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Abstract16

Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional17

simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic18

complexity, and the ratio of the length of the longest simple path to the the length of the shortest19

edge is poly(n). In the drawing f , a path P of G, or its image in the drawing π = f(P ), is β-stretch20

if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P ,21

the length of the sub-curve of π connecting f(p) with f(q) is at most β‖f(p) − f(q)‖, where ‖.‖22

denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short),23

in which we are given a pair of vertices s and t of G, and we are to decide whether in the given24

drawing of G there exists a β-stretch path P connecting s and t. We also output P if it exists.25

The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerry-26

mandering regions in a map, where edges of G represent natural geographical/political boundaries27

that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to28

cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show29

that the extension is closely related to several studied measures of local fatness of geometric shapes.30

We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-31

polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs32

a β-stretch path between s and t, if a (1− ε)β-stretch path between s and t exists in the drawing.33
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1 Introduction40

We study an optimal path problem in planar drawings of graphs, in which we represent edges41

as curves of constant algebraic complexity. We seek a path in a graph G from a given vertex42

s to another given vertex t that is, in a precise sense, as close as possible to the straight-line43

segment from s to t. We formalize this notion by saying that an s− t path is a β-stretch44
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6:2 Computing β-Stretch Paths in Drawings of Graphs

path if the distance between any two points along the path (not only the endpoints) is at45

most β times the Euclidean distance between them.46

The notion of “β-stretch” in this definition is similar to the notion of stretch in a47

multiplicative β graph spanner [17], where we want to remove edges from the graph while48

ensuring that the shortest path distance in the spanner is at most β times the length of49

a shortest path in the original graph. Thorough reviews of existing results for geometric50

spanners are available in [4, 9, 16]. In our problem we are not sparsifying the graph; instead,51

we try to find the most “natural” path connecting two given vertices s and t in a given52

embedded graph. If we interpret the embedded graph as the road network of a country,53

such paths can be used as an initial step to partition the country into regions with natural54

shapes. One of our motivations, in fact, is the problem of computing natural regions that, in55

a precise sense, avoid gerrymandering. A few definitions have been proposed in the literature56

to characterize what a “natural” path could entail. For example, a path in a drawing of57

a graph is defined to be self-approaching [1, 12] if for any two points p and q on the path,58

when moving from p to q along the path, the Euclidean distance to q is decreasing. Icking et59

al. [12] proved that a self-approaching path is 5.3332-stretch.60

The problem of computing β-stretch paths bears similarities to the graph dilation problem,61

where for every pair of vertices s and t in a geometric graph, we compare the shortest-path62

distance between s and t to their actual Euclidean distance in the plane, and return the63

largest ratio of these two values over all pairs (s, t). In the special case of cycles this problem64

is known as computing the maximum detour of a polygonal chain [8]. Klein and Kutz show65

that computing a minimum-dilation graph that connects a given n-point set in the plane with66

at most m edges is NP-hard [14]. In one direction, if we are given an embedded geometric67

graph with a dilation ratio that is at most as large as our target stretch factor, a weaker68

variant of a β-stretch path exists between every pair of vertices s− t, in which we consider69

only pairs of vertices along the path rather than points. However, since the dilation is a70

global property an s− t path that is β-stretch in the given graph might still exist even if the71

dilation is more than β. We elaborate on other connections to our problem in Section 1.3.72

We naturally extend the notion of β-stretch paths to β-stretch cycles. Interestingly, we73

show that a β-stretch cycle bounds a locally “fat” shape in the sense as defined by De Berg [7],74

with the parameter of fatness depending on β. The converse is easily seen not to be true.75

Our notion of β-stretch cycles may have applications to computing geographic partitions76

into regions whose shapes are well shaped in a sense that cannot be captured with fatness77

criteria.78

The rest of the paper is organized as the following. We formally define the β-stretch path79

problem is Section 1.1, followed by key main results and an overview of related results in80

the literature in Section 1.2 and 1.3, respectively. In Section 2, we prove a relation between81

β-stretch cycles and locally γ-fat shapes. Section 3 proves that β-stretch path problem82

is strongly NP-complete. Section 4 develops a quasi-polynomial approximation scheme83

algorithms for β-stretch path problem and its extension to computing β-stretch cycles. We84

conclude with open problems and future directions in Section 5. Omitted proofs are in the85

Appendix (Section 6).86

1.1 Problem Statement87

Let G = (V,E) be a finite simple graph, with vertex set V and edge set E ⊆
(
V
2
)
. A drawing88

of a graph is a representation of G in the Euclidean plane R2, in which vertices are distinct89

points and edges are Jordan arcs represented as curves of constant algebraic complexity, i.e.,90

described by a constant number of polynomial equations (inequalities), whose maximum91
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degree is bounded by a fixed constant.92

Formally, a drawing of a graph is a continuous map f : G→ R2, where we treat G as a93

