
Sweeping a Terrain by Collaborative Aerial Vehicles

Alon Efrat
CS Dept, University of Arizona

alon@cs.arizona.edu

Mikko Nikkilä Valentin Polishchuk
CS Dept, University of Helsinki

firstname.lastname@cs.helsinki.fi

ABSTRACT
Mountainous regions are typically hard to access by land;
because of this, search operations in hilly terrains are often
performed by airborne force such as Unmanned Aerial Ve-
hicles (UAVs). We give algorithms for motion planning and
coordination for a team of UAVs under various assumptions
on the vehicles equipage/capabilities and present outputs of
an implementation of the algorithms.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles, sensors, workcell
organization, planning

General Terms
Algorithms, Performance, Experimentation

Keywords
coordinated motion planning, mobile guards, sensors

1. INTRODUCTION
Motion planning and coordination for mobile guards is

a fundamental problem arising in search-and-rescue opera-
tions, mapping, inspection and surveillance services, mili-
tary and security tasks, and many other domains. Recent
advances in flight technologies, navigation and communica-
tion allow one to employ Unmanned Aerial Vehicles (UAVs)
for such missions; UAVs may be more appropriate than
human-operated machinery because of low relatively acqui-
sition, maintenance and operation costs, as well as for safety
reasons – under certain circumstances (such as when operat-
ing in a hostile environment) UAVs provide the only means
to complete the mission. For instance, when locating armed
enemy forces that hide in a terrain, it is preferable to use
spy microdrones instead of conventional, larger helicopters.
Problems arising in situations like this crystalize into the
following algorithmic question:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Is it possible to organize flight of guards over a given
terrain so that any agent moving on the terrain surface will

eventually be spotted by one of the guards?

We consider several versions of the question, motivated by
variance in the guards capabilities (whether the guards can
follow only a straight path or an arbitrary track and whether
they have speed control). Note that there can be an arbi-
trary number of agents, each moving in an unpredictable
way; moreover, the agents are adversarial (in the competitive-
analysis parlance) in that they know everything about the
guards’ motion and may use the knowledge to plan their
escape paths.
Related Work. Placing static guards to see a polygo-
nal domain is the famous Art Gallery Problem [20]; finding
a route for a single guard that sees a domain is the sub-
ject in the Watchman Route Problem [17, 10] (heuristics for
multiple watchmen in polygons are given in [21]). In these
problems the guards are not required to spot moving targets
(they just need to see any static target); catching evading
objects in polygons is known as the Walkability Problem
[23]. In Exploration Problems the goal is to guide guards
to eventually see every point in an unknown polygon [15].
Pursuit-Evasion [22] and Lion-and-Man Problems (in polyg-
onal domains, as well as in graphs) study catching of targets
whose locations are known to the pursuer(s) [11, 9].

The problem of sweeping terrain by a ichain of guards was
proposed at the last-year ACM SIGSPATIAL GIS Confer-
ence [12]. Our work differs from [12] in several aspects. [12]
considered only one version of the problem (the most in-
volved one – unrestricted motion of guards with full coorid-
nation) while we study different variants (guards moving on
straight/arbitrary tracks and guards with/without full co-
ordination capabilities). More importantly, while [12] pre-
sented no theoretical results (the paper gave only a heuris-
tic), we significantly advance on the theory frontier by de-
signing and analyzing exact algorithms for our problems.
Unlike [12], we focus on (various versions of) feasibility prob-
lems, and when we do consider optimization we optimize
a different objective (the number of guards vs. the cost of
flight for a given number of guards in [12]). The implemen-
tations in [12] and here are similar (we, however, did not
use any code from [12]; the implementation in this paper is
completely independent) – both papers use grid search for
experiments. Our grid is finer – 60x60 vs. 16x16 in [12], and
our output is more visually appealing because we present
videos with 3D views (http://www.cs.helsinki.fi/group/
compgeom/terrain.html) while [12] showed results of their
implementation only from the top view (we also make our

http://www.cs.helsinki.fi/group/compgeom/terrain.html
http://www.cs.helsinki.fi/group/compgeom/terrain.html

code available for users to generate their own terrains and
guards motion, and to output videos of the sweeps). Last
but not least, [12] required consecutive guards in the chain
to always stay very close to each other (within 2 grid units,
and this bound was set uniformly over the terrain), implying
that the constrains on visibility imposed by the terrain were
not taken into account; on the contrary, in this paper we al-
low guards across the chain to set the distance between them
according to the terrain features (e.g., guards might need to
be close if separated by a deep canyon, but could afford to
be relatively far away if separated only by shallow valleys)
– this distinction enables more effective sweeps, using fewer
guards. In fairness to [12], their implementation, as men-
tioned above, solved a harder problem – finding arbitrary
trajectories, while in our implementation straight tracks are
given. There are also few inessential technical differences
between [12] and this paper.

A classics of motion coordination (in the absence of any
polygons or terrains) is the Fréchet distance problem: Given
polygonal paths for a man and a dog, can the man walk the
dog with the leash of a given length L? The free-space dia-
gram for a problem instance are the points in the Cartesian
product of the paths, whose coordinates are closer than L;
the problem is solved by building the diagram and observ-
ing that the instance is feasible iff the diagram connects the
paths starts to the paths ends [7]. We employ very similar
free-space ideas for our trajectory coordination algorithms.

1.1 Model
We define the notation and state the problem. A terrain

T is the graph of a piecewise-linear function f of two vari-
ables (Fig. 1, left). The standard computational-geometry
way to define a terrain is by specifying a triangulation with
the value of f (the terrain elevation) given at each vertex.
Specifically, let U = {x, y | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} be the
unit square in the xy-plane and suppose that a triangula-
tion of U is given. Assume that elevation f(v) is assigned
to every vertex v of the triangulation. Then the terrain T
over each triangle abc of the triangulation is defined by the
plane passing through (a, f(a)), (b, f(b)) and (c, f(c)). That
is, if a point p ∈ U belongs to triangle abc, then f(p)—the
elevation of the terrain T at p—is given by the linear interpo-
lation of f(a), f(b), f(c) over the triangle. The terrain itself
consists of triangles (lifted and slanted copies of triangles of
the triangulation); we say that the vertices and edges of the
triangles are vertices and edges of T. Let n be the number
of the triangles (the complexity of T).

