
36    communications of the acm    |   June 2011  |   vol.  54  |   no.  6

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 I
B

M
 C

o
r

p
o

r
a

t
e

 A
r

c
h

i
v

e
s

T
he so-called LAMP stack 
(Linux OS/Apache Internet 
server/MySQL DBMS/Perl 
PL) consists of 10 million 
lines of code,5 interacting 

in myriad ways to achieve impressive 
functionality and performance. This 
approaches the intellectual complex-
ity of the Saturn V rocket (with three 
million parts) that took humans to the 
moon. The similarities between these 
two enormous engineering feats are 
important: good engineering design 
practices have been followed; require-
ments were defined and met; rigor-
ous testing and debugging has taken 
place. Yet, to date, the LAMP stack is 
much less well understood than the 
Saturn V rocket. It is much more dif-
ficult to predict how the LAMP stack 
will perform under varying conditions 
and where things might go wrong 
than it is to consider how the Saturn 
V may behave in different operating 
environments.

What the engineers at NASA have 
that the developers and users of the 
LAMP stack do not is an understanding 
of how configurations of system com-
ponents (in NASA’s case, physical ma-
terials) will behave in a variety of (phys-
ical) contexts and an idea of where 
the boundary conditions of those be-
haviors lie. This understanding is the 
product of physical theories about uni-
versal laws of nature—laws that have 
been identified through a tradition 
of model construction and empirical 
testing to produce general principles. 

Viewpoint 
Computer Science 
Can Use More Science 
Software developers should use empirical methods to analyze  
their designs to predict how working systems will behave. 
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The Saturn V rocket that launched humans to the moon relied on an IBM System/360 for  
data processing.
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Developers of the LAMP stack do not 
approach this level of understanding.

If computer science can achieve this 
level, that is, uncover the kinds of sci-
entific theories and laws that physics 
provides, software developers building 
artifacts could do what NASA engineers 
do now: analyze their designs accord-
ing to underlying theories and predict 
how a working system will behave. Ex-
tracting such laws and principles is the 
goal of science.

Whether and how computer sci-
ence is a science has been a topic of 
discussion since the beginnings of 
the field. Thinkers including Herbert 
Simon6 have offered deep insight into 
the special nature of computation and 
how it exists as a phenomenon—in 
part, it’s artificial, something we cre-
ate. However, the nature of what com-
puter science is studying, or how best 
to study it, is by no means a settled top-
ic. Just because we design and build 
computational systems does not mean 
we understand them; special care and 
much more work is needed to correctly 
characterize computation as a scien-
tific endeavor.

The early challenges of the field 
were engineering in nature, leading 
to a de-emphasis of empirical meth-
ods. In recent years, with increasing 
complexity of computational systems, 
empirical methods are now needed to 
discover system limits and predict fu-
ture behavior.

The Methodology of Debugging
Let’s start with the parts of the scien-
tific method we do well. Programmers 
engage naturally in one of the purest 
forms of empirical investigation: de-
bugging. Whenever a program exhibits 
a fault, in which a run over particular 
input data yields an exception or incor-
rect output, the programmer gener-
ally follows a series of steps. First, the 
programmer develops a hypothesis of 
where the fault lies (whether in a partic-
ular statement or more generally with 
the logic of the design) and considers 
how to correct it. This hypothesis is 
based on the programmer’s mental 
model of how the programming envi-
ronment, referenced libraries, operat-
ing system, and environment (such as 
input data, system events, and so forth) 
function and interact. This model is 
generated and refined through addi-

tional runs of the program with print 
statements or through interaction with 
a debugger in which the program state 
can be examined as the program is 
single-stepped. The programmer then 
tests this hypothesis by making changes 
believed to fix the problem and rerun-
ning the program, predicting that the 
change will result in the correct out-
put for that particular test input. If the 
program still faults, the programmer 
refines the hypothesis, updating their 
mental model of how they believe the 
underlying system is behaving, and 
further investigates possible causes. 
Programmers frequently demonstrate 
they are highly skilled at understand-
ing complex interactions by forming 
models and testing and revising them.

Toward General Predictive Models
Why, then, do we not have the same 
depth of understanding of the LAMP 
stack as the Saturn V rocket? Formu-
lating hypotheses, devising tests and 
carrying them out, and then revising 
hypotheses based on test outcomes 
are critical components of the basic 
methodology of empirical science. But 
these activities are not all that science 
does. What is missing from the debug-
ging picture is searching for general-
izations: attempting to extract general 
patterns and identify the factors that 
govern their behavior. This requires 
looking past individual systems, past 
simply getting the program to run in 
a particular context, to characterizing 
general principles of system behavior. 
The predictive model underlying the 
hypothesis testing undertaken by our 
programmer is specific to the extreme.

Empirical generalization3 progresses 
from description of particular instances 
to prediction (via models) of classes of 
systems. This progression is advanced 

to an explanation that connects what 
is going on in particular observed cases 
to a general class, in this case of certain 
kinds of software systems in certain 
kinds of configurations. The models 
and the kinds of systems they describe 
should both be broadly construed to 
render a true understanding of these 
systems. Are such general predictive 
models even possible for software sys-
tems? Experience indicates that when 
such systems are examined experimen-
tally, with an explicit goal of discovering 
causal models, such models can in fact 
be found and highlight deep structure.7 

The articulation of scientific theo-
ries as predictive causal models, the 
methodology of empirical generaliza-
tion, and the evaluation of such theo-
ries via hypothesis testing is prevalent 
in isolated sub-disciplines of computer 
science, including human-computer 
interaction, empirical software engi-
neering, Web science, and data min-
ing. It is, however, rarely used in other 
sub-disciplines of computer science, 
especially those concerned with soft-
ware systems artifacts, such as com-
pilers, databases, networks, operating 
systems, and programming languages.

