
Pattern Matching for Sets of Segments∗

Alon Efrat† Piotr Indyk‡ Suresh Venkatasubramanian§

Abstract

In this paper we present algorithms for a number of problems in geometric pattern matching where
the input consists of a collection of orthogonal segments in the plane. Such collections arise naturally
from problems in mapping buildings and robot exploration.

We propose a new criterion for segment similarity called the coverage measure, and present effi-
cient algorithms for maximizing it between sets of axis-parallel segments under translations. In the
general case, we present a procedure running in timeO(n log n), and for the case when all segments
are horizontal, we give a procedure that runs in time O(n log n). Here n is the number of segments.
In addition, we show that an ε-approximation to the Hausdorff distance between two sets of horizontal
segments under vertical translations can be computed in time O(n max(poly(logM, logn, 1/ε))).
Here, M denotes the ratio of the diameter to the closest pair of points in the sets of segments (where
pairs of points lie on different segments). These algorithms are significant improvements over the
general algorithm of Agarwal et al. that required time O(n log n).

1 Introduction
Traditionally, geometric pattern matching employs as a measure of similarity the directed Hausdorff dis-
tance h(A, B) defined as h(A, B) = max ∈ min ∈ d(p, q) for two point sets A and B, where d(p, q)
is the Euclidean distance between p and q. However, when the patterns to be matched are line segments
or curves (instead of points), this distance is less than satisfactory. It has been observed that measures like
the Hausdorff measure that are defined on point sets are ill-suited as measures of curve similarity, because
they ignore the directionality inherent in continuous curves.
This paper addresses problems in geometric pattern matching where the inputs are sets of axis-parallel

line segments. We study two different measures in this context; one is the standard Hausdorff distance,
and the other is a novel measure called the coverage measure, which captures the similarity between
axis-aligned segments.
The motivation for considering instances of pattern matching where the input line segments are orthog-

onal comes from the domain of mapping, in which a robot is required to map the underlying structure of
a building by moving inside the building, and “sensing” or “studying” its environment. In one such map-
ping project at the Stanford Robotics Laboratory1 the robot is equipped with a laser range finder which
measures the distance from the robot to its nearest neighbor in a dense set of directions in a horizontal
plane. We call the resulting distance map a picture. Figure 1 shows the robot used at Stanford Robotics
Laboratory for this purpose.

∗A preliminary version of this paper appeared in [12].
†Computer Science Department, The University of Arizona Email: alon@cs.arizona.edu. Work supported in part by a

Rothschild Fellowship and by DARPA contract DAAE07-98-C-L027
‡Computer Science Department, MIT. Email: indyk@cs.stanford.edu.
§AT&T Labs – Research. Email: suresh@research.att.com.
1 The interested reader can find more information at the URL http://underdog.stanford.edu

2

Figure 1: Left: A typical “picture” obtained by the robot of a corridor (after segmentation). Right: The
corridor itself, and the robot with the laser range finder installed on it.

During the mapping process, the robot must merge into a single map the series of pictures that it captures
from different locations in the building. Since the dead reckoning of the robot is not very accurate, it cannot
rely solely on its motion to decide how the pictures are placed together. Thus, we need a matching process
that can align (by using overlapping regions) the different pictures taken from different points of the same
environment. In addition, we need to determine whether the robot has returned to a point already visited.
We make the reasonable assumption that walls of buildings are almost always either orthogonal or parallel
to each other, and that these walls are frequently by far the most dominant objects in the pictures. This
is especially significant in the case that the robot is inside a corridor, where there is insufficient detail for
good registration. In some cases most of the pictures consist merely of two walls with a small number of
other segments. See Figure 1 for a typical picture and the real region that the laser range finder senses.
This application suggests the study of matching sets of horizontal and vertical segments. Observe that

we may restrict ourself to alignments under translation, as it is easy to find the correct rotation for matching
sets of orthogonal segments. Formally, letA = {a . . . a } and B = {b , . . . b } be two sets of axis-aligned
line segments in the plane, each consists of pairwise-disjoint segments, and let ε > 0 be a given parameter.
A point p of a horizontal (resp. vertical) segment b ∈ B is covered if there is a point of a horizontal (resp.
vertical) segment a ∈ A whose distance from p is at most ε, where the distance is measured using the
" norm. A point on a horizontal (resp. vertical) segment can be covered only by a point of another
horizontal (resp. vertical) segment. Letw(A, B) denote the collection of sub-segments of B consisting of
covered points. Let Cov (A, B) be the total length of the segments of w(A, B). The maximum coverage
problem is to find a translation t∗ in the translation plane that maximizes Cov (t) = Cov (A, t+B). Here
ε is a parameter specified by the user based on the physical model. To the best of our knowledge, this
similarity measure is novel. The coverage measure is especially relevant in the case of long segments e.g.
inside a corridor, when we might be interested in matching portions of long segments to portions of other
segments.