Let S = {x, y, z | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 1} denote the
unit square lifted to the plane z = 1. Borrowing notation
from literature on geometric flows [18, 19, 8], we call the
lower side of S (i.e., the segment {x, y, z | 0 ≤ x ≤ 1, y =
0, z = 1}) the bottom and denote it by B; the upper, right
and left sides of S are called top, source and sink resp. and
are denoted by T , S and T resp.
Tracks and Trajectories. We consider guards moving
in S. We make a distinction between the ”track” and the
”trajectory” for any guard g: the track π is the path that g
follows (a curve in S), while the trajectory is the function of
time that specifies the location, g(t), of the guard for each
time t. We make two simplifying assumptions: (1) the track
of each guard is an x-monotone curve, i.e., any line parallel
to the y-axis intersects any track in at most one point (this
assumption will make it intuitive to speak about the part

B

T

SS T

U

T

z

x

y

g0

g2

g1π1 p q

Figure 1: Left: The triangulation of U (dotted), ter-
rain T (shaded), the square S and its sides (B, T , S
and T), a chain g0−g1−g2 of 3 guards (K = 2) moving
along tracks B = π0, π1, π2 = T , and the 1D terrain
T(q0, g1) (blue). Right top: p, q are feasible. Right
bottom: A feasible chain of guards (blue dots) must
see the intersection of the terrain with the “curtain”
(yellow) hung from the chain.

of T between two tracks), and (2) the maximum elevation
of T is smaller than 1, i.e., f < 1; lifting the assumptions
is possible but quite technical. All guards start the motion
being aligned along S and finish aligned on T (i.e., all tracks
start on S and end on T). For our purposes it is enough to
consider guards with non-intersecting tracks. Let K + 1 be
the number of guards; we index them 0 to K in the order as
they appear on S. We assume that the guard g0 moves along
B and call it the bottom guard; similarly, the top guard gK
moves along T .
Visibility. We use the same notion of visibility as in [12]
(motivated, e.g., by the idea that guards are equipped with
a scanner having narrow angle of view): For a point p ∈ S let
pl be the line parallel to the z-axis passing through p; for two
points p, q ∈ S let Hpq be the plane passing through pl and
ql (the plane is parallel to the z-axis). Let Tpq be the cross-
section of T by Hpq (Tpq is a one-dimensional terrain, i.e.,
the graph of a piecewise-linear function of one variable) and
let T(p, q) be the part of Tpq that lies between pl and ql; say
that p, q are feasible if the two points collectively see T(p, q).
Finally, say that a set of trajectories g0(t), . . . , gK(t) for the
guards is feasible if the guards gk−1(t), gk(t), k = 1 . . .K
are feasible at any time t (Fig. 1, right). Since the chain
g0− . . .−gK of guards starts on S and ends on T , any evader
moving on the terrain will be seen at some time by some
guard in the chain (this is because the evader cannot move
unnoticed to the left of the chain).

Versions of the problem
Depending on how correlated the motion of the guards is
and on whether the tracks are given in the input, we arrive
at different variants of our problem, described next.
Aligned guards vs. Coordinated motion. We consider
two models of how guards move along their tracks.
- In the aligned model, at any time during the motion, the
x-coordinate of all guards must be the same.
- In the coordinated model each guard is allowed to move
arbitrarily along its track. (Naturally, even though the mo-
tion of each individual guard is unconstrained, it is required
that collectively the guards sweep the terrain, i.e., that the

Figure 2: Synthetic (top and middle) and a real (bottom) terrains.

chain of guards is feasible at any time.)
Feasibility vs. Optimization. Another distinction be-
tween versions of our problem stems from whether the tracks
are given in the input (and the problem then is only to find
the trajectories, i.e., to synchronize the motion of guards),
or finding the tracks is part of the problem.
- Given tracks: In the feasibility problem the tracks are given
in the input (and hence, of course, the number of guards is
given) and our task is to establish whether the guards can
sweep the terrain.
- Computing both tracks and trajectories: In the optimiza-
tion problem the goal is to minimize the number of guards
necessary to sweep the terrain. This entails computing both
the tracks and the trajectories for the guards.

1.2 Overview of the results
Section 2 describes a practical grid-based approach and

points to results of its implementation; we also explain how
to download and run our implementation for the user to gen-
erate her own videos of guards flying over terrains. We next
give theoretical algorithmic and combinatorial bounds for
our problems. We start from the simplest (yet non-trivial)
case of a single guard moving along a straight track (Sec-
tion 3), and show how to track changes in the visibility pro-
file as the guard moves (Section 3.1). While the single-guard
case may not necessarily be considered interesting on itself,
the visibility tracking techniques developed in Section 3.1,
extend to two and more guards moving along arbitrary given
tracks (Section 4), as well as to the case of finding tracks for
the guards (Section 5). We solve the feasibility problems for
arbitrary tracks; however for optimization version (finding
the minimum number of tracks) we have polynomial-time

algorithms only for the case when the tracks are restricted
to be straight.

2. IMPLEMENTATION
Videos with output of our implementation of terrain sweep-

ing can be viewed at http://www.cs.helsinki.fi/group/

compgeom/terrain.html. Fig. 2 shows some frames from
videos, demonstrating the coordination between the guards
– how some guards have to stay while others move. The
two top rows are synthetic terrains produced with our sim-
ple terrain generator that takes a set of segments in the
xy-plane, erects them to vertical walls of common height (it
is easy to change the code to allow different wall heights
for different segments) and smoothes the walls by Gaussians
with a common variance (it is easy to allow different vari-
ances). The bottom row is a real terrain in Arizona (around
36.1◦N 112.1◦W) which we created as follows (inspired by
the method used by Minecraft players to create terrains from
the real world [1]): GoogleEarth plugin from Ambiotek [2]
and MircoDEM Map Tool from the US Naval Academy [3]
were used to get elevation data; the data was visualized and
saved as a grayscale image, and a Java program extracted
the elevation from the image based on the darkness of the
color.

For the implementation we used grids (60x60) – both for
terrains (a terrain is specified by the elevation at each gird-
point) and for the guards (each guard moves from a grid-
point to an adjacent gridpoint). The use of grids is justi-
fied by the complexity (in particular, non-linearity) of exact
solutions as we show in subsequent sections. The imple-
mentation was programmed in Java and visualization of the

http://www.cs.helsinki.fi/group/compgeom/terrain.html
http://www.cs.helsinki.fi/group/compgeom/terrain.html

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

Figure 3: Runtimes (secs) vs. number of gridpoints.

output was done in MATLAB. Since our visibility model al-
lows to parallelize the computations naturally (the motion
coordination is done independently for each pair of consec-
utive guards in the chain) we tested the implementation on
the high-performance Ukko cluster [4], with a single machine
responsible for computing trajectories only for two guards.
A node in the cluster is a Dell PowerEdge M610 with 32GB
RAM and 2 Intel Xeon E5540 2.53GHz CPUs each having
4 cores.

