
36 communications of the acm | June 2011 | vol. 54 | no. 6

V
viewpoints

P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 I
B

M
 C

o
r

p
o

r
a

t
e

 A
r

c
h

i
v

e
s

T
he so-called LAMP stack
(Linux OS/Apache Internet
server/MySQL DBMS/Perl
PL) consists of 10 million
lines of code,5 interacting

in myriad ways to achieve impressive
functionality and performance. This
approaches the intellectual complex-
ity of the Saturn V rocket (with three
million parts) that took humans to the
moon. The similarities between these
two enormous engineering feats are
important: good engineering design
practices have been followed; require-
ments were defined and met; rigor-
ous testing and debugging has taken
place. Yet, to date, the LAMP stack is
much less well understood than the
Saturn V rocket. It is much more dif-
ficult to predict how the LAMP stack
will perform under varying conditions
and where things might go wrong
than it is to consider how the Saturn
V may behave in different operating
environments.

What the engineers at NASA have
that the developers and users of the
LAMP stack do not is an understanding
of how configurations of system com-
ponents (in NASA’s case, physical ma-
terials) will behave in a variety of (phys-
ical) contexts and an idea of where
the boundary conditions of those be-
haviors lie. This understanding is the
product of physical theories about uni-
versal laws of nature—laws that have
been identified through a tradition
of model construction and empirical
testing to produce general principles.

Viewpoint
Computer Science
Can Use More Science
Software developers should use empirical methods to analyze
their designs to predict how working systems will behave.

doi:10.1145/1953122.1953139 	 Clayton T. Morrison and Richard T. Snodgrass

The Saturn V rocket that launched humans to the moon relied on an IBM System/360 for
data processing.

V
viewpoints

june 2011 | vol. 54 | no. 6 | communications of the acm 37

Developers of the LAMP stack do not
approach this level of understanding.

If computer science can achieve this
level, that is, uncover the kinds of sci-
entific theories and laws that physics
provides, software developers building
artifacts could do what NASA engineers
do now: analyze their designs accord-
ing to underlying theories and predict
how a working system will behave. Ex-
tracting such laws and principles is the
goal of science.

Whether and how computer sci-
ence is a science has been a topic of
discussion since the beginnings of
the field. Thinkers including Herbert
Simon6 have offered deep insight into
the special nature of computation and
how it exists as a phenomenon—in
part, it’s artificial, something we cre-
ate. However, the nature of what com-
puter science is studying, or how best
to study it, is by no means a settled top-
ic. Just because we design and build
computational systems does not mean
we understand them; special care and
much more work is needed to correctly
characterize computation as a scien-
tific endeavor.

The early challenges of the field
were engineering in nature, leading
to a de-emphasis of empirical meth-
ods. In recent years, with increasing
complexity of computational systems,
empirical methods are now needed to
discover system limits and predict fu-
ture behavior.

The Methodology of Debugging
Let’s start with the parts of the scien-
tific method we do well. Programmers
engage naturally in one of the purest
forms of empirical investigation: de-
bugging. Whenever a program exhibits
a fault, in which a run over particular
input data yields an exception or incor-
rect output, the programmer gener-
ally follows a series of steps. First, the
programmer develops a hypothesis of
where the fault lies (whether in a partic-
ular statement or more generally with
the logic of the design) and considers
how to correct it. This hypothesis is
based on the programmer’s mental
model of how the programming envi-
ronment, referenced libraries, operat-
ing system, and environment (such as
input data, system events, and so forth)
function and interact. This model is
generated and refined through addi-

tional runs of the program with print
statements or through interaction with
a debugger in which the program state
can be examined as the program is
single-stepped. The programmer then
tests this hypothesis by making changes
believed to fix the problem and rerun-
ning the program, predicting that the
change will result in the correct out-
put for that particular test input. If the
program still faults, the programmer
refines the hypothesis, updating their
mental model of how they believe the
underlying system is behaving, and
further investigates possible causes.
Programmers frequently demonstrate
they are highly skilled at understand-
ing complex interactions by forming
models and testing and revising them.