Our Results In Section 2 we present an algorithm that solves the Maximum Coverage problem be-
tween sets of axis-parallel segments in time O(n log n) and the Coverage problem between horizontal
segments in time O(n logn). Note that the known algorithms for matching arbitrary sets of line seg-
ments are much slower. For example, the best known algorithm for finding a translation that minimizes
the Hausdorff Distance between two sets of n segments in the plane runs in time O(n logn) [2]. We
also show (Section 3) that the combinatorial complexity of the Hausdorff matching between segments is
Ω(n), even if all segments are horizontal. This strengthens the bounds shown by Rucklidge [20], and
demonstrates that our algorithms, much like the algorithms of [10, 11], are able to avoid having to examine
each class of combinatorially different translations.

3

In Section 4 we consider the related problem of matching horizontal segments under vertical trans-
lations with respect to the directed Hausdorff distance. It has been observed that if horizontal transla-
tions of horizontal segments are allowed, then this problem is 3SUM-hard [4], indicating that finding
a sub-quadratic algorithm may be hard. However, we present an ε-approximation algorithm running in
timeO(n max{log M, log n, 1/ε))}, for some fixed constant c, which is sub-quadratic in most cases.
Here,M denotes the ratio of the diameter to the closest pair of points in the sets of segments (where pairs
of points lie on different segments).
It is interesting to note that the data structure presented in Section 2 can be used to slightly improve

the result of Har-Peled et al [13], in which the following problem is addressed. Given a set of rectangles
{R . . . R } and another rectangle R, find a translation t for which t + R maximizes

∑
area(R ∩ t + R).

Their algorithm runs in O(n log n) time. Using our data structure in their algorithm the runtime is
slightly improved toO(n log n).

2 Algorithms for maximum coverage
Let A = {a . . . a } and B = {b , . . . b } be two sets of axis-parallel line segments in the plane, and let
ε > 0 be a given parameter. We assume that no two segments of A intersect, and no two segments of B
intersect.

2.1 Coverage with axis-parallel segments
The main result of this subsection is the following theorem:

Theorem 2.1. A translation t that maximizes Cov (A, t + B) can be found in time O(n log n).

For the proof of this theorem, we need several lemmas and definitions. For a geometric object R let
X(R), the x-span of R, denote the interval of the x-axis between the leftmost and the rightmost point of R ′,
where R ′ is the orthogonal projection of R on the x-axis.
LetA ⊆ A (resp. B ⊆ B) be the set of horizontal segments ofA (resp. B) and letA ⊆ A (resp. B ⊆

B) be the set of vertical segments of B. Note that Cov (A, t+B) = Cov (A , t+B)+Cov (A , t+B).
Let s be a non-vertical segment. We define the function s(x) : R→ R as follows: For x /∈ X(s), s(x) = 0.
For x ′ ∈ X(s), s(x ′) is the value of the y-coordinate of the intersection point of s and the vertical line
x = x ′. To emphasize that s defines a function, we refer to s as a graph-segment or gsegment for short.
Informally speaking, our interest in gsegments results from the fact that the maximum is obtained along
translations which lie on a horizontal line in the translation plane. These can be described as a sum of a
set of gsegments, and thus tools for manipulating gsegments will be useful for computing the translation
achieving maximum coverage.

Lemma 2.1. Let P = {(x , y), . . . (x , y)} be a point set. We can construct in time O(m log m) a
data structure for P such that for a query gsegment s, the point (x , y) ∈ P maximizing the set {s(x)+y
| x ∈ X(s) and 1 ≤ i ≤ m} can be found in time O(log m).

Proof. If X(P) ⊆ X(s), then (x , y) is clearly a vertex of the convex hull of P, and once the convex hull
is computed, we can find (x , y) in time O(logm), as it is a standard linear programming query in a
convex polygon. To answer the query in the case that X(P) ! X(s), we construct a balanced binary search
tree Ψ(P) on the set {x . . . x }. For each node µ ∈ Ψ(P) let P denote the points in the subtree of µ, and
let X denote the x-span of P . We construct C , the convex hull of P , for each node µ of Ψ(P). Once a

4

query gsegment s is given, we find a set of O(logm) nodes µ of Ψ(P) with the property that X ⊆ X(s),
and Xparent ! X(s). We perform the desired maximization query on every C . The time required is
clearly as claimed.

Let S = {e (τ, x) . . . e (τ, x)} be a set of gsegments, whose locations change as a function of a time
parameter τ in the following way: e (τ, ·) = a (τ)b (τ), where the location of the points a (τ), b (τ) is
given by

a (τ) = (a .x, a .y + α τ) and b (τ) = (b .x, b .y + β τ) ,

where a .x, a .y, b .x, b .y, α , β are given constants. Thinking about τ as a time parameter, the end-
points of the segments move vertically at constant velocities as time elapses. Let max sum(S, τ) =
max ∈ Σ ∈ e(τ, x).

Lemma 2.2. In time O(m logm), we can construct a data structure T (S), such that given a time τ and
a query value x ∈ R, Σ ∈Se(τ , x) can be computed in time O(logm).