Fig. 3 presents the runtimes of the implementation for a
single machine (i.e., for two guards). We ran the exper-
iments with the two guards having to sweep different-size
synthetic terrains. All terrains had the y-side 60 gridpixels
long (i.e., the distance between the guards tracks was 60),
and we varied the x-side length. As expected, the runtime
grows quadratically with the terrain length since we check
feasibility of every position of the bottom guards against ev-
ery position of the top guard (in the spirit of the free-space
diagram for the Fréchet distance problem, see Section 4.2 for
details). The solution for the real terrain from Fig. 2, bot-
tom was found in 6.5secs which demonstrates practicality of
our implementation. We also tested the implementation on
more real terrains, producing solutions comparably fast.

We encourage the reader to play with our code avail-
able from (http://www.cs.helsinki.fi/group/compgeom/
rescue.zip); we now explain how the user can work with the
code to generate her own videos. The code takes input from
two text files (that can be modified by the user): terrain.txt
and tracks.txt. The first file is used for terrain generation
(alternatively, the user can work with her own terrain as ex-
plained in the next paragraph); the second file specifies the
tracks (all tracks lie at the same elevation and each track
is a segment parallel to the x-axis). The file terrain.txt has
the following format: the first line is the maximum height
of the terrain (the height of the walls that are smoothed
by Guassians), the second line is the standard deviation of
the Gaussians, and each line after that specifies a segment
by four numbers (x and y coordinates of the segment end-
points). The generator works as described above. The for-
mat of tracks.txt is as follows: the first line is the elevation
at which the guards fly, and the following lines specify the
tracks starting points. Finally, running rescueOperation.m
script in MATLAB computes trajectories of the guards along
the tracks and visualizes the guards flight; the animation is
shown in MATLAB and then saved to m.avi.

The user can also feed her own terrain to our code instead
of using our simple-minded terrain generator. Our MAT-
LAB script offer two options for that. First, the script can
load a text file with the terrain elevation at every grid point.
Second, the script can use a grayscale image; the code will
divide the image into pixels and set each pixel’s elevation to

g0(t) = (t, 0, 1)

T(t)

z = 1

y = 0
x

y

z
vm

um

Figure 4: g0 sees T(t).

the rgb value of the shade of gray in the pixel (this was the
option we used for our real terrain, as described above).

3. A SINGLE BOTTOM GUARD
We now turn to exact algorithms for our problems, start-

ing from a simple (but already non-trivial) case when there
is only one guard – the bottom guard g0. Even though this is
a simplistic scenario, the techniques set up in this section lay
foundations for the more complicated and interesting setting
of multiple guards. Note that above we did not define visi-
bility for a single guard; we therefore adjust our definitions:
For 0 ≤ t ≤ 1 let T(t) be the cross-section of the terrain T
by the plane x = t (the cross-section is a one-dimensional
terrain); we say that t if feasible if T(t) is seen by the guard
g0 when its x-coordinate is t (i.e., when g0 is at the point
(t, 0, 1)). Our goal is simply to check whether every t ∈ [0, 1]
is feasible, i.e., whether the guard moving along B will suc-
cessfully sweep T (since the track for g0—the bottom B—is
given in the input, we are dealing with a feasibility problem).

Most of the discussion in this section will be restricted to
the plane x = t, for some t ∈ [0, 1]; in particular, the rela-
tions ”above”, ”below”, etc. will be about the z-coordinate
and ”left/right” will refer to the y-coordinate (as if the plane
x = t is the usual, horizontal plane R2). Some more nota-
tion: For a point p ∈ T(t) let Tp be the part of T(t) to the

left of p. For points a, b let
−→
ab denote the ray emanating

from a and going through b. Every vertex vm (resp. every
edge `) of T(t) is the intersection of the plane x = t and an
edge e (resp. a triangle ∆) of T; we say that e is responsible
for vm and ∆ is responsible for `. For a triangle ∆ of the
terrain T (resp. an arbitrary segment ab) let ∆ (resp. ab)
denote its supporting plane (resp. supporting line).

We prove that the guard’s position at t is feasible iff ex-
tensions of edges of T(t) intersect the elevation z = 1 at
negative y-coordinates (Fig. 4); we build up to this result
via a series of intermediate lemmas. We start with a sim-
ple criterion for when a point of T(t) is invisible to g0. By
definition, g0 sees p if −→g0p does not intersect Tp; this can be
equivalently stated as

Lemma 1. g0 sees p iff Tp is below −→g0p.

Let ` be an edge of T(t), let v be the left endpoint of `
and let q ∈ ` be some point on ` not seen by g0 (Fig. 5).
Our first important observation is that any point in ` to the
left of q is also not seen by g0; we state this as Lemma 2.
Even though the lemma is intuitively obvious, we give its
full proof in order to present the kind of arguments used to
prove all results in the paper.

Lemma 2. No point in [v, q] is seen by g0.

Proof. By Lemma 1, some point q∗ ∈ Tq lies above the
ray −→g0q. Consider two cases (Fig. 5):

http://www.cs.helsinki.fi/group/compgeom/rescue.zip
http://www.cs.helsinki.fi/group/compgeom/rescue.zip

g0

`

v
q

q∗ g0 v

`

q

Figure 5: Slopes of the ray and the edge.

(1) If −→g0q has higher slope than ` (i.e., if to the left of q the
ray −→g0q runs above `), then q∗ /∈ [v, q] since any point of the
interval [v, q] is below −→g0q; thus q∗ ∈ Tq \ [v, q] = Tv. That
is, there exists a point q∗ ∈ Tv that lies above the ray −→g0q.
But then, since [v, q] is below −→g0q, the point q∗ lies above
the ray −→g0p also for any point p ∈ [v, q], which implies that
p is not seen.
(2) If −→g0q has smaller slope than ` (i.e., if to the left of q the
ray −→g0q runs below `), then the vertex v alone blocks any
point p ∈ [v, q] (and, in fact, any point in `) because v is
above the ray −→g0p.

Let v0, . . . , vM be the vertices of T(t) ordered by increasing
y-coordinate; as with other notation in the paper, when we
want to emphasize that the vertices’ locations depends on
t, we write them as functions of time v0(t), . . . , vM (t). We
now prove that it is sufficient to see only the vertices of T(t):

Lemma 3. If g0 sees v0, . . . , vM , then it sees all of T(t).

Proof. If g0 sees vm+1 then by Lemma 2 it also sees the
whole edge vmvm+1.

Next we prove that it is sufficient to see only a subset of
vertices – namely those that have a reflex vertex as a left
neighbor. Specifically, for m = 1 . . .M − 1 the vertex vm is
reflex if vmvm+1 is below the ray −−−−−→vm−1vm; a vertex vm+1 is
post-reflex if its predecessor, vm is reflex.

Lemma 4. If g0 sees all post-reflex vertices, then it sees
all of T(t).

