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Abstract— Recent research in ubiquitous and mobile com-
puting uses mobile phones and wearable accelerometers to
monitor individuals’ physical activities for personalized and
proactive health care. The goal of this project is to measure
and reduce the energy demand placed on mobile phones that
monitor individuals’ physical activities for extended periods
of time with limited access to battery recharging and mobile
phone reception. Many issues must be addressed before mobile
phones become a viable platform for remote health monitoring,
including: security, reliability, privacy, and, most importantly,
energy. Mobile phones are battery-operated, making energy
a critical resource that must be carefully managed to ensure
the longest running time before the battery is depleted. In a
sense, all other issues are secondary, since the mobile phone will
simply not function without energy. In this project, we therefore
focus on understanding the energy consumption of a mobile
phone that runs physical activity monitoring applications and
consider ways to reduce its energy consumption.

I. INTRODUCTION

Recent trends in medicine indicate that automatic detection
of physical activity (PA) is important and will enable new
types of health monitoring tools that help people maintain
healthier life-styles. PA detection has the potential to trans-
form traditional medicine that relies on general assessment of
clinical symptoms and signs to a more personalized approach
that is tailored to the individual, based on their behavioral
and physical history [1], [2]. Coupled with their ability to
communicate with a remote monitoring center, the onboard
processing and storage capabilities makes mobile phones
an attractive platform for remote health care monitoring.
Furthermore, the availability of low cost sensors makes
health monitoring applications more viable and cost effective.

Currently, CPU processing and communication are the
largest consumers of energy in sensors and mobile devices.
We anticipate that typical ubiquitous health monitoring sce-
narios will involve both battery powered wearable sensors
and mobile phones that process the continuous sensor data
at relatively high frequencies. These scenarios highlight the
need for energy management of both the communication and
computational aspects of such a system.

We present a framework for energy monitoring that in-
cludes both the hardware and software setup, along with
current observations from energy profiling of a mobile phone
and a PA monitoring application. Our early findings can
provide guidance for other researchers undertaking projects
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in energy efficiency of portable applications. We discuss the
challenges encountered during the construction of the setup
as well as the current limitations of the presented framework.
Furthermore, we present an energy profile of a mobile phone
and a PA monitoring applications that can inform the design
of future applications. Finally, we discuss future research that
will aim to improve the energy efficiency of the hardware
and match the application’s algorithms to the underlying
hardware to achieve overall energy efficiency on the mobile
phone platform.

II. MIT WOCKETS

Existing commercial products that monitor behavior and
physical activity [3] [4] [5] rely on proprietary hardware that
is in some cases unwieldy and in others bears a prohibitive
price tag. The shortcomings of the commercial devices have
caused the house n lab at MIT to initiate the development
of wockets [6], [7]: a new open-source platform for fine-
grained and continuous monitoring of physical activities
using wireless accelerometers and mobile phones. The goal
of the wockets project is to make both the hardware and
software robust, so that the system can detect activity contin-
uously and can be deployed at population-scale on a variety
of smart-phones and pocket PCs. The hardware platform
consists of wearable, miniature, unobtrusive and low-cost
hardware sensors that measure motion of different parts of a
human body using accelerometers. The sensors send data to
a mobile phone that detects the type, duration and intensity
of physical activity. Currently, Bluetooth is used to send
wockets data from the sensors to the phone as it is the only
widely-used wireless protocol available on mobile phones.
It is anticipated that Ultra Low Power (ULP) Bluetooth will
become increasingly popular in the near future.