1-dimensional simplicial complex. The representation of a vertex v ∈ V , an edge e ∈ E, and94

a path P ⊆ G in the drawing f is f(v), f(e), and f(P ), respectively. Here, we consider a95

generalized path that can end in a midpoint of an edge.96

We will distinguish paths in a graph from paths in a drawing of a graph. The reason is97

that we will consider “paths” in a drawing that end in relative interiors of edges. Treating98

G as a 1-dimensional simplicial complex, a path in a drawing f of G is f(P ), where P is a99

generalized path in G. We will be denoting paths in a drawing by lower case Greek letters.100

Let ‖.‖ be the Euclidean norm. Let P ⊆ G denote a path between p and q ∈ G. If both101

p and q are vertices of G then P corresponds to a usual path in G. Let f be a drawing of102

G. Then π = f(P ) is the path between p and q in f . Let π(p′, q′) denote the sub-path of π103

between p′, q′ ∈ G, that is, π(p′, q′) = f(P (p′, q′)), where P (p′, q′) ⊆ P is the path between104

p′ and q′. If we want to specify a path π together with its endpoints s and t we denote it by105

π(s, t) = π. The path π passes through all of the vertices and edges of G intersecting P . The106

length of the path π, denoted by ‖π‖, is the usual Euclidean length, which can be computed107

as
∫
P
‖f ′(x)‖dx. The distance between s ∈ P and t ∈ P along π, denoted by dπ(s, t), is the108

length of the sub-curve of π between f(s) and f(t).109

β-stretch path. Let π be a path in f free of self-intersections. For β ≥ 1, path π is a110

β-stretch path if for every p, q ∈ P we have111

dπ(p, q)
‖f(p)− f(q)‖ ≤ β. (1)112

β-stretch cycle. Let C be a simple cycle in G so that γ = f(C) is free of self-intersections.113

The cycle γ in f is a β-stretch cycle if for every pair of points p and q on C we have114

dγ(p, q)
‖f(p)− f(q)‖ = min{dπ(p, q), dπ′(p, q)}

‖f(p)− f(q)‖ ≤ β, (2)115

where π = π(p, q) and π′ = π′(p, q) are the two paths between q and p whose union is γ.116

The left hand side of (1) and (2) is the stretch factor of p and q along π and γ, respectively.117

The maximum of the stretch factor of p and q over distinct p, q ∈ P and p, q ∈ C is the118

stretch factor of π and γ, respectively. Note that a β-stretch path (cycle) is a β′-stretch path119

(cycle), for every β′ ≥ β. If a path π or a cycle γ is self-intersecting, its stretch factor is120

undefined.121

B Problem 1. β-stretch Path Problem (βSP). We are given a drawing f of a graph G,122

β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch path in f between s123

and t. The instance of the problem is denoted by (G, f, β, s, t).124

A self-intersection-free cycle γ in a drawing f of G separates s ∈ G \ C from t ∈ G \ C if125

f(s) and f(t) are contained in different connected components of the complement of γ in R2.126

B Problem 2. β-stretch Cycle Problem (βCP). We are given a drawing f of a graph G,127

β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch cycle in f separating128

s from t. The instance of the problem is denoted by (G, f, β, s, t).129

1.2 Main Results130

Our main results proved in Sections 3, 4.2 and 4.3, respectively, are the following.131

I Theorem 1. βSP is strongly NP-complete.132
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6:4 Computing β-Stretch Paths in Drawings of Graphs

I Theorem 2. Let (G, f, β, s, t) be an instance for βSP with poly(logn) ≥ β ≥ 1. Suppose133

that the shortest edge length in f is 1, and that there exists c > 0 such that the longest134

simple path in f has length at most nc. Under the above assumptions there exists a QPTAS135

for βSP. In other words, there exists a quasi-polynomial-time algorithm that for a fixed136

poly(logn) ≥ β ≥ 1 and ε > 0 returns a β-stretch path between s and t if a β(1− ε)-stretch137

path between s and t exists in f .138

I Theorem 3. Let (G, f, β, s, t) be an instance for βSC with poly(logn) ≥ β ≥ 1. Suppose139

that the shortest edge length in f is 1, and that there exists c > 0 such that the longest path in140

f has the length at most nc. Under the above assumptions there exists a QPTAS for βSC. In141

other words, there exists a quasi-polynomial-time algorithm that for a fixed poly(logn) ≥ β ≥ 1142

and ε > 0 returns a β-stretch cycle separating s from t if a β(1− ε)-stretch cycle separating143

s from t exists in f .144

1.3 Related Work145

Dilation or stretch factor [16] is perhaps the most common measure for the quality of a146

geometric graph. There is a subtle difference between the stretch factor of a path versus the147

stretch factor of a graph. For a path, the stretch factor only pertains to its endpoints, while148

for a graph the stretch factor pertains to every pair of the graph vertices. Our definition of149

β-stretch path falls in the middle as it pertains to all pairs of points belonging to the path.150