Proof. By Lemma 3 it is enough to prove that all ver-
tices of T(t) are seen by g0. Let vm+1 be the leftmost non-
seen vertex (Fig. 6, left). Since vm is seen, Tvm is below
−−−→g0vm; in particular, the edge vm−1vm is below −−−→g0vm. But
this means that to the left of vm—the intersection point of
the ray −−−−−→vm−1vm and the ray −−−→g0vm—the former ray is above
the latter. Finally, since vm is not reflex, vmvm+1 is above
−−−−−−→vnm−1vm, and hence is (even more) above −−−→g0vm, which im-
plies that for any p ∈ [vmvm+1] the ray −→g0p is above −−−→g0vm,
and hence is also above Tp.

Finally, we observe that g0 seeing a post-reflex vertex is
equivalent to a simple algebraic condition. Specifically, for a
vertex vm+1 let um = −−−−−→vm+1vm ∩ {z = 1} be the intersection
of the plane z = 1 (equivalently, the line z = 1 in the plane
x = t) with the ray −−−−−→vm+1vm, and let ym be the y-coordinate
of um; assume that ym = −∞ if the ray never intersects z =
1, i.e., if um = ∅ (e.g., ym = −∞ in Fig. 4). The guard sees
all post-reflex vertices iff for each post-reflex vertex vm+1

the guard is above the ray −−−−−→vm+1vm, or (since the guard’s
(y, z)-coordinates are (0, 1)) iff the rays intersects the line
z = 1 at non-positive y-coordinates:

Lemma 5. g0 sees all post-reflex vertices iff ym ≤ 0 for
each post-reflex vertex vm+1.

g0

vm
vm+1

vm−1
∆e

z = 1

x = t

ye

e

x

yz

Figure 6: Left: vm is not reflex. Right: ye = ∆e∩{x =
t} ∩ {z = 1}.

g0

vm

vm−1
z = 1

y = 0

ym

Figure 7: vm−1 blocks vm.

From Lemmas 3–5 we obtain:

Lemma 6. g0 sees T(t) iff ym ≤ 0 for each reflex vm.

Lemma 6 implies that feasibility of g0 can be checked by
looking at ym only for a subset of vertices of T(t) (namely,
the reflex vertices of T(t)). We could have gone further along
this direction and prove that feasibility of g0 can be checked
by looking at ym for an even smaller subset of vertices of T(t)
(namely, the endpoints of “reflex chains” of T(t)). Instead,
we go in the opposite direction and prove that checking the
guard’s feasibility is equivalent to checking the sign of ym for
all (internal) vertices of T(t) (vm is internal if m 6= 0,M):

Lemma 7. g0 sees T(t) iff ym ≤ 0 for every internal vm.

Proof. A non-reflex vertex vm with ym > 0 is blocked
already by vm−1 (Fig. 7).

It may seem like Lemma 7 is a weakening of Lemma 6, and
that checking feasibility of g0 is better be done via Lemma 6.
Still, asymptotically, the feasibility check takes the same
(O(M)) time no matter which of the two lemmas is used
because every internal vertex of T(t) may be reflex (also, the
number of endpoints of reflex chains of T(t) may be Ω(M)).
More importantly, Lemma 7 is simpler conceptually since it
provides a uniform treatment of all vertices of T(t): there
is no need to find out which vertices are reflex; the guard’s
feasibility can be checked by (blindly) checking the sign of
ym for each vertex of T(t). This will also be helpful when
considering how the visibility of T(t) by g0 changes as the
guard moves – which we do next.

We introduce the last piece of notation in this section. An
edge of the terrain T is internal if it is not a boundary edge
(i.e., if its projection onto the xy-plane does not belong to
the boundary of the unit square); in the remainder of the
section we consider only internal edges of T. For an edge e let

emin, emax be the x-coordinates of the endpoints of e; assume
that T has no edges perpendicular to the x-axis (emin < emax

for all e). There are two triangles incident to e; let ∆e

denote the incident triangle that is “locally further” from
the xz-plane (formally, a ray in ∆e going from a point in ∆e

with x-coordinate between emin and emax and intersecting
e, also intersects the xz-plane). Finally, for t ∈ [emin, emax]
let ye(t) be the y-coordinate of the intersection of the planes
∆e, x = t and z = 1 (Fig. 6, right).

Lemma 7 implies that the problem instance is infeasible
iff ym(t) > 0 for some vertex vm(t) of T(t) for some t. As t
changes, vertices of T(t) appear, move and disappear. The
crucial observation is that every vertex vm (resp. every edge
`) of T(t) is the intersection of the plane x = t and an edge
e (resp. a triangle ∆) of T. This means that the whole
variety of vertices of T(t) for all t ∈ [0, 1] can be obtained
by intersecting every edge e of T with the plane x = t for
t ∈ [emin, emax]. That is, all possible vertices of T(t) for
t ∈ [0, 1] can be obtained by looking at the terrain T edge-
by-edge. In particular, the (non-infinite) values of ym(t)
for all possible vertices vm(t) of T(t) for all times t ∈ [0, 1]
coincide with the values of ye(t) for all edges e of T.

Lemma 8. ye is a linear function of t. The function can
be found in constant time.

Proof. ye(t) is defined by 3 linear constraints (x = t, z =
1 and (x, ye, z) ∈ ∆e), one of which (x = t) changes linearly
with t.

By Lemma 8, ye(t) attains its maximum at one of the ex-
tremes – emin or emax. Thus, we can check in constant time
whether e∩{x = t} will ever be a “visibility blocking vertex”
(i.e., a vertex vm with ym(t) > 0 for some t ∈ [emin, emax]).
Since there are O(n) edges in T, checking whether g0 is ever
in an infeasible position takes overall linear time:

Theorem 9. It can be checked in O(n) time whether a
single bottom guard sweeps T.

3.1 Tracking the visibility
We argued above that the feasibility of g0 moving along
B can be checked efficiently by considering the terrain T
edge-by-edge. We now present an alternative way to check
the feasibility: Even though this leads to a less efficient
algorithm than the one presented above (Theorem 9), the
techniques developed here serve as the crucial ingredient for
the algorithms in the next sections for the case of multiple
guards.

Specifically, to check whether g0 sweeps T we check if the
guard is feasible at t = 0 and then track how the visibility
of T(t) changes with t. Let vm be a vertex of T(t) and
let ` = vivi+1 be an edge of T(t) lying to the right of vm
(i ≥ m). We define the `-shadow of vm, shvm→`, to be the
point where the ray −−−→g0vm intersects the supporting line of
` (shvm→` = −−−→g0vm ∩ `); the `-shadow shows how much of `
is blocked from the guard by vm. Let sh` be the rightmost
shadow on `. The next lemma asserts that the visible part
of ` is determined by vertices of Tvi (Fig. 8):

Lemma 10. The part of ` visible to g0 is the part to the
right of sh`.