It is important to emphasize that the use of mobile phones
for collecting and processing data at high data rates poses
new challenges to energy management on mobile phones.
Phones have limited battery life and therefore limited pro-
cessing. Running a wockets application that continuously
receives data at 180Hz will deplete the battery in a matter
of hours. For example, HTC’s Touch Diamond with a fully
charged battery runs the wockets software for 4-5 hours
before the battery is depleted. The evaluation presented here
was performed on a similar HTC TyTN II mobile phone with
a comparable battery lifetime running the data collection
software for the wockets. For practical deployments, the
battery has to last for at least 12-16 hours, allowing the phone
to be charged overnight.



a) PA System Overview.: The PA recognition system
consists of wireless wearable accelerometer sensors sampling
at 180Hz that run a Nordic proprietary wireless protocol, an
intermediate device that receives data from the accelerome-
ters and relays it via Bluetooth, and a WM6 smart-phone with
Bluetooth that collects data from the intermediate device. It
is important to note that the Nordic protocol is a low-power
wireless protocol that allows accelerometers to operate at 180
Hz using a light-weight 3v cell battery for over 24 hours.
Compared to Bluetooth chips, the Nordic chip is relatively
inexpensive and employs a simple wireless protocol with
neither flow control nor error recovery. The wockets system
consists of multiple sensors that capture limb movements
from multiple body points simultaneously. All accelerom-
eters are 3-axial ±2g that provide sufficient sensitivity to
capture the different intensities of body movements. The
wockets software that initializes the Bluetooth connection
and starts receiving data and calculates feature vectors every
500ms in real-time.

b) Activity Recognition Algorithm.: The algorithm that
runs on the phone is a pruned C4.5 decision tree. The
acceleration data streams are broken into 500ms sliding
windows with 50% overlap. Data from each stream is in-
dependently interpolated using cubic splines to make data
windows of equal size irrespective of the sampling rate
and the number of accelerometers that are configured in
the setup. A feature vector is then calculated that includes
time and frequency domain features that capture variability,
relative orientation of sensors, entropy, correlation to capture
simultaneous motion of limbs, FFT peaks, and energy to
differentiate intensities of activities.

A. Energy Management

Energy management is vital on portable and mobile de-
vices since their functionally depends on a battery that has
limited capacity. As a result, designers are looking to provide
more energy efficient hardware and software. Hardware
techniques are focusing on optimizing energy efficiency of
displays [8], processors [9], communication hardware [10],
software transformation and scaling [11], and energy efficient
data aggregation and communication [12].

III. PROFILING ENVIRONMENT

We evaluate the power consumption of the mobile en-
vironment with a combination of software and hardware
tools: National Instruments 6009 Data Acquisition module
(NI6009DAQ), power supply, IBM T42 laptop with LabView
8.6, and the HTC TyTN II Windows Mobile phone.

Figure 1 shows the profiling environment. The HTC TyTN
II phone is connected directly to the power supply to
provide constant voltage and reduce complexity of energy
measurements. Since this phone, like most modern phones,
require communication with the battery in order to operate,
we have reused some of the electronic components from the
battery pack and wired them directly to the power supply.
The current draw is calculated by capturing the voltage drop
across a 100mΩ current sense resistor wired into the phone’s
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Fig. 1. Profiling environment

connection to the power supply. The power supply itself is
set to 4V. This configuration allows the phone to operate
continuously on the constant voltage and the current can be
monitored for arbitrary lengths of time.

To allow synchronization and communication between
the measurement VI and the phone we rely on the USB
connection. However, the USB connection is also used to
charge the phone and supplies energy rendering the initial
setup inaccurate. To address the issue we cut the power
supply wire in the USB cable and wire it directly to the
power supply. The phone expects the positive wire to be
energized before it establishes a USB connection and once
it is energized, the phone is normally charged through it. To
account for all energy consumption by the phone we measure
current drawn by the power terminals inside battery as well
as the USB connection as shown in Figure 1.

We selected LabView, a platform and development en-
vironment for the G graphical programming language, to
obtain detailed measurements with external triggering. Lab-
View monitors the NI6009 DAQ, which provides the voltage
across the sense resistor. The analog input channel is sampled
at 1kHz. In order to profile the physical activity recognition
software running on the phone, we also instrument the
application to trigger the start and stop of data acquisition
in LabView via TCP. The communication between LabView
and the phone is established via a USB connection, following
the ActiveSync synchronization period.