Toward General Predictive Models
Why, then, do we not have the same
depth of understanding of the LAMP
stack as the Saturn V rocket? Formu-
lating hypotheses, devising tests and
carrying them out, and then revising
hypotheses based on test outcomes
are critical components of the basic
methodology of empirical science. But
these activities are not all that science
does. What is missing from the debug-
ging picture is searching for general-
izations: attempting to extract general
patterns and identify the factors that
govern their behavior. This requires
looking past individual systems, past
simply getting the program to run in
a particular context, to characterizing
general principles of system behavior.
The predictive model underlying the
hypothesis testing undertaken by our
programmer is specific to the extreme.

Empirical generalization3 progresses
from description of particular instances
to prediction (via models) of classes of
systems. This progression is advanced

to an explanation that connects what
is going on in particular observed cases
to a general class, in this case of certain
kinds of software systems in certain
kinds of configurations. The models
and the kinds of systems they describe
should both be broadly construed to
render a true understanding of these
systems. Are such general predictive
models even possible for software sys-
tems? Experience indicates that when
such systems are examined experimen-
tally, with an explicit goal of discovering
causal models, such models can in fact
be found and highlight deep structure.7

The articulation of scientific theo-
ries as predictive causal models, the
methodology of empirical generaliza-
tion, and the evaluation of such theo-
ries via hypothesis testing is prevalent
in isolated sub-disciplines of computer
science, including human-computer
interaction, empirical software engi-
neering, Web science, and data min-
ing. It is, however, rarely used in other
sub-disciplines of computer science,
especially those concerned with soft-
ware systems artifacts, such as com-
pilers, databases, networks, operating
systems, and programming languages.

Examples of Computational Models
One example of a computational
model that is the product of empirical
generalization is the Theory of Local-
ity.4 This model arose from a study of
the cost of managing page transfers
between main memory and a much
slower disk drive, within the general
area of operating systems. What Den-
ning found was that data relevant to
the current context of a running pro-
gram tended to be grouped in space
and time to local chunks, and this was
the product of the way programs are
written by humans, rather than due
to any underlying constraints of the
computing system. When our mem-
ory management algorithms respect
this general pattern, performance
improves dramatically. The result-
ing theory—that human-constructed
information processing systems will
exhibit locality—is inherently predic-
tive and has been tested many, many
times. This theory has subsequently
been generalized to apply to computa-
tional systems of all kinds: “in virtual
memory to organize caches for address
translation and to design the replace-

Why, then, do we not
have the same depth
of understanding of
the LAMP stack as
the Saturn V rocket?

38 communications of the acm | June 2011 | vol. 54 | no. 6

viewpoints

ment algorithms, …in buffers between
computers and networks,…in Web
browsers to hold recent Web pages,…
in spread spectrum video streaming
that bypasses network congestion.”4

Note what Denning did: He recog-
nized a kind of behavior that spans a
class of systems. He searched for the
factors responsible for the behavior
he and others had observed. And, how
he searched is of utmost importance:
he conducted experiments, adjusting
the candidate factors responsible for
producing the behavior, collected data
and carefully analyzed it and used the
results to update his hypotheses. Den-
ning wasn’t debugging and he wasn’t
deriving proofs; he was revising his
model based on experimental data
while expanding the model to charac-
terize a larger class of computational
systems that exhibit locality. In doing
so, Denning was able to achieve greater
clarity about this phenomenon and
how and why a computational system
will exhibit this phenomenon.

We don’t yet know whether the laws
of computational systems will cohere
into explanatory frameworks like other
natural sciences, or as elegantly as the
theory of locality. For example, many
physical systems are continuous in
nature while most computer science
domains are discrete. Discrete sys-
tems tend to exhibit chaotic behavior,
in which small changes in inputs or
initial conditions lead to dramatic dif-
ferences in outcomes. It is not known
what portions of computer science
phenomena are chaotic. But even here,
empirical and analytical tools are avail-
able to help, such as dynamic systems
theory (Bradley provides an example
of applying dynamic systems theory in
a computer science context1). Discrete
systems are analytically very challeng-
ing, but incorporating empirical tools
will help expand our modes of analysis.