Proof. If a point p ∈ ` is visible, then Tp is below −→g0p;
in particular, all vertices of Tp are below the ray, and hence
all rays −−−→g0vm for m ≤ i are also below −→g0p, implying that p

`
vi

vi+1
`

g0 = (t, 0, 1)

vm = (t, ym + βmt, zm + γmt)

shvm→` = (t, y, z)

sh`

T(t)

Figure 8: Shadows of some vertices of Tvi .

is to the right of sh`. Conversely, if p ∈ ` is invisible, then
some point on Tp is above −→g0p, implying that some vertex
vm of Tp is above the ray, meaning that shvm→` is to the
right of p.

Let us now track how sh` changes with time. While the
plane x = t intersects the same set of edges of T(t) (i.e.,
when t is between consecutive x-coordinates of vertices of
the terrain T) the terrain T(t) is the same combinatorially,
i.e., has the same set of vertices and edges. For any edge `
and vertex vm motion of the shadow shvm→` is described by
an algebraic curve of low degree:

Lemma 11. shvm→`(t) =
(
t,
p
y
2 (t)

p
y
1 (t)

,
pz2(t)

pz1(t)

)
where py1 , p

z
1 are

linear and py2 , p
z
2 are quadratic functions; the functions can

be computed in constant time.

Proof. Let em be the edge of T responsible for vm and
let ∆ be the triangle responsible for ` (vm = em ∩ {x =
t}, ` = ∆ ∩ {x = t}); let x = t, y = ym + βmt, z = zm + γmt
be the (parametric equation of the) supporting line em of
em (here (ym, zm) is the point where em intersects the yz-
plane), and let y = ax + bz + c be the (equation of the)
supporting plane ∆ of ∆. The (y.z)-coordinates of shvm→`
satisfy (see Fig. 8):

1− z
y

=
1− zm − γmt
ym + βmt

or y = ym+βmt−(ym+βmt)z
1−zm−γmt . Substitute into the equation for

∆ with x = t: ym+βmt−(ym+βmt)z = (1−zm−γmt)(at+
bz + c) and solve for z:

z =
ym + βmt− (1− zm − γmt)(at+ c)

b(1− zm − γmt) + (ym + βmt)

or z(t) = pz2(t)/pz1(t); substitute this back into the equation
for ∆ to obtain y(t) = py2(t)/py1(t).

Using Lemma 11 one could build the trajectory of the shadow
in the 3D space; this however is not our goal. For us it is
more important to know how the shadow moves on the edge
` = vivvi+1. For that we define the function dvm→`(t) as
the signed distance from the vertex vi of ` to shvm→` (signed
means that the distance is negative if shvm→` is to the left of
vi on `). The vertex vi moves linearly with t along the edge
ei of T responsible for the vertex: vi(t) = (t, yi + βit, z =
zi + γit) where (yi, zi) is the point where ei intersects the
yz-plane. From this and Lemma 11 we have:

Lemma 12. dvm→`(t) =
√
p6(t)/p4(t) where p6, p4 are

polynomials of degrees 4 and 6 resp.

By Lemma 10, the part of ` visible to g0 is defined by the
maximum of the functions dvm→` for all m ≤ i; let d`(t) =
maxm≤i dvm→`(t) denote the rightmost visible point of `
(more precisely – the distance from the point to vi(t)). Re-
call that the upper envelope (pointwise maximum) of graphs
of i functions that pairwise intersect at most s times has
O(λs+2(i)) complexity and can be built in O(λs+1(i) log i)
time [14], where λs(i) is the maximum length of an i-element
order-s Davenport-Schinzel (DS) sequence (see [6, Sections 1
and 2] for definitions and notation relevant to DS sequences
and their algorithmic and combinatorial properties).

Lemma 13. d` has O(λ12(i)) complexity and can be built
in O(λ11(i) log i) time.

Proof. By Lemma 12, the functions dvm→`(t) for two
different m’s intersect at most 10 times.

Since the terrain T(t) has O(n) edges,

Lemma 14. The functions d` for all edges of T(t) can be
computed in O(nλ11(n)) time.

The above discussion was about the case when the plane x =
t was between of vertices of the terrain T with consecutive
x-coordinates. Every time the plane crosses a vertex of T,
we recompute the functions d` using Lemma 14 (note that
the vertices and edges of T(t) change every time the plane
hits a vertex of T). Since there are O(n) vertices of T and

since λ11(n) ≤ n2O(2O(α4(n) logα(n))) [6], overall we obtain:

Lemma 15. The functions d`(t), for all edges ` of the ter-
rains T(t) for all t ∈ [0, 1], each showing how much of the

edge ` is seen by g0 at time t, can be built in O(n32O(α4(n) logα(n)))
time.

By Lemma 10, the problem instance is infeasible iff d`(t) > 0
for some edge ` at some time t.

4. GIVEN TRACKS
We now turn to multiple guards. In this section we solve

the feasibility problems – can the guards sweep T moving
along given tracks?

4.1 Aligned guards
We first consider the aligned model (in which at any time

during the motion all guards must have the same x-coordinate).
Since there is no question of finding trajectories for the
guards (the trajectories are implied by the tracks and by
the fact that the guards are aligned), the problem is “Do
the guards sweep T while moving along the tracks?”
Bottom and top guards. We start from the simplest
scenario of two guards g0, g1 moving along B and T resp.
The problem is solved by a simple two-fold application of
the visibility tracking tools developed in Section 3.1. First,
determine how the visibility of edges of T(t) by g0 changes
with time – this is exactly what we did in Section 3.1. Next,
do the same thing for g1 (a little extra work is to keep track
of the length of each edge, but this is easy since the length
changes linearly with t). At time t the two guards do not see
T(t) iff on some edge of the terrain the shadow from g0 gets
to the right of the shadow of g1. Thus, by Lemma 15, it can

be checked in overall O(n32O(α4(n) logα(n))) time whether
aligned bottom and top guards sweep T.