Providing start and stop triggers allow detailed energy
profiling of the application phases. We created Virtual In-
struments (VIs) in order to manage incoming triggers. A
trigger manager VI establishes TCP communication with the
application and notifies the collection mechanism about the
currently executing code segment. The data collection VI,
records data and labels it with the given segment name.
The subsequent end trigger stops data collection and the
readings are stored in separate files named by the received
code segment name and a counter value that separates the
readings of the same code segment. When each sampling is
stored in a separate file, the number of readings contained in
the file combined with the sampling rate gives the runtime
of the sampled code segment.



Component Power (W)
Phone .11
Screen (dimmest) .43
Bluetooth (idle) .01
Bluetooth (active) .37
USB Sync (idle) .54

TABLE I
HTC TYTN II POWER CONSUMPTION BASELINE.

A. Challenges

The challenges in this preliminary profiling setup revolve
around the accuracy of triggering and ultimately the accuracy
of the collected energy consumption of the profiled applica-
tion. For example, the delays of TCP communication used
for triggering the data collection result in excess samples
being collected at both the beginning and end of the intended
sampling period. However, the excess is not greater than
half of the round-trip time for the trigger communication
and synchronization packets, and in our case less than 1
millisecond, so less than the time to collect one sample using
the 1kS/s sampling rate. In future work, we will increase the
sampling rate and collect more accurate readings through
other means of triggering the data collection.

Another challenge is the separation of power consumption
by component. At this point, the setup allows simply the
sampling of the power consumption of the entire unit,
meaning that the different aspects of the profile are obtained
by subtracting the measured consumption of the hardware
and operating system from the power consumed while the
profiled application is executing. Similarly, profiling the
power consumption of the various hardware components of
the unit, such as the screen, the Bluetooth transmitter, or
the CPU and memory, are obtained by first measuring the
power consumed while those components are idling or off.
We will investigate more sophisticated black box measuring
techniques in future work.

IV. PHONE PROFILE

As described in section III-A, the phone profile is first
obtained in order to establish a baseline. The basic power
consumption of the phone is obtained by placing it flight
mode, meaning no communication modules are active, in-
cluding the main telephone transmitter, Bluetooth, and WiFi.
Any running applications are removed from the task list
and the screen is shut off. Once this part of the profile is
established, the next step is to selectively switch the various
phone components on, with the aim of establishing the power
consumption profile of all the individual components and
the environment in which the profiled application will be
running. These measurements are detailed in Table I.

As is evident from the Table I, the phone itself, operating
but idle, consumes less energy than any one of its com-
ponents except in the case of an active but idle Bluetooth
module. The TyTN II battery is assumed to hold 1350mAh
of charge. The screen alone will consume almost 80% of the
phone’s energy if it is the only active component. In other
words, with a display that’s been powered on, but left in
the state with the dimmest backlight, the phone consumes 5

times as much energy as it does when remaining flight mode
standby.

An active but idle Bluetooth communication module has
an almost negligible impact on the phone’s standby lifetime,
reducing it by about a tenth of the normal battery life in this
state. However, the application that was profiled relies on
a constant stream of data arriving from a set of Bluetooth-
connected accelerometers. Interestingly, optimization of the
Bluetooth communications from the accelerometers is lim-
ited by the observation that, on the TyTN II, the Blue-
tooth module remains in an active state for 10 seconds
following any Bluetooth activity. Additional work is required
to verify that removal of this feature will not adversely
affect Bluetooth communications while providing additional
opportunities for energy reduction.

The power consumed while the USB connection is active
is also profiled, since data collection requires this link to
enable the triggering mechanism. Considering the nature of
the profile physical activity application, a deployed system
would not require this type of communication, so it is
profiled simply to be discounted during application profiling
and to inform the reader.

V. APPLICATION PROFILE

Once the baseline profile is established, the running ap-
plication can be similarly profiled. We have isolated several
sections of code that are either executed frequently or involve
an intensive computation. Table II shows the profiled code
segments, detailing the average execution time in seconds,
average energy consumed per execution, average power, and
average frequency at which each segment was observed.
BT INIT and BT PAIR represent a one-time initialization
of the Bluetooth connection and pairing the phone with
another Bluetooth device respectively. These segments con-
sume more than .2 watts in periods exceeding 5 seconds. The
overall cost of initializing the Bluetooth connection is min-
imal because it is invoked only once. The PA application’s
requirement for constant incoming data also eliminates the
option of shutting down Bluetooth communications.