Examples of Computational Models
One example of a computational 
model that is the product of empirical 
generalization is the Theory of Local-
ity.4 This model arose from a study of 
the cost of managing page transfers 
between main memory and a much 
slower disk drive, within the general 
area of operating systems. What Den-
ning found was that data relevant to 
the current context of a running pro-
gram tended to be grouped in space 
and time to local chunks, and this was 
the product of the way programs are 
written by humans, rather than due 
to any underlying constraints of the 
computing system. When our mem-
ory management algorithms respect 
this general pattern, performance 
improves dramatically. The result-
ing theory—that human-constructed 
information processing systems will 
exhibit locality—is inherently predic-
tive and has been tested many, many 
times. This theory has subsequently 
been generalized to apply to computa-
tional systems of all kinds: “in virtual 
memory to organize caches for address 
translation and to design the replace-

Why, then, do we not 
have the same depth 
of understanding of 
the LAMP stack as 
the Saturn V rocket? 
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ment algorithms, …in buffers between 
computers and networks,…in Web 
browsers to hold recent Web pages,…
in spread spectrum video streaming 
that bypasses network congestion.”4 

Note what Denning did: He recog-
nized a kind of behavior that spans a 
class of systems. He searched for the 
factors responsible for the behavior 
he and others had observed. And, how 
he searched is of utmost importance: 
he conducted experiments, adjusting 
the candidate factors responsible for 
producing the behavior, collected data 
and carefully analyzed it and used the 
results to update his hypotheses. Den-
ning wasn’t debugging and he wasn’t 
deriving proofs; he was revising his 
model based on experimental data 
while expanding the model to charac-
terize a larger class of computational 
systems that exhibit locality. In doing 
so, Denning was able to achieve greater 
clarity about this phenomenon and 
how and why a computational system 
will exhibit this phenomenon.

We don’t yet know whether the laws 
of computational systems will cohere 
into explanatory frameworks like other 
natural sciences, or as elegantly as the 
theory of locality. For example, many 
physical systems are continuous in 
nature while most computer science 
domains are discrete. Discrete sys-
tems tend to exhibit chaotic behavior, 
in which small changes in inputs or 
initial conditions lead to dramatic dif-
ferences in outcomes. It is not known 
what portions of computer science 
phenomena are chaotic. But even here, 
empirical and analytical tools are avail-
able to help, such as dynamic systems 
theory (Bradley provides an example 
of applying dynamic systems theory in 
a computer science context1). Discrete 
systems are analytically very challeng-
ing, but incorporating empirical tools 
will help expand our modes of analysis.

Another notable episode of em-
pirical investigation in computer sci-
ence, still unfolding, is in the study 
of where the hard problems lie within 
the parameter space of computation-
ally hard (NP-complete) problems. 
Many of the problem instances turn 
out to be relatively easy to solve, while 
others are insurmountably difficult. 
Early models proposed that NP-com-
plete problems would transition from 
easy to hard then back to easy around 

a threshold value of certain param-
eters. Subsequent studies have since 
systematically explored this phenom-
enon, and have discovered that where 
these transitions occur may depend 
on a variety of additional factors, in-
cluding the kind of problem-solving 
method used. Different problem-solv-
ing methods provide us with different 
tools with which to study the complex-
ity of these problems; an apt analogy 
has been made to astronomers using 
telescopes that operate on different 
light wavelengths to provide different 
perspectives on the structure of the 
cosmos.2 The jury is still out on how to 
best characterize the transition behav-
ior, but the key point for our purposes 
is to again focus on the methodology 
employed: these researchers conduct 
experiments, take measurements, 
and refine their models, while striving 
for generality.

Realizing the Benefits  
of More Science in CS
These examples and other extant com-
puter science theories emphasize that 
by embracing the methodology of de-
veloping and evaluating predictive 
models through experimentation over 
multiple members of a class of soft-
ware systems, a more complete under-
standing of such artifacts will emerge. 
In addition, this observational and 
experimental scientific perspective en-
courages the computer scientist to ac-
tively look for relevant phenomena that 
may have been missed because they 
aren’t currently described by existing, 
closed-form analytical descriptions.8 
The developed explanatory model pro-
vides better prediction and ultimately 

more dependable products built on 
those principles. Finally, good scientif-
ic models will generate new questions 
to be answered and will drive our field 
to yet deeper understanding.

How can these benefits be realized? 
How might we change what we do? 
We can adapt our already very skilled 
hypothesis testing in debugging and 
broaden it by asking more general ques-
tions, identifying the classes of system 
properties that contribute to behavior, 
identifying their boundary conditions, 
and working to fit them into a uni-
fied picture. We can also more broadly 
adopt additional methodological tools, 
such as from statistics and dynamic 
systems; a number of computer science 
subfields already profitably do so.

The pristine presentations of sci-
entific reasoning and the tremendous 
successes of such reasoning in other 
fields may appear to the practicing 
computer scientist as out of reach. But 
many of our colleagues have started 
down this path, the tools are accessi-
ble, and the promise is great.
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models will generate 
new questions 
to be answered 
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field to yet deeper 
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