Non-straight tracks. Suppose now that the bottom and
the top of S are not straight-line segments, but instead are
arbitrary non-crossing x-monotone polygonal paths π0, π1

each connecting the source S to the sink T ; assume that the
domain of the terrain T lies between (the xy-projections of)
π0 and π1. Testing whether the two aligned guards g0, g1,
moving along the tracks π0, π1, sweep T can be done sim-
ilarly to the case when the tracks were straight-line seg-
ments; the only change is that the functions describing how
the shadows move along edges of T(t) will have to be re-
computed also every time a guard turns from one segment
of its track to the next (when each track consisted of one
segment, we recomputed the functions only at the vertices
of T). That is, Lemma 14 will have to be applied O(n+C)
times where C is the total number of edges in the tracks.
Similarly to Lemma 15, we obtain that it can be checked

in O((n + C)n22O(α4(n) logα(n))) time whether two aligned
guards sweep the part of T between their tracks. (Note that
if the tracks are not parallel to each other, the guards will
have to move with different speeds to keep the alignment;
our solutions extend to the case when all guards move at the
same speed, possibly reaching T at different times.)
Multiple guards. Suppose now that K+ 1 aligned guards
g0− · · ·−gK move along given (non-crossing) tracks B =
π0, π1, . . . , πK−1, πK = T ; let C be the total complexity of
the tracks. Let T(πk, πk+1) be the part of T between πk and
πk+1, i.e., the restriction of the terrain onto the set between
the (xy-projections of the) tracks. In our visibility model,
T(πk, πk+1) can be swept only by gk, gk+1. Thus, testing
whether T is swept by the K + 1 guards boils down to test-
ing whether gk, gk+1 sweep T(πk, πk+1) for each k = 0 . . .K.
The pairwise feasibility can be done as above. Charging the
time for testing gk, gk+1 to the complexity of T(πk, πk+1),
we obtain:

Theorem 16. It can be checked in O((n+C)n22O(α4(n) logα(n)))
time whether aligned guards moving along given tracks sweep T.

4.2 Finding trajectories: Coordinated motion
We now switch to the coordinated model (in which the

guards do not have to form a line perpendicular to the x-
axis). We still consider a feasibility problem – ”Can the
guards move along given tracks so as to sweep T?” (cf. the
question “Do the guards sweep T while moving along the
tracks?” for the aligned model in Section 4.1), i.e., our goal
is to find the trajectories for the guards.
Bottom and top guards. As in the previous section, we
start from the simplest case when there are only two guards –
bottom and top; also as in the previous section, the solution
to the general case of arbitrary number of guards moving
along arbitrary tracks will be reduced directly to the two-
guards case. For (t0, t1) ∈ [0, 1]2 let g0(t0) be the point
(t0, 0, 1) ∈ B and let g1(t1) = (t1, 1, 1) ∈ T ; let H(t0, t1) be
the vertical plane though g0(t0), g1(t1). Let T(t0, t1) be the
cross-section of T by H(t0, t1); T(t0, t1) is a one-dimensional
terrain. The point (t0, t1) is feasible if T(t0, t1) is collectively
seen by the two guards g0(t0), g1(t1).

To solve our problem we will build the set of all feasible
points within the unit square in the t0t1-plane (Fig. 9). The
instance is feasible iff this feasible set contains a path from
(0, 0) to (1, 1) – the path defines coordinated motion of the
guards to sweep T. (Our feasible set is very much like the
free-space diagram for the Fréchet distance [7].) To build the
feasible set we will extend the techniques developed for the

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 9: Left: A terrain consisting of a valley be-
tween two steep “walls”. Right: The free space (yel-
low) for the bottom and the top guards; the guards
are infeasible when g0 is much to the right of g1.

(t1, 1, 1)

(t0, 0, 1)

(xl, yl, zl)

(xr, yr, zl)

e

B

T

Figure 10: Top view: (t0t1) ∈ χe ⇔ [((t1, 1) − (t0, 0)) ×
((xl, yl)−(t0, 0))] ≥ 0, [((t1, 1)−(t0, 0))×((xr, yr)−(t0, 0))] ≤
0.

aligned case, where the guards had one degree of freedom (t),
to the case of each guard having its own degree of freedom
(t0, t1). First of all (extending the idea of considering T(t)
only between vertices of T), for every edge e of T we compute
the set χe of points (t0, t1) for which the plane H(t0, t1) in-
tersects e: χe = {(t0, t1) ∈ [0, 1]2 |H(t0, t1)∩e 6= ∅}. Bound-
aries of the sets χe for all edges e of T split the square [0, 1]2

into cells such that for any (t0, t1) within one cell σ the plane
H(t0, t1) intersects the same edges of T and hence T(t0, t1)
stays the same combinatorially; we will sometimes use Tσ to
denote a generic terrain T(t0, t1) for (t0, t1) ∈ σ (i.e., Tσ is a
“combinatorial” terrain whose sequence of vertices is fixed,
but the location of the vertices may change). It is straight-
forward to verify that boundary of χe is defined by two lines
(Fig. 10); hence, since T has O(n) edges, there are O(n2)
cells σ. We thus have:

Lemma 17. If feasible points within σ can be found in
time O(Tσ), the overall feasible set can be built in O(n2Tσ)
time.

As with the aligned guards, we will consider feasibility
of (t0, t1) separately for each edge ` of Tσ. Specifically, let
τ` ⊆ σ be the set of points (t0, t1) ∈ σ for which any point
on the edge `(t0, t1) of T(t0, t1) is seen by (at least one of)
the guards g0(t0), g1(t1); the feasible set (within the cell σ)
is the intersection of the sets τ` for all edges ` of Tσ. Since
there are O(n) edges in Tσ, we have:

Lemma 18. If τ` can be built in O(T`) time and has com-
plexity O(C`), then Tσ = O(nT` + n2C2

`).

Extending definitions from Section 3.1, for a vertex vm of
Tσ let shvm→`(t0, t1) be the shadow of g0(t0) cast onto the
edge `(t0, t1) of T(t0, t1), i.e., the intersection of the ray
−−−−−−−−−−−→
g0(t0)vm(t0, t1) with the edge. Similarly to Lemma 11, shvm→`
is a constant-degree algebraic function of (t0, t1) which can
be computed in constant time (we omit the exact formulas

`
vi

g0(t0)

vm
T(t0, t1)

dvm
→`

qvm
′→`

g1(t1)

vm′

Figure 11: The distances dvm→` and qvm→`.

since they are huge); also the distance dvm→` from the left
endpoint vi(t0, t1) of ` to shvm→` can be computed in con-
stant time (cf. Lemma 12). Similarly, we can compute the
distance qvm→` from vi(t0, t1) to the shadow of g1(t1) cast
by each vertex vm with m > i (Fig. 11).

We now state few notions and facts from theory of ar-
rangements [13, Ch.23.3] using our terms. Given a collec-
tion D = {dvm→`}m≤i of functions dvm→` : [0, 1]2 7→ R, the
maximization diagram of D is the subdivision of [0, 1]2 ac-
cording to which function from the collection is maximum;
i.e., within each cell of the diagram the same function from
the collection is maximum. Let D = {dvm→`}m≤i, Q =
{qvm→`}m>i be two sets of constant-degree algebraic func-
tions, O(n) functions in each. Let d` = maxm≤i dvm→` be
the upper envelope of D (this is the same definition as in
Section 3.1); let q` = maxm>i dvm→` be the upper envelope
of Q. Let O be the overlay of the maximization diagrams of
D and Q; within each cell of O the same function from D
defines d` and the same function from Q defines q`. Thus,
given the overlay O one can compute, in constant time per
cell, the set of cells for which d` ≤ q`, or in other words, the
set {(t0, t1) ∈ [0, 1]2 : d`(t0, t1) ≤ q`(t0, t1)}; call this set the
q-set. The overlay O can be computed in O(n3) time and
has complexity O(n2+ε) [5, 16]; see also end of Ch. 23.3 in
[13]. Thus

Lemma 19. The q-set has complexity O(n2+ε) and can be
computed in O(n3) time.