Proof. We construct a segment tree T (S) (see [7] for details) on the x-projections of the segments of S
(note that their projections do not change in time). With each node µ of T (S) we maintain the interval
I on the x-axis associated with µ, and the subset S ⊆ S stored with µ. Let " and " be the left and
right vertical lines passing through the endpoints x and x of I . We can express the y-coordinate of the
intersection point of e (τ, ·) ∈ S with " and " (resp.) by a τ+b and a τ+b (for i = 1, . . . |S |),
when a , b , a b are appropriate constants. Let x be a point on I , and let α = (x − x)/(x − x).
Hence at time τ,

e (τ, x) = (1 − α)
(
a τ + b

)
+ α

(
a τ + b

)

Defining
A = Σ a , B = Σ b , A = Σ a , A = Σ a ,

where the sum is taken over all i’s for which e ∈ S . We have that

(2.1) Σ ∈S e(τ, x) = (1 − α)
(
τA + B

)
+ α

(
τA + B

)

We storeA , B , A , A with each node µ. Once a point x and a time τ are given, we find theO(logm)
nodes µ of T (S) for which x ∈ I (there is at most one such node at each level of T ′). For each, we
evaluate the expression (2.1), and sum the results. Clearly this can be done in time O(logm), and the
construction of T (S) can be done in timeO(m logm).

Lemma 2.3. Let S be a set of m gsegments, as above. We can construct the data structure D(S), so that
given a query time τ and a query gsegment e ′(x) (fixed in time), we can findmax{e ′(x)+

∑
∈ e(τ, x) | x ∈

X(e ′)}. The time for constructing the structure and answering k queries is O((m + k) log m), provided
that the time parameter τ of each query is no smaller than the time of the previous query.

Proof. We first explain how to construct the data structure for a fixed time τ . Before each query is posed
to the data structure, we modify the data structure according to the time τ of that query.
Using a simple divide-and-conquer technique we construct in timeO(m logm) the graph of the function

s(x) = Σ ∈S e(τ , x). It is piecewise linear. Let V(S) denote the set of vertices of this graph. Note that
every such vertex has the same x-coordinate as an endpoint of one of the gsegments of S(τ , ·), thus
|V(S)| = O(m). We construct the data structure Ψ(V(S)) of Lemma 2.1 for V(S). Since the convex
hulls C used by this data structure would change as a function of τ, we denote them as C (τ). We also
construct the data structure T (S) of Lemma 2.2. Let D(S) denote the combined structure.

5

Clearly for every query gsegment e ′(·, ·) the maximum max{e ′(τ , x) + Σ ∈S e(τ , x) | x ∈ X(e ′)} is
obtained at the x-projection of either a vertex of V(S), or an endpoint of e ′(x). We use the data structure
T (S) of Lemma 2.2 to find the value of e ′(τ , x) + Σ ∈S e(τ , x) at the endpoints of e ′(τ, x). In order to
handle the former case, we perform a query in Ψ(V(S)). Thus answering a query is done (for fixed τ) in
timeO(log m).
Once the next query is submitted (with a larger time τ ≥ τ), we need to efficiently modify Ψ(V(S))

to create Ψ(V(S)) at τ . We increase τ gradually, while keeping track of the changes the data structure
goes through. Note that as τ is increased from τ to τ , the vertices of the graph of the function s(x) move
vertically at constant speeds, as the speed of each of them is the sum of≤ m values which change linearly.
We keep track of the changes that each convex hull C (·), stored at a node of the tree of Ψ(V(S)), goes
through.
It was shown ([5]) that the convex hull of such a set of k points moving vertically at constant speeds can

go through O(k) combinatorial changes. These changes can be tracked in a total of O(k logk) time by a
simple divide-and-conquer algorithm: Split the vertices into two equal-cardinality subsets to the left and
right of a vertical line, maintain recursively the convex hull of each subsets, and show that the common
tangents to these hulls can go throughO(k) combinatorial changes which is trivial to tackle.
Since the total sizes of convex hulls inΨ(V(S)) isO(m logm), we needO(m log m) time to maintain

Ψ(V(S)) as τ decreases from the first to the last query.

Lemma 2.4. Let S be as in Lemma 2.3. Then we can maintain max sum(S, τ) under gsegment in-
sertions or deletions in amortized time O(

√
m

′ log m ′) per operation. In addition, we can maintain
max sum(S, τ) under a time-increasing step (τ← τ+∆) (for∆ > 0) inO(

√
m

′ logm ′) time per update.
Here m ′ is the maximum of m and the total number of operations performed on the set.

Proof. A deletion of a gsegment e is resolved by adding the negation of e, so we direct our attention to the
insertion of gsegments. We partition S into S and S . The set S contains at most

√
m ′ of the gsegments

of S. We define S = S \ S . Each time a gsegment is inserted into S, it is inserted into S . Once the
cardinality of S exceeds

√
m ′, we set S to be S, and empty S . We construct the data structure D(S)

of Lemma 2.3 for the gsegments of S . Increasing τ is obtained as in Lemma 2.3.
Maintaining max sum(S, τ) under insertions is obtained as follows: Assume the insertion happens at

time τ . Once a gsegment is inserted into S , we explicitly compute the graph of the function s(x) =∑
∈S e(τ , x) which is piecewise linear of complexity O(

√
m ′). With each gsegment f(τ , x) of this

graph (not to be confused with the segments of S) we perform a query in D(S). The maximum obtained
is max sum(S, τ). This operation is doable in timeO(

√
m ′ log m ′).