Another notable episode of em-
pirical investigation in computer sci-
ence, still unfolding, is in the study
of where the hard problems lie within
the parameter space of computation-
ally hard (NP-complete) problems.
Many of the problem instances turn
out to be relatively easy to solve, while
others are insurmountably difficult.
Early models proposed that NP-com-
plete problems would transition from
easy to hard then back to easy around

a threshold value of certain param-
eters. Subsequent studies have since
systematically explored this phenom-
enon, and have discovered that where
these transitions occur may depend
on a variety of additional factors, in-
cluding the kind of problem-solving
method used. Different problem-solv-
ing methods provide us with different
tools with which to study the complex-
ity of these problems; an apt analogy
has been made to astronomers using
telescopes that operate on different
light wavelengths to provide different
perspectives on the structure of the
cosmos.2 The jury is still out on how to
best characterize the transition behav-
ior, but the key point for our purposes
is to again focus on the methodology
employed: these researchers conduct
experiments, take measurements,
and refine their models, while striving
for generality.

Realizing the Benefits
of More Science in CS
These examples and other extant com-
puter science theories emphasize that
by embracing the methodology of de-
veloping and evaluating predictive
models through experimentation over
multiple members of a class of soft-
ware systems, a more complete under-
standing of such artifacts will emerge.
In addition, this observational and
experimental scientific perspective en-
courages the computer scientist to ac-
tively look for relevant phenomena that
may have been missed because they
aren’t currently described by existing,
closed-form analytical descriptions.8
The developed explanatory model pro-
vides better prediction and ultimately

more dependable products built on
those principles. Finally, good scientif-
ic models will generate new questions
to be answered and will drive our field
to yet deeper understanding.

How can these benefits be realized?
How might we change what we do?
We can adapt our already very skilled
hypothesis testing in debugging and
broaden it by asking more general ques-
tions, identifying the classes of system
properties that contribute to behavior,
identifying their boundary conditions,
and working to fit them into a uni-
fied picture. We can also more broadly
adopt additional methodological tools,
such as from statistics and dynamic
systems; a number of computer science
subfields already profitably do so.

The pristine presentations of sci-
entific reasoning and the tremendous
successes of such reasoning in other
fields may appear to the practicing
computer scientist as out of reach. But
many of our colleagues have started
down this path, the tools are accessi-
ble, and the promise is great.

Acknowledgments
We thank the reviewers and editors for
an enjoyable and vigorous conversa-
tion around the topic of this column.
The reviewers will not agree with every
detail, but they have certainly helped
us refine the presentation.	

References
1.	B radley, E. Time-series analysis. In M. Berthold and D.

Hand, Eds., Intelligent Data Analysis: An Introduction.
Springer Verlag, 1999.

2.	 Coarfa, C. et al. Random 3-SAT: The plot thickens. In
Proceedings of the 6th International Conference on
Principles and Practice of Constraint Programming.
Springer LNCS, 2000), 143–159.

3.	 Cohen, P. Empirical Methods for Artificial Intelligence.
MIT Press, 1995.

4.	 Denning, P.J. The locality principle. Commun. ACM 48,
7 (July 2005), 19–24.

5.	N eville-Neil, G.V. Code spelunking redux. Commun.
ACM 51, 10 (Oct. 2008), 36–41.

6.	S imon, H.A. The Sciences of the Artificial, Third Edition,
MIT Press, 1996.

7.	S nodgrass, R.T. Ergalics: A Natural Science of
Computation, February 2010; http://www.cs.arizona.
edu/projects/focal/ergalics/whatis.html

8.	T ichy, W.F. Should computer scientists experiment
more? IEEE Computer 31, 5 (May 1998), 32–40.

Clayton T. Morrison (clayton@cs.arizona.edu) is a
research assistant professor of computer science at
the University of Arizona. He has more than a decade
of experience building artificial intelligence systems for
DARPA, AFOSR and NSF projects.

Richard T. Snodgrass (rts@cs.arizona.edu) is a professor
of computer science at the University of Arizona. He is an
ACM Fellow, has chaired the ACM Publications Board and
SIGMOD, and has served as the editor-in-chief of ACM
Transactions on Database Systems.

Copyright held by author.

Good scientific
models will generate
new questions
to be answered
and will drive our
field to yet deeper
understanding.