Returning to our guards, analogously to the aligned-guards
case (Section 4.1), some point on edge ` of T(t0, t1) is seen
collectively by g0(t0), g1(t1) iff the shadow of g0 on ` is to the
left of the shadow of g1. That is, τ` = {(t0, t1)|d`(t0, t1) ≤
q`(t0, t1)}, or in (other) words, τ` is exactly the q-set. From
Lemma 19,

Lemma 20. τ` has complexity C` = O(n2+ε) and can be
built in T` = O(n3) time.

From Lemmas 17, 18 and 20, we obtain the main technical
result of the paper:

Theorem 21. It can be checked in O(n8+ε) time whether
the bottom and top guards can coordinate their motion so as
to sweep T.

Non-straight tracks. When the two tracks are arbitrary
polygonal paths, we compute feasibility of guards positions
separately for every pair of edges of the tracks. This adds
a factor of C2 to the running time, where C is the total
complexity of the tracks:

Corollary 22. It can be checked in O(C2n8+ε) time whether
two guards can coordinate their motion so as to sweep the
part of T between their tracks.

Multiple guards. Similarly to Section 4.1, for multiple
guards moving along given non-crossing tracks we can check
whether they can form a chain sweeping T by doing pair-
wise checks for consecutive guards in the chain; the checking
time can be again charged to the complexity of the terrain
between the consecutive guards.

Corollary 23. It can be checked in O(KC2n8+ε) time
whether K guards moving along given tracks, each track of
complexity C, can coordinate their motion so as to sweep T.

5. OPTIMIZING THE TRACKS
We now consider the version of the problem in which the

tracks are not given in the input but instead must be output ;
the goal is to minimize the number of guards (equivalently,
the number of tracks) needed to sweep the terrain. (We will
not be concerned with finding trajectories for the guards;
as soon as the tracks are known, the results in the previous
section apply for finding the trajectories.) It can be shown
(we omit the argument) that the tracks can be found in the
greedy, “bottommost” fashion: find the highest track π1 for
g1 such that g1 and the bottom guard g0 collectively see the
part of T between B and π1; recurse. (Here, “highest” refers
to the largest y-coordinate, meaning“as far from the bottom
as only possible, at every x-coordinate, without jeopardizing
the visibility.) It follows that the general problem (comput-
ing multiple tracks) reduces to finding just one track running
as far up as possible from a given track. (This is similar to
the feasibility versions in the preceding sections, where fea-
sibility checking for an arbitrary number of guards reduced
to pairwise-checks.)

5.1 Aligned guards
As in Section 4.1, our solution is based on tracking how

the shadows from g0, g1 move along each edge of the terrain
T(t) (recall that T(t) = T ∩ {x = t}); we again restrict our-
selves to an interval I ⊆ [0, 1] of the times t between con-
secutive x-coordinates of T (so that T(t) does not change
combinatorially). The shadow from g0 is built exactly like
above (Section 3.1): for any t and every edge ` = vivi+1

of T(t) we build the function d`(t) indicating the distance
from vi to the rightmost shadow from g0 on `. The shadow
from g1, however, will now be a function of two variables:
the first one, t, is the x-coordinate of g1 (as before); the
second variable is the guard’s y-coordinate (Fig. 12). For
every t, y we define q`(t, y) as the distance from vi(t) to the
leftmost shadow of g1, assuming the guard is at (t, y, 1).
As in Section 4.1, q` is the upper envelope of O(n) func-
tions (but now each function is two-variate) – one function
per vertex vm of T(t) for m > i; each function is constant-
degree algebraic and is computable in constant time. Also
as in Section 4.1, some point on ` is not seen by g0(t) and
g1(t, y) iff d`(t) > q`(t, y). After computing the functions
d` and q` we can, for each t, find the maximum y for which
d`(t) ≤ q`(t, y); these maximums altogether define the func-
tion ymax

` (t) = max{y | d`(t) ≤ q`(t, y)} that indicates, for
each t, how far g1 can be while still maintaining that T(t)
is seen by g0, g1. Finally, the sought track π1 (more pre-
cisely, its part πI1 over the interval I) is the lower envelope

`
vi

T(t)

qvm
→`(t,

y)

g1(t, y) = (t, y, 1)

vm
x

y

z

Figure 12: The y-coordinate of g1 can be arbitraty
(not fixed to 1, as it was when g1 moved along T).

of these functions for all edges of `: πI1 = {x, y, z |x ∈ I, y =
min` y

max
` (x), z = 1}.

We now analyze the complexity of the above construc-
tion. The function ymax

` for a single edge ` is determined
by the overlay of maximization diagram of d` and q`; as in
Section 4.2, the function thus has O(n2+ε) complexity and
can be computed in O(n3) time. Hence the track πI1 (the
lower envelope of O(n) such functions) trivially has O(n6+ε)
complexity and can be computed in the same time. Since
there are O(n) intervals I, we have:

Lemma 24. π1 can be computed in O(n7+ε) time.

We can compute the next track π2 similarly to π1. Unfor-
tunately, the running time for computing π2, following from
our analysis, is O(n13+ε). Indeed, we would have to compute
πJ2 (in O(n6+ε) time) separately for each interval J ∈ [0, 1]
in which π1 is the graph of the same function, and the only
bound we have on the number of intervals is the complex-
ity of π1, i.e., O(n7+ε). This means that our analysis does
not lead to a polynomial-time algorithm for computing the
tracks πk for non-constant k. (We believe that more effi-
cient algorithms are possible for computing ymax

` ; still, it
can be the case that the complexity of the track πk does
grow super-polynomially with k.)

On the other hand, if the tracks are required to be straight,
then the furthest-from-B feasible track π1 should run at the
smallest y-coordinate of π1 (which can be found in O(n7+ε)
time, by Lemma 24). Thus, we can keep computing the
tracks π2, π3, . . . , without the blowup in complexity, until
the track πK (where K is the optimal number of tracks)
goes over T . From Lemma 24 we have:

Theorem 25. The minimum number K of straight tracks
needed to sweep T with aligned guards can be found in O(Kn7+ε)
time.