We next turn our attention to conclude the proof of Theorem 2.1.

Proof. (of Theorem 2.1) The algorithm consists of sweeping the translation plane from bottom to top,
using a horizontal sweep line "(y). Here y equals the time parameter τ used by the data structures.
We maintain a set S of gsegments, initially empty, and we maintain its maximum max sum(S, y) using
the data structure D(S(y)) of Lemma 2.3. As shown later, the maximum value obtained is equal to
max Cov (A, t + B).
LetD be a square of edge-length 2ε, and consider the Minkowski sum

D ⊕ A = {d + a | d ∈ D and a is a point of a segment of A }.

Note that D ⊕ A can be expressed as the union of n rectangles, all of height 2ε, so the boundaries of
each two intersect in at most two points, and by [17] the complexity of their union is O(n). We impose a

6

horizontal decomposition on D ⊕ A to obtain a set of O(n) rectangles R = {γ , γ . . . } and a vertical
decomposition on D ⊕ A to obtain a set of O(n) rectangles R = {ρ , ρ . . . }. There are two types of
events that we handle in the line sweep process, called horizontal segment events and vertical segment
event. Upon encountering encountering an event, say for "(y), we modify the data structures (described
below) and compute max ∈ Cov (A, t + B). The events are computed in the preprocessing stage, and
stored in the line-sweep queue. The events are described as follows:

Horizontal segment events. For every b ∈ B and rectangle γ ∈ R we create a set of events, as
follows: Assume

γ = ((c, d), (c + ∆ , d), (c, d + ∆), (c + ∆ , d + ∆)) ,

and the segment b = ((a, b), (a+δ, b)) ∈ B. Assume that δ ≤ ∆ . The case that δ > ∆ is treated
analogously.

The first event at which the pair (b , γ) is involved happens when y = d + ∆ − b (i.e. when
(x, y)+b is aligned with the upper edge of γ). Upon this event, we insert the following gsegments
into S. These gsegments are not changing with y.

1. r = (c − a − δ, 0) (c − a, δ). The x-span of this gsegment corresponds to all translations on
"(y) for which (x, y) + b intersects γ , but the left endpoint of b is outside γ .

2. r = (c − a, δ) (c + ∆ − a − δ, δ). The x-span of this gsegment corresponds to all transla-
tions on "(y) for which (x, y) + b is fully contained in γ .

3. r = (c + ∆ − a − δ, δ) (c + ∆ − a, δ). The x-span of this gsegment corresponds to all
translations on "(y) for which (x, y) + b intersects γ , but the right endpoint of b is outside
γ .

The second event at which the pair (b , γ) is involved happens when y = d−b (i.e. when (x, y)+b
is aligned with the lower edge of γ .) Upon this event, we delete r , r , r from S. Note that for
every y ∈ [d + ∆ − b, d − b] the function r (x) + r (x) + r (x) equals the length of the portion
of (x, y) + b inside γ .

Vertical segment events. For every b ∈ B and rectangle ρ ∈ R we create a set of events, as follows:
Assume that

ρ = ((c, d), (c + ∆ , d), (c, d + ∆), (c + ∆ , d + ∆)) ,

and b = ((a, b), (a, b+δ)). Again assume that 0 < δ ≤ ∆ (the other case is treated analogously).
Note that the pair (b , ρ) is involved in several events.

• Once y = d + ∆ − b (i.e., the lower endpoint of (x, y) + b is aligned with the upper edge of
ρ) we insert the gsegment s (y) = (c − a, y ′ − y) (c + ∆ − a, y ′ − y) into S(y), where y ′

is the current value of y.

• Once y = d + ∆ − δ − b (i.e. the upper point of (x, y) + b is aligned with the upper edge of
ρ) we delete s (y) from S(y) and insert s (y ′) = (c − a, δ) (c + ∆ − a, δ). This is a static
horizontal gsegment.

7

• Once y = d − b − δ (i.e. the lower point of (x, y) + b is aligned with the lower edge of ρ)
we delete s (y) from S(y), and insert the gsegment

s (y) = (c − a, δ + d − b + y) (c + ∆ − a, δ + d − b + y)

• Once y = d − b − δ (i.e. the upper point of (x, y) + b is aligned with the lower edge of ρ)
we delete s (y) from S(y).

Note that s (y), s (y) and s (y) represent, each in its y-span, the function which is the length of
the portion of b inside ρ .

