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A defining characteristic and a great accomplishment of artificial intelligence is its reduction of semantics to syntax.  As Haugeland put it, “If you take care of the syntax, the semantics will take care of itself.” An early,  celebrated example of syntactic, faux-meaning was Weizenbaum’s Eliza system.  You could chat with Eliza by typing sentences, to which Eliza would respond with comments that ranged from banal to bizarre to insightful.  Eliza did not understand the conversation except in a functionalist sense. Consider an Eliza-like dialog:  Me: “You never take out the trash.”  Eliza: “Would you like me to take out the trash?”  Me: “Yes!”  Eliza: “Ok.”  Needless to say, Eliza won’t start to take out the trash and wouldn’t even if it were connected to a robot, because it has no clue what “take out the trash” means.  All it knows is that the syntactic form, “You never X” can be responded to with, “Would you like me to X?”  

Fast forward thirty years, and we find programs are much more sophisticated than Eliza but take similar approaches to meaning. Many problems can be solved by attending to very narrow aspects of meaning or to none at all (medical expert systems, semantic web applications, and information retrieval systems come to mind).  Problems framed as finding the most likely output given particular input often can be solved by statistical algorithms which do not attend to the meanings of the input and output.  The tremendous successes of natural language research at ISI and elsewhere attest to the power of statistical algorithms.  So what’s the problem, why fuss about meaning?  

One reason to fuss about meaning is that I don’t think the problem has gone away.  We have!  It is very expensive to write ontologies and axioms that say what terms mean in anything like the depth and detail we expect of humans.  After decades of fighting this battle in AI, we have become adept at selecting problems that our programs can solve without attending to meaning; or rather, problems for which syntactic operations are good proxies for semantic operations.  

Another reason to fuss is what we might call semantic illusion:  We provide programs with inputs that are meaningful to us, the programs produce outputs that are meaningful to us; and presto, we think the machines understand the inputs.  We have the illusion that information systems understand our queries because these systems produce results that are semantically related to the queries.  But these systems don’t understand, any more than medical expert systems understand terms like meningitis.  Expert systems and many other successful AI systems are essentially scratchpads for us, the users.  We assign meanings to the symbols that these systems shift around.  Said differently, the meanings of symbols have no effect on how these systems process them. 

I want to contrast conventional functional systems with natural semantic systems.  The sense of  “conventional” I intend is “by convention, not idiosyncratic or personal” and “functional” is used in the sense of functionalism, the doctrine that meanings of symbols are roughly the effects of the symbols on behavior or function.  A natural semantic system is one that acquires and maintains meanings for itself.   Natural semantic systems clearly are disjoint from conventional functional systems.  Humans are natural semantic systems.  We learn meanings of mental states and representations, refining these meanings throughout our lives.  Natural semantic systems are not mere scratchpads for meanings assigned by exogenous agents (i.e., programmers), nor must they be told what things mean.  You don’t require anyone to tell you the meaning of stubbing your toe or finding $100 in your pocket.  I don’t have to tell you what this sentence means, or which inferences follow from it.  You know what events and sentences mean because you have learned (or learned to work out) these meanings. Because you are a natural semantic system, I expect you to understand this paragraph and quite literally draw your own conclusions about it.  If your conclusions differ from my own, it is not because you have a bug in your program that I need to fix, it is because you maintain a semantic system that overlaps largely but not entirely with mine.  

Natural semantic systems are rare in AI.  A case might be made that reinforcement learning produces natural semantic systems, as the meanings of states (i.e., their values) are learned from a reinforcement signal.  Sadly, much work in reinforcement learning tries to coerce systems to learn value functions (i.e., meanings of states) that we want them to learn.  This is accomplished by fiddling with the reinforcement signal, the state space, and a batch of other factors, until the system produces what we consider to be the correct outputs for a set of inputs.  It is ironic that reinforcement learning is capable of producing at least rudimentary natural semantic systems but we use it to produce conventional systems.  

Conventional functionalism is a good way to build systems with a little semantics that do what we want them to, so most AI systems will quite appropriately continue to be based in conventional functionalism.  The issue is not whether we should stop building such systems, but whether we can actually build conventional functional systems with more than a little semantics.