5.2 Coordinated guards
We now find the minimum number of tracks for guards

that can coordinate their motion. We use free-space-diagram
ideas like in Section 4.2, but now the free space has the
third dimension y (the y-coordinate of g1) and we look for
the largest ω for which the cross-section of the free space by
the plane y = ω still has the required path from (t0, t1, y) =
(0, 0, ω) to (t0, t1, y) = (1, 1, ω). (This is analogous to solving
the optimization version of the Fréchet distance problem—
computing the smallest leash length L—by finding for which
L the free space seizes to have the necessary path.) As
in Section 4.2, we split the (t0, t1, y)-space into O(n3) cells
within which the vertical plane through (t0, 0, 1), (t1, y, 1)

crosses T in combinatorially the same terrain T(t0, t1, y);
we, again, build the free space (vertices) separately in each
cell σ. Also as before, for each edge ` = vivi+1 of Tσ we
build the shadows from g0 and g1, and define the distance
functions d`(t0, t1), q`(t0, t1, y) indicating how far the shad-
ows are from vi (the difference is that q` is now tri-variate).
The free space as far as seeing the edge ` is concerned, i.e.,
the set F` = {(t0, t1, y) | d` ≤ q`}, is equal to the q-set from
the overlay of the maximization diagrams of d` and q`. Fi-
nally, the free space within σ is the intersection of the cells
F` for all edges ` of the combinatorial terrain Tσ. Overall
we obtain:

Theorem 26. The minimum number of straight tracks
needed to sweep T can be found in polynomial time.

6. CONCLUSION
We considered sweeping terrains by chains of flying guards

and gave algorithms for several versions of problems arising
in this context. Our solutions can be extended in multi-
ple ways. The assumption that S is the unit square at unit
height was made only to simplify the notation; the solutions
work for S being an arbitrary rectangle (and, actually, an ar-
bitrary polygon) situated at an arbitrary elevation (in fact,
we can also find the minimum elevation at which the guards
have to fly in order to seep the terrain, i.e., solve yet an-
other optimization problem). In the feasibility versions, it is
straightforward to handle tracks that are arbitrary curves in
3D (not necessarily staying at the same elevation). Bounds
on guards speed can be imposed by bounding slopes of fea-
sible paths through the free-space diagrams.

We also reported on an implementation and provided videos
with its output. Our code is freely available. The implemen-
tation can be extended to optimize distance traveled, time to
complete the mission, fuel consumption (which may depend
on the change of elevation of flight) and other objectives; it
may also be made more interactive.

The biggest problem that we left open is minimizing the
number of guards that are allowed to move on arbitrary
tracks; we conjecture that for aligned guards this can be
done in polynomial time while for coordinated guards the
problem is NP-hard. As a little consolation we remark that
our algorithms for straight-track guards from Section 5 ex-
tend to the case of constant-degree-of-freedom tracks, i.e.,
tracks coming from a family of curves parameterized by a
constant number of parameters (e.g., arbitrary lines in S or
even in 3D).

7. REFERENCES
[1] http://www.minecraftforum.net/topic/

992750-mapping-using-real-world-terrain-data/.

[2] http://www.ambiotek.com/topoview.

[3] http://www.usna.edu/Users/oceano/pguth/

website/microdem/microdem.htm.

[4] http://www.cs.helsinki.fi/en/compfac/

high-performance-cluster-ukko.

[5] P. K. Agarwal, O. Schwarzkopf, and M. Sharir. The
overlay of lower envelopes and its applications.
Discrete Comput. Geom., 15:1–13, 1996.

[6] P. K. Agarwal and M. Sharir. Davenport-Schinzel
sequences and their geometric applications. In J.-R.
Sack and J. Urrutia, editors, Handbook of
Computational Geometry, pages 1–47. 2000.

[7] H. Alt and M. Godau. Computing the fréchet distance
between two polygonal curves. Int. J. Comput.
Geometry Appl., 5:75–91, 1995.

[8] E. M. Arkin, J. S. B. Mitchell, and V. Polishchuk.
Maximum thick paths in static and dynamic
environments. CGTA, 43(3):279–294, 2010.

[9] B. Bollobás, I. Leader, and M. Walters. Lion and man
– can both win? Israel Journal of Mathematics,
189(1):267–286, 2012.

[10] S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the
shortest watchman route in a simple polygon. Discrete
& Computational Geometry, 22(3):377–402, 1999.

[11] A. Dumitrescu, I. Suzuki, and P. Zylinski. Offline
variants of the lion and man problem. Theoretical
Computer Science, 399(3):220 – 235, 2008.

[12] A. Efrat, J. S. B. Mitchell, S. Sankararaman, and
P. Myers. Efficient algorithms for pursuing moving
evaders in terrains. In ACM GIS’12.

[13] J. E. Goodman and J. O’Rourke, editors. Handbook of
Discrete and Computational Geometry. CRC, 1997.

[14] J. Hershberger. Finding the upper envelope of n line
segments in O(n logn) time. IPL, 33(4):169–174, 1989.

[15] T. Kamphans. Models and algorithms for online
exploration and search. PhD thesis, 2011.

[16] V. Koltun and M. Sharir. The partition technique for
overlays of envelopes. SIJCOMP, 32(4):841–863, 2003.

[17] J. S. B. Mitchell. Approximating watchman routes. In
SODA’13.

[18] J. S. B. Mitchell. On maximum flows in polyhedral
domains. J. Comp. Syst. Sci., 40:88–123, 1990.

[19] J. S. B. Mitchell and V. Polishchuk. Thick
non-crossing paths and minimum-cost flows in
polygonal domains. In SoCG’07.

[20] J. O’Rourke. Art Gallery Theorems and Algorithms.
1987.

[21] E. Packer. Computing multiple watchman routes. In
WEA’08.

[22] G. Rote. Pursuit-evasion with imprecise target
location. In SODA’03.

[23] L. H. Tseng, P. J. Heffernan, and D. T. Lee.
Two-guard walkability of simple polygons. Int. J.
Comput. Geometry Appl., 8(1):85–116, 1998.

http://www.minecraftforum.net/topic/992750-mapping-using-real-world-terrain-data/
http://www.minecraftforum.net/topic/992750-mapping-using-real-world-terrain-data/
http://www.ambiotek.com/topoview
http://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm
http://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm
http://www.cs.helsinki.fi/en/compfac/high-performance-cluster-ukko
http://www.cs.helsinki.fi/en/compfac/high-performance-cluster-ukko

	Introduction
	Model
	Overview of the results

	A single bottom guard
	Tracking the visibility

	Aligned guards on given tracks
	Bottom and top guards
	Non-straight tracks
	Multiple guards

	Finding trajectories: Coordinating motion along given tracks
	Bottom and top guards
	Non-straight tracks
	Multiple guards

	Optimizing the tracks
	Aligned guards
	Coordinated guards

	Experimental results
	Conclusion
	References