Observe that for any given y, the function
∑

∈S e(y, x) represents the total length of the portion of the
segments of (x, y) + B which are contained insideD ⊕A, i.e. Cov (A, (x, y)+ B). Since the maximum
value of these functions must be obtained at one of the events listed above, and at each such event we
check this maximum, the correctness of the algorithm follows.
Time analysis: Overall, we add and delete four (moving) gsegments for each pair (b , γ) (for b ∈
B , γ ∈ R) or a pair (b , ρ) (for b ∈ B , γ ∈ R), thus a the total number of events is O(n). We
compute max sum(S, y) for each of these events, in time O(

√
n log n), hence the overall running time

of the algorithm is O(n log n). It is not hard to show that this bound also bounds the time needed to
construct the data structures. This concludes the proof of Theorem 2.1.

2.2 Maximum coverage for horizontal segments
We present a faster algorithm for the case that all segments inA and B are horizontal. This is a line-sweep
algorithm influenced by the Chew-Kedem algorithm [10], and Chew et al. [11] algorithm for computing
the Hausdorff distance under translation between point-sets in the plane, under the L norm. This time, we
sweep the plane from left to right, using a vertical sweep line. Let D ⊕ A and R = {γ , γ . . . } be as in
the proof of Theorem 2.1. For every horizontal segment b ∈ B and γ ∈ R let β denote the rectangle in
the translation plane consisting of all translations in which b intersects γ (i.e. β = {t | (t+b)∩γ)= ∅}).
Let E denote the set of the vertical edges of all rectangles β .
Let T be a segment tree constructed on the projections of the segments of E on the y-axis. During the

algorithm we sweep the translation plane using a vertical sweep line ". Once " meets an edge e ∈ E , we
insert e into T . No edge is deleted.
Let µ be a node of T . Let I be the y-span corresponding to µ, and let S ⊆ E denote the edges of

E corresponding to µ, i.e. the edges of E whose y-span contains I but not I . Let T denote the
subtree rooted at µ. For x ∈ R, let S (x) ⊆ S denote the segment of S whose x-coordinate is ≤ x, and
let

L (x) = { (b , γ) | a vertical edge of β is stored in S ′(x), for some µ ′ ∈ T } .

We define the maximal coverage associated with a node µ at x , denoted by Cov (x) as the maximal
total length of segments

{γ ∩ ((x , y) + b) | (b , γ) ∈ L (x)}

where the maximum is taken over all translations (x , y), y ∈ I . For example,

Cov T (x) = max
∈
Cov (A, (x , y) + B) .

8

Let π∗ (x) denote the path in T from µ to the leaf that contains the translation that maximizes the
coverage associated with µ at x. Thus for example, π∗

T (x) is the path from root(T) to the leaf µ ′

such that y∗ ∈ I ′ , where Cov (A, (x, y∗) + B) = max {Cov (A, (x, y) + B)}.
We maintain the following fields with each node µ of T . All of these, excludingMaxMul are set to

zero at the beginning of the algorithm. MaxMul is set to 1.

• Pos : the number of edges of E currently in S (x) resulting from the right (resp. left) endpoint of a
segment b ∈ B meeting a left (resp. right) vertical edge of some rectangle γ . We call such an event
a Positive event.

• Neg : the number of edges of E currently in S (x) resulting from the left (resp. right) endpoint of a
segment b ∈ B meeting a left (resp. right) vertical edge of some rectangle γ . We call such an event
a Negative event. Observe that Pos − Neg is

| {(b , γ) ∈ L (x) | γ contains the right endpoint of b , but not the left endpoint } |

− | {(b , γ) ∈ L (x) | γ contains the left endpoint of b , but not the right endpoint } |

• x last — the last x at which we inserted an edge into the subtree of µ.

• Max Tot at event . We will show in Lemma 2.5 that this parameter stores Cov (x last). We
describe below how this variable is updated.

• MaxMul — a multiplicative factor specifying the rate of increase of the maximum coverage,
as the horizontal distance increases. The maximum is taken over all translations (x, y) for which
y ∈ I . That is, if x and x are two close points inR, then the difference in the coverageCov (x)−
Cov (x) = (x − x) ∗ MaxMul . Thus

MaxMul = Σ ′∈ ∗ (Pos ′ − Neg ′)

Handling an event.
During the algorithm we encounter two types of events. An edge event happens when the line sweep

hits a vertical edge of E . A dominance event happens at time x and node µ if MaxMul)=
MaxMul and

MaxMul ∗ (x − x last) + Max Tot at event =

MaxMul ∗ (x − x last) + Max Tot at event

This event occurs at x ′ if the translation (x, y) that maximizes {Cov(A, (x, y) + B)|y ∈ I } is in I
for x slightly smaller than x ′, and occurs at I for x slightly larger, or vice versa.
The x-coordinate of this event is computed and inserted into the queue of the line sweep, once the values

of the fields of left(µ) or right(µ), or the fields of any of their descendants are modified. We explain
next how we handle each such event.
We will show in Lemma 2.5 that the following claim is an invariant of the algorithm: For every x ∈

R, µ ∈ T , Cov (x) = Max Tot at event + (x − x last) ∗ MaxMul . In order to maintain this
invariant, we use the following procedure, which we call for every node µ once a new edge of E is inserted
into S (x).

