }
170

171 $newYear = $firstYear + $incYear;
172

173

174

175 return sprintf "%4d-%02d-%02d", $newYear,$newMonth,$newDay;
176

177 }
178

179

180

181

182

183 ### #####################
184

185 # In each additional slice, we may add more elements to each se ction.
186

187 # We may also change the content of existing elements.
188

189 ### #####################
190

191 sub printLargeFile{
192

193

194

195 # Should we increase the number of <part> elements?
196

197 if (rand() <= $pNewItem){

259

198

199 $numParts = $numParts + rand(10);
200

201 }
202

203

204

205 $outfile = "slice$i.xml";
206

207 open(OUT, ">$outfile");
208

209 print OUT "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";
210

211 print OUT "<root>\n";
212

213

214

215 print OUT "<parts>\n";
216

217

218

219 # Print out every <part> element that we have.
220

221 for ($j=0; $j < $numParts; ++$j){
222

223

224

225 # Should we create a new "version" of this element?
226

227 # A new version is created by just changing the value
228

229 # of the <quantity> subelement.
230

231 if (rand() <= $pNewVersion){
232

233 $partQuant[$j]++;
234

235 }
236

237

238

239 print OUT " <part>\n";
240

241 print OUT " <name>part_$j</name>\n";
242

243 print OUT " <id>$j</id>\n";
244

245 print OUT " <quantity>$partQuant[$j]</quantity>\n";
246

247 print OUT " </part>\n";
248

249 }
250

251 print OUT "</parts>\n";
252

253

254

255 print OUT "</root>\n";
256

257 }

260

B.2 Scenario Tester

Listing 179: AllRuns script
1 #!/usr/bin/perl
2 ### #############
3 #
4 # Author: Stephen W. Thomas
5 # Date: Fall 2008
6 # Purpose: To execute a large set of runs and output results
7 # to stdout.
8 #
9 ### ##############

10

11 use Time::HiRes qw(gettimeofday tv_interval);
12

13 my $N = 30;
14

15 # Define the variables and their values
16 my @amountChanges = (0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64);
17 my @docSizes = (1000, 4000, 16000, 64000);
18 my @degrees = (0, .25, .5, .75, 1);
19 my @numSlices = (100, 1000, 5000, 10000);
20

21 my ($t1, $t2, $squashTime, $squashSize, $valTime, $unsquash Time);
22

23 # Full factorial design space. Run all cases.
24 foreach my $amountChange (@amountChanges) {
25 foreach my $docSize (@docSizes) {
26 foreach my $degree (@degrees) {
27 foreach my $numSlice (@numSlices) {
28

29 $squashTime = 0;
30 $squashSize = 0;
31 $valTime = 0;
32 $unsquashTime = 0;
33

34 for (my $i=0; $i<$N; ++$i){
35

36 #print "Producing test case $amountChange $docSize $degre e $numSlice \n";
37 system("generator.pl $amountChange $docSize $degree $numSlice ");
38

39

40 # Run Squash
41 $t1 = [gettimeofday];
42 system("squash config.xml");
43 $squashTime += tv_interval($t1);
44 $squashSize += `ls -l squashed.xml | awk '{ print\$5 }'`;
45

46

47 # Run tXMLLint
48 $t1 = [gettimeofday];
49 system("txmllint config.xml squashed.xml > /dev/null");
50 $valTime += tv_interval($t1);
51

52 # Run UnSquash
53 $t1 = [gettimeofday];
54 system("unsquash config.xml squashed.xml");
55 $unsquashTime += tv_interval($t1);
56

57 system("rm slice * ");
58 system("rm squashed.xml");
59

60 }
61

62 # Get averages
63 $squashTime = $squashTime / $N;
64 $squashSize = $squashSize / $N;

261

65 $valTime = $valTime / $N;
66 $unsquashTime = $unsquashTime / $N;
67

68 # Output results
69 printf "%12.5f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f\n ",
70 $amountChange, $docSize, $degree, $numSlice,
71 $squashTime, $squashSize,
72 $valTime, $unsquashTime;
73 }
74 }
75 }
76 }

262

C Initial Sensitivity to Parameters

This appendix provides details on the results of the initialexperiments executed. The goal was to determine
whether or not the dependent variables of interest were sensitive to the amount of change and type of change
between each slice. Figure 71 shows the results of SQUASH in these scenarios. In this figure, the slice-based
and item-based representation schemes show almost no difference in performance between both percentage
change increases (x-axis) or type of change increased (lines). The edit-based scheme shows some small
variation, but no general trend is evident and the absolute amount of change is small.

We see that for each representation type, as the percentage of change increases, the time required to
squash the document does not increase significantly. Figure72 shows the results of a larger scenario,
but the trends exhibited by the results are similar. . Again,the slice-based and item-based representation
schemes show almost no difference in performance between both percentage change increases (x-axis) or
type of change (lines). The edit-based scheme shows some small variation, but no general trend is evident
and the absolute amount of change is small.

10 20 30 40 50 60
0

2

4

6

8

10

Percentage Change (%)

T
im

e
(s

ec
on

ds
)

Slice−based

0.25

0.50

.75

1.0

(a) Slice-based

10 20 30 40 50 60
0

2

4

6

8

10

Percentage Change (%)

T
im

e
(s

ec
on

ds
)

Edit−based

0.25

0.50

.75

1.0

(b) Edit-based

10 20 30 40 50 60
0

2

4

6

8

10

Percentage Change (%)

T
im

e
(s

ec
on

ds
)

Item−based

0.25

0.50

.75

1.0

(c) Item-based

Figure 71: Time required to squash 10 slices, each with about10 elements

10 20 30 40 50 60
0

2

4

6

8

10

Percentage Change (%)

T
im

e
(s

ec
on

ds
)

Slice−based

0.25

0.50

.75

1.0

(a) Slice-based

10 20 30 40 50 60
0

2

4

6

8

10

Percentage Change (%)

T
im

e
(s

ec
on

ds
)

Edit−based

0.25

0.50

.75

1.0

(b) Edit-based

10 20 30 40 50 60
0

2

4

6

8

10

Percentage Change (%)

T
im

e
(s

ec
on

ds
)

Item−based

0.25

0.50

.75

1.0

(c) Item-based

Figure 72: Time required to squash 100 slices, each with about 200 elements (20 slices with 20 elements in
the case of the item-based scheme)

Both UNSQUASH andτXMLL INT show similar trends. In effort to reduce to number of experiments
run, we conclude that the type and frequency of change is not alarge factor in representation performance,
and thus we can fix these parameters for the remainder of the experiments.

263