Let us also recognize that, for a given, specific task,  the semantic content acquired naturally by an intelligent agent can be duplicated or mimicked by a sufficiently motivated knowledge engineer; so the issue is not whether natural semantic systems can think or mean things that conventional functional systems cannot think or mean, but whether there are enough knowledge engineers on the planet to build a conventional functional system that understands as much as we do.  

The crux of the argument against conventional functional semantics and for natural semantics is this:  Conventional functional systems are entirely syntactic and all meanings are exogenous, so to build one, you have to design a system whose syntactic operations produce results that you can interpret as meaningful.  This design task is very expensive, so expensive, in fact, that we have not been able to build conventional functional systems for semantically-deep tasks.  Programming a computer is a paradigmatic example of this design problem.  If you want meaningful outputs, you have to write programs whose syntactic operations are meaningful to you. If this was easy, you’d never have to debug your code.  Doug Lenat and John Seely Brown recognized this problem in a paper called “Why AM and Eurisko Appear to Work” (AAAI, 1983). The AM system discovered many concepts in number theory, but when the AM approach was tried in other domains, it didn’t work well.  Lenat and Brown concluded that AM worked because syntactic Lisp operations on Lisp representations of mathematical concepts often produced meaningful new mathematical concepts, whereas syntactic Lisp operations on Lisp representations of other kinds of concepts rarely produced meaningful new concepts:

“It was only because of the intimate relationship between Lisp and Mathematics that the mutation operators … turned out to yield a high “hit rate” of viable, useful new math concepts.  … Of course we can never directly mutate the meaning of a concept, we can only mutate the structural form of the concept as embedded in some representation scheme.  Thus there is never a guarantee that we aren’t just mutating some ‘implementation detail’ that is a consequence of the representation, rather than some genuine part of the concept’s intentionality.” (Lenat and Brown, AAAI, 1983, p.237)
So, Haugeland is correct to say Good Old-Fashioned AI tries to “take care of the syntax, and the semantics will take care of itself,” but taking care of the syntax is very hard!

Let’s be clear about why conventional functional systems are hard to build.  Lenat and Brown are correct that all computer-based systems, including natural semantic systems, operate on the “structural form” of concepts, not directly on the meanings of concepts.  The problem is maintaining a correspondence between the results of syntactic operations and meanings:  Too often the results of operations are not meaningful.  In conventional functional systems, the system itself cannot check whether its results are meaningful because it doesn’t know the meanings of its results – all meanings are exogenous, maintained by humans, and so only humans can check whether the system’s conclusions make sense.  

This checking, and subsequent corrections, are very expensive. I call this the semantic babysitting problem.  Babysitters everywhere know that sooner or later, the kid is going to do something stupid.  Vigilance is the only way to prevent injury.  Programmers understand that sooner or later, the system is going to do something they didn’t intend (not a syntactic error – compilers can catch those – but a semantic one) and vigilance is the only way to catch it.

In natural semantic systems, operations on data structures are also syntactic, but the system itself is responsible for maintaining the correspondence between syntactic forms and their meanings, and the system itself checks whether syntactic operations produce meaningful results. Suppose a robot is planning to move to an object.  Syntactically, it generates a plan to rotate the left wheel in one direction and the right wheel in the other direction.  When it executes this plan, it spins around.  The meaning of this plan is, among other things, that it does not achieve the robot’s goal of moving toward the object.  But we do not have to tell the robot this, because the robot maintains the semantics of its plans, itself.  

I think robots will be among the first machines to learn the meanings of representations and to not require semantic babysitting.  Our Robot Baby project is truly in its infancy but has already made some progress toward learning word meanings.  The next step, I think, is to learn deeper meanings (e.g., not only that “forward” means positive rotational velocity but also that forward and backward are antonyms, and moving “forward” is one way to get to a goal).  Further along, we need to eliminate the AI programmer from Robot Baby’s development.  It has always bothered me that Artificial Intelligence requires very intelligent researchers to design automata that don't have the slightest clue what they are doing or why. I think we need a theory that explains what good AI programmers are doing when they design representations.  If I understood how to design representations - how to make formal objects and operations stand for things in the world and operations on them - then perhaps I could have a robot design its own. And this would make the robot autonomous in a way that few are, today. 