9

Function UpdateNode(µ)
Max Tot at event = Max Tot at event + (x − x last) ∗ Max Tot at event
x last = x

Let δ > 0 be an infinitely small constant
If Max Tot at event + MaxMul ∗ (x + δ − x last) >

Max Tot at event + MaxMul ∗ (x + δ − x last)
Then

MaxMul = Pos − Neg + MaxMul
Else

MaxMul = Pos − Neg + MaxMul

If µ is not the root of T
Then UpdateNode(parent(µ)).

Handling edge events at node µ. Let x be the current x-value of the line sweep. Once " hits a new edge
s ∈ E , we first find all nodes µ for which s ∈ S as in a standard segment tree. Next, for each such node
µ, we increase either Pos or Neg by one, according to the type of s, and perform UpdateNode(µ).

Handling dominance events at node µ. Once a dominate event occurs at a node µ, we call UpdateNode(µ).

Lemma 2.5. The invariant

Cov (x) = Max Tot at event + (x − x last) ∗ MaxMul for every x ∈ R, µ ∈ T

holds at any stage of the algorithm.

Proof. The proof is by a double induction on the height of a node µ and the sequence of events in which µ
was updated. Assume first that µ is a leaf. Assume that x is an event at which the fields of µ are updated,
and that no event happened between x and x > x . x is not necessarily an event. Also assume that in
x the invariant holds.
Let y be a point in I (since µ is a leaf, the choice of y is not relevant). Let (b γ) ∈ L (x).

Then |((x , y) + b) ∩ γ | − |((x , y) + b) ∩ γ | is equal (resp.) x − x , x − x or 0, according to
whether γ contains only the right endpoint of (x , y) + b , only the left endpoint of b , or neither or
both endpoints. In the first case, (b , γ) contributes 1 to Pos . In the second case, (b , γ) contributes
1 to Pos and 2 to Neg , and in the last case, (b , γ) contributes the same amount to Pos and Neg .
Summing over all pairs (b , γ) ∈ L (x), we obtain that Cov (x) − Max Tot at event(x) equals
(Pos − Neg)(x − x), from which the claim follows.
Next assume that µ is an internal node. Consider the pairs (b , γ) ∈ L (x) for which the vertical

edges of β are stored in S . The contribution of these pairs to Cov (x) is counted as in the case of a
leaf node µ. Moreover, one can show thatMaxMul at x equals

∑
′(Pos ′ − Neg ′) where the sum is

taken over all nodes µ ′ on the path leaving from µ to the leaf containing the translations that maximizes
Cov (x). This is because of the dominance events mechanism that guarantees that MaxMul would
take into account the contribution from the child µ ′ of µ from which Cov ′ is larger.

Theorem 2.2. Let A and B be two sets of n horizontal segments in total. Then we can find in time
O(n log n) a translation t at which Cov (A, t + B) is maximum.

10

Proof. The number of edge events is clearlyO(n). Each edge event occurring at a node µ ∈ T can cause
O(logn) dominance events, one at each of the ancestor nodes of µ, thus there areO(n logn) dominance
events. Each event is handled inO(logn) time. Thus the bound of the running time follows.
To find the optimal translation, we monitor the maximal value of Max Tot at event T . Clearly

the maximal coverage must be obtained at an edge event, and Lemma 2.5 guarantees that the maximum
coverage must equalMax Tot at event T at this event.

3 A lower bound
Rucklidge [20] showed that for given a parameter ε > 0, and two families A and B of segments in the
plane, the combinatorial complexity of the regions in the translation plane (TP) of all translations t for
which h(A, t+B) ≤ ε is in the worst caseΩ(n), where h(A, B) is the directed Hausdorff distance from
A to B. This bound is tight, since the number of intersection points created by n rectangles in the plane is
O(n). We next show that theΩ(n)–bound holds also in the case that the segments are horizontal. That
is, we show a construction of sets A and B of n horizontal segments each, such that the combinatorial
complexity of the regions R of all translations t for which h(A, t + B) ≤ ε isΩ(n). This is relevant for
the previous section since R is exactly the region of all translations t for which Cov (A, t + B) is equal to
the total length of the segments of A.
Assume for the construction that ε = 1/2. The first component in the construction (see Figure 2) is the

set A ′ consisting of 2n points, which are

{(i, 1/2 + i/n) and (i, −1/2 + i/n − δ), for i =, 1 . . . n}

where δ is a small enough parameter. Let q denote the Minkowski sum of a point q and a unit square.
Thus the pair (i, 1/2− i/n) and (i, −1/2− i/n−δ) forms two very close vertically aligned squares,
where the gap between them is of unit width and height δ, and located at vertical distance i/n below the
y-axis. We add the segment A ′′, which is the long horizontal segment between the points (−n, 0) and
(0, 0) and the segmentA ′′′ between (n, 0) and (2n, 0). Let A = A ′ ∪ A ′′ ∪ A ′′′.

B1 consists of a set of n segment
of length 2n. The vertical distance
between consecutive segments is 1/n2 .

y-axis

A2 consists of n points (not shown), which
are the centers of n unit squares.