EXTRACT computes machine learning features from in-
coming data. It includes calling FFT that calculates the Fast
Fourier Transform. EXTRACT is called by GEN FV, or
Generate Feature Vector, when enough wockets data accumu-
lates. These functions form the bulk of the processing of the
data arriving from the accelerometers. GRAPH and STORE
are code segments respectively responsible for displaying and
storing data. If we consider the feature extraction functions
combined with GRAPH and STORE, assuming that the
phone’s screen is off, we can expect to get about 10.5 hours
of use before the battery runs out, when the screen is on
the expected battery life is 5.7 hours. In this case, we are
assuming that the phone and WiFi modules are not active and
that the battery capacity is 1350mAh. Depending on whether
the display is on or off, the profiled segments alone affect
the battery life by as much as 7%.

Figures 2, 2B, and 2C show the breakdown of power
consumption by major components. In Figure 2A we see that
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Fig. 2. Power consumption broken down by major components. Left (A) chart shows the power consumption breakdown when all components are active.
Center (B) shows the relative power consumption when the screen is shut off. Right (C) chart shows power consumption when the screen is off and
Bluetooth power consumption is optimized.

Segment Time Ave. Ave. Times
ID in Sec. J W Seen per sec.
BT INIT 5.75 1.674 0.291 N/A (one time)
BT PAIR 4.68 1.214 0.259 N/A (one time)
EXTRACT 0.158 0.037 0.037 0.24
GEN FV 0.101 0.023 0.023 0.26
FFT 0.021 0.005 0.005 1.46
GRAPH 0.011 0.002 0.002 5.55
STORE 0.011 0.002 0.002 5.55

TABLE II
SELECTED CODE SEGMENTS OF THE PA MONITORING APP. PROFILE.

when the display is powered on and operating at the dimmest
setting, it consumes 38% of energy when the PA application
is running and Bluetooth is active, as required by PA. The
phone alone consumes 10%, labeled as base and being the
one aspect of the profile that is not considered for optimiza-
tion in this work. When this environment is active, meaning
screen is on and the application and Bluetooth transmissions
are unoptimized, we can expect that the 1350mAh battery
will provide 4.8 hours of operation.

Figure 2B shows the relative power consumption by major
components when the screen is powered off. We see that
in this case, Bluetooth operation consumes 53% of power,
considering the remaining components. The simple action of
powering the screen off for the duration of the application’s
activity increases the operation time to 7.7 hours. Next, we
consider optimizing the Bluetooth operation.

The observed Bluetooth transmission behavior on the
TyTN II is that the phone’s power consumption remains
high for some time following the transmission’s completion.
Given this overhead, we consider buffering the incoming sen-
sor data on the PA system’s intermediate device. The Blue-
tooth 2.0+EDS theoretical transmission rate is 3Mbits/sec.
The intermediate device collects 180 samples each second,
each of which is 5 bytes. Considering this data rate, and
allowing for the intermediate device to buffer at least 360kB
of data, the Bluetooth transmissions can be cut down to
as little as a few seconds at a time separated by about 40
seconds of idleness, allowing the Bluetooth module to enter
a low power mode. Figure 2C shows the breakdown of the
remaining power consumption categories. We see that in this
scenario, Bluetooth power consumption has been reduced to
only 15% of the total. Under this load, the operation time
of the phone increases to 9 hours. Application optimizations
can further increase the operational time.

VI. CONCLUSION

The constant delivery of samples collected from the sen-
sors and passed on by the intermediate device keeps the
bluetooth transmitting constantly and the PA application
frequently computing feature vectors and managing the in-
coming data. Two avenues for optimization are immediately
apparent for future research: optimizing the Bluetooth proto-
col or the applications use of Bluetooth, and optimizing the
live data analysis. Currently, the Bluetooth communication
and the application amount for over 50% of the energy
consumed in the phone when the display is powered on,
and since the display remaining on is not a requirement of
the application this proportion is considerably greater when
the display is off.
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