A ′′
1 is a segment of length n A ′′′

1 is a segment of length n

A ′
1 consists of n pairs of points

B2 is a set of n points,
whose distance is 1/n from each other

x-axis

Figure 2: The lower bound construction. The set A is not shown explicitly — only A is shown.

11

The set B consists of n horizontal segments of length 2n, whose vertical distance is . The left
endpoint of all of them is on the y-axis, and the middle one is on the x-axis. By shifting them vertically,
each segment in turn is not completely covered at some time, when it passes between the gaps between
one of the pairs of A . In all other cases, all the segments are completely covered. The region in TP
corresponding to all translations t for which h(A , t + B) ≤ 1 consists ofΩ(n) horizontal strips, each
of length n.
The set A consists of the n points (−(1 + 1/n)i, −5) (for i = 1 . . .n). Thus A (The Minkowski

sum of A and a unit square) creates n unit squares along the line y = −5, with a gap of 1/n between
them. The set B consist of n points along the horizontal line (−1/2n, −5) (for i = 1 . . . n). Observe that
B fits completely into each of the squares of A . However, by sliding B horizontally, along y = −5 or
anywhere at distance ≤ 1/2 from the line y = −5, each of the points of B “falls” at some stage into each
of the gaps between each of the squares of A , The region S = {t | h(A , t+ B) ≤ 1} consists ofΩ(n)
vertical strips, each of height 2. LettingA = A ∪A and B = B ∪B , the region S = {t | h(A, t+B) ≤ 1}
is merely the intersection of S and S , which is clearly of complexityΩ(n), thus proving our claim.

4 Matching Horizontal Segments Under Vertical Translation
In this section we describe a sub-quadratic algorithm for the Hausdorff matching between sets A and B
of horizontal segments, when translations are restricted to the vertical direction.
Let ρ∗ = min h(A, t + B) where t varies over all vertical translations, and h(·, ·) is the directed

Hausdorff distance. Let M denote the ratio of the diameter to the closest pair of segments in A ∪ B.
Further, let [M] denote the set of integers {1 . . .M}.

Theorem 4.1. LetA andB be two sets of horizontal segments, and let ε < 1 be a given parameter. Then we
can find a vertical translation t for whichh(A, t+B) ≤ (1+ε)ρ∗ in timeO(n max(poly(logM, logn, 1/ε))).

We first relate our problem to a problem in string matching:

Definition 4.1. (Interval matching): Given two sequences t = (t[1] . . . t[n]) and p = (p[1] . . . p[m]),
such that p[i] ∈ [M] and t[i] is a union of disjoint intervals {a . . . b } ∪ {a . . . b } . . . with endpoints in
[M], find all translations j such that p[j] ∈ t[i+ j] for all i. The size of the input to this problem is defined
as s =

∑
|t[i]| + m.

We also define the sparse interval matching problem, in which both p[i] and t[i] are allowed to be equal
to a special empty set symbol ∅, which matches any other symbol or set. The size s in this case is defined as∑

|t[i]| plus the number of non-empty pattern symbols. Using standard discretization techniques [8, 16],
we can show that the problem of (1 + ε)-approximating the minimum Hausdorff distance between two
sets of n horizontal intervals with coordinates from [M] under vertical motion can be reduced to solving
an instance of sparse interval matching with size s = O(n).
Having thus reduced the problem of matching segments to an instance of sparse interval matching, we

show that:

• The (non-sparse) interval matching problem can be solved in timeO(s polylog s).

• The same holds even if the pattern is allowed to consists of unions of intervals.

• The sparse interval matching problem of size s can be reduced to O(logM) non-sparse interval
matching problems, each of size s ′ = O(s polylog s).

12

These three observations yield the proof of Theorem 4.1. In the remainder of this section, we describe
the proofs of the above observations.
The interval matching problem. Our method follows the approach of [1, 19] and [3].
Firstly, we observe that the universe size M can be reduced to O(s), by sorting the coordinates of the

points/interval endpoints and replacing them by their rank, which clearly does not change the solution.
Then we reduce the universe further toM ′ = O(

√
s) by merging some coordinates, i.e. replacing several

coordinates x . . . x by one symbol {x . . . x }, in the following way. Each coordinate (say x) which
occurs more than

√
s times in t or p is replaced by a singleton set {x} (clearly, there are at most O(

√
s)

such coordinates). By removing those coordinates, the interval [M] is split into at most O(
√

s) intervals.
We partition each interval into smaller intervals, such that the sum of all occurrences of all coordinates
in each interval is O(

√
s). Clearly, the total number of intervals obtained in this way is

√
s. Finally, we

replace all coordinates in an interval by one (new) symbol from [M ′] where M ′ = O(
√

s). By replacing
each coordinate x in p and t by the number of a set to which x belongs, we obtain a “coarse representation’
of the input, which we denote by p ′ and t ′.
In the next phase, we solve the interval matching problem for p ′ and t ′ in timeO(nM ′polylog(n, M ′))

using a Fast Fourier Transform-based algorithm (see the above references for details). Thus we exclude all
translations j for which there is an i such that p[i] is not included in the approximation of t[i+j]. However,
it could still be true that p[i] /∈ t[i + j] while p ′[i] ∈ t ′[i + j]. Fortunately, the total number of such pairs
(i, j) is bounded by the number of new symbols (i.e. M ′) times the number of pairs of all occurrences of
any two (old) symbols corresponding to a given new symbol (i.e. O(

√
s)). This gives a total of O(s)

pairs to check. Each check can be done inO(logn) time, since we can build a data structure over each set
of intervals t[i] which enables fast membership queries. Therefore, the total time needed for this phase of
the algorithm isO(s polylog), which is also a bound for the total running time.
The generalization to the case where p[i] is a union of intervals follows in essentially the same way, so

we skip the description here.
The sparse-to-non-sparse reduction. The idea here is to map the input sequences to sequences of length
P, where P is a random prime number from the range {c s logM . . . c s logM} for some constants c , c .
The new sequences p ′ and t ′ are defined as p ′[i] = ∪ ′ ′ p[i ′] and t ′[i] = ∪ ′ ′ t[i ′]. It can
be shown (using similar ideas as in [8]) that if a translation j does not result in a match between p and t,
it will remain a mismatch between p ′ and t ′ with constant probability. Therefore, all possible mismatches
will be detected with high probability by performingO(logM) mappings modulo a random prime.

Acknowledgements
We would like to thank Helmut Alt, Julien Basch, Mikkel Thorup, Carola Wenk and Li Zhang for fruitful
discussion. We also thank Héctor H. González-Baños and Eric Mao for supplying some of the pictures in
this paper.

References
[1] K. Abrahamson, Generalized string matching, SIAM Journal on Computing 16 (1987), 1039–

1051.

[2] P. K. Agarwal, M. Sharir and S. Toledo, Applications of parametric searching in geometric opti-
mization, J. Algorithms 17 (1994), 292–318.

13

[3] A. Amir, M. Farach, Efficient 2-dimensional approximate matching of half-rectangular figures,
Information and Computation 118 (1995), 1–11.

[4] G. Barequet and S. Har-Peled, Some Variants of Polygon Containment and Minimum Hausdorff
Distance under Translation are 3sum-Hard, Proceedings 10thAnnual ACM-SIAM Symposium on
Discrete Algorithms, 1999, 862–863.

[5] J. Basch, L. J. Guibas and J. Hershberger, Data Structures for Mobile Data, J. Algorithms 31
(1999), 1–28.

[6] M. de Berg and O. Schwarzkopf. Cuttings and applications. Internat. J. Comput. Geom. Appl. 5
(1995), 343–355.

[7] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[8] D. Cardoze, L. Schulman, Pattern Matching for Spatial Point Sets, Proceedings 39thAnnual IEEE
Symposium on Foundations of Computer Science, 1998, 156–165.

[9] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete and Computational Geometry
9 (1993), 145–158.

[10] L. P. Chew and K. Kedem, Improvements on geometric pattern matching problems, Proceedings
3rd Scand. Workshop on Algorithms Theory, LNCS Vol. #621, 1992, 318–325.

[11] L. P. Chew, D. Dor, A. Efrat, and K. Kedem, Geometric Pattern Matching in d-Dimensional Space,
Discrete and Computational Geometry 21 (1999) 257–274.

[12] A. Efrat, P. Indyk and S. Venkatasubramanian. PatternMatching for Sets of Segments, Proceedings
12thAnnual ACM-SIAM Symposium on Discrete Algorithms, 2001, 295–304.

[13] S. Har-Peled, V Koltun, D. Song, and K. Goldberg, Efficient Algorithms for Shared Camera Con-
trol, Proceedings 19thAnnual Symposium on Computational Geometry, 2003, 68–77.

[14] P. J. Heffernan and S. Schirra, approximate decision algorithms for point set congruence, Compu-
tational Geometry: Theory and Applications 4 (1994), 137–156.

[15] P. Indyk, R. Motwani, S. Venkatasubramanian, Geometric Matching Under Noise: Combinatorial
Bounds and Algorithms, Proceedings 10thAnnual ACM-SIAM Symposium on Discrete Algorithms,
1999, 457–465.

[16] K. Kedem, R. Livne, J. Pach, M. Sharir, On the union of Jordan regions and collision-free transla-
tional motion amidst polygonal obstacles,Discrete and Computational Geometry 1 (1986), 59–71.

[17] S. Khanna, R. Motwani, and R. Wilson, On certificates and lookahead in dynamic graph problems,
Algorithmica 21 (1998), 377–394.

[18] S. R. Kosaraju, Efficient string matching. manuscript, 1987.

[19] W. Rucklidge, Lower bounds for the complexity of the graph of the Hausdorff distance as a func-
tion of transformation, Discrete and Computational Geometry 16 (1996),135–153.

14

[20] S. Venkatasubramanian. Geometric Shape Matching and Drug Design. PhD thesis, Department
of Computer Science, Stanford University, August 1999.