It is worth mentioning that a line of existing results in the literature is not about designing151

a geometric graph with desired stretch factor, but about the fast computation of the stretch152

factor, given the graph. Narasimhan and Smid [15] considered the problem of computing the153

stretch factor of a Euclidean graph, defined as the the Euclidean distance between any two154

vertices of the graph. Using Callahan and Kosaraju’s well-separated pair decomposition, they155

showed that there exists a EPTAS for computing the stretch factor running in O(|V |3/2) time,156

which is much faster than computing all-pairs-shortest-path distances. For general weighted157

graphs, Cohen proposed fast algorithms to compute paths with a desired stretch factor [6].158

The stretch factor, in this case, is the ratio of the path length to the graph distance. Farshi159

et al. studied the problem of adding an edge to a Euclidean graph that lowers its stretch160

factor as much as possible [11].161

Chen et al. [5] recently proposed a new straightness measure for a path. A polygonal162

chain (p1, p2, . . . , pn) is a c-chain if for all 1 ≤ i < j < k ≤ n, we have ‖pi−pj‖+‖pj−pk‖ ≤163

c‖pi − pk‖. There is a connection between the notion of c-chain and our proposed notion of164

β-stretch paths. On the one hand, if a chain is β-stretch, it is trivial to show that it is also a165

β-chain according to the definition in [5]. On the other hand, a c-chain bounds the possible166

stretch of the chain according to [5, Theorem 1–3]. Even though the analysis is only for the167

endpoints of the path, the results readily follow for any pair of points on the chain. Hence, it168

indeed implies the chain has β-stretch (with the difference of only checking pairs of vertices,169

not the points on the connecting segments).170

A closely related notion to our β-stretch path is the notion of quasiconvexity as defined by171

Azzam and Schul [3]. A connected subset Γ of the Euclidean space is said to be quasiconvex172

if any two points x and y in Γ can be connected via a path in Γ whose length is bounded by173

a constant times the Euclidean distance between x and y [3]. According to this definition, a174

β-stretch path is quasiconvex with constant β. The problem studied by Azzam and Schul is175

in some sense opposite to ours. Given a connected set Γ and a target set of points K, they176

compute a superset Γ̃ ⊃ Γ that connects the K points, has Hausdorff length comparable177

to that of Γ, and is quasiconvex. We, instead, look for a path that is a subset of the given178
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connected set (graph) and that is quasiconvex with a constant stretch factor β. While a179

short quasiconvex set always exists [3, Theorem 1], we show that determining whether a180

β-path exists is strongly NP-complete.181

One measure of “compactness” designed to quantify gerrymandering in political districting182

is the Polsby-Popper score, based on the ratio of the area of a district to the square of the183

district’s perimeter [18]. See [19] for a discussion of shape measures used in the study of184

gerrymandering.185

2 β-Stretch Curves and Locally γ-Fat Shapes186

In order to model inputs that represent realistic objects, computational geometers introduced187

the notion of fat shapes. The aim of this section is to argue that our notion of β-stretch188

cycles captures a local variant of fatness.189

Roughly speaking, a planar shape, understood as a closed topological disk T , is locally190

γ-fat if every disk that is centered in T and is not containing the whole T has at least a191

γ-fraction of its area in T . Let D ⊂ R2 denote a disk. Let D u S, for S ⊆ R2, denote the192

path connected component of D ∩ S containing the center of D.193

Locally γ-fat shape [2, 7]. For 0 ≤ γ ≤ 1
2 , a closed topological disk T ⊆ R2 is locally194

γ-fat if for every disk D centered in T that does not contain D in its interior, we have195

area(T uD) ≥ γ · area(D).196

We remark that there exists a variant of local γ-fatness that considers area(T ∩D) rather197

than area(T uD) [20, 21]. The following applies also to this weaker notion of local γ-fatness.198

The notion of β-stretch cycles extends to any measurable Jordan curve, in particular,199

boundaries of “nice” topological disks. In the following theorem, we show that by controlling200

the stretch factor of the boundary of a topological disk, we also control its local fatness. In201

particular, lowering the stretch factor increases the fatness. The corresponding lower bound202

on the local fatness is the inverse of a linear function of the stretch factor with the leading203

constant factor 2π. We also show that the stretch factor of the boundary cannot be bounded204

by a function of its local fatness.205

I Theorem 4. Every closed topological disk T ⊂ R2, whose boundary ∂T is measurable and206

β-stretch, is locally 1
2πβ -fat. For every β > 1, there exists a locally 1

32π -fat topological disk207

whose boundary is not a β-stretch cycle.208

Proof. Let D denote a disk, centered at a point p ∈ T , that does not contain T in its interior.209

We need to show that 1
2πβ area(D) ≤ area(T uD).210

Let D(r) and C(r), for r ≥ 0, denote the disk and circle, respectively, with radius r211

centered at p. By rescaling, we assume that D = D(1) is a unit disk. Let re = min{r| r ≥212

0, (C(r) ∩ ∂T ) 6= ∅}. Hence, re is the radius of the largest disk D(re), whose interior does213

not intersect ∂T . Since D does not contain T in its interior, we have re ≤ 1.214

We will presently show that
(
r2
e + (1−re)2

2πβ

)
area(D) =

(
r2
e + (1−re)2

2πβ

)
π ≤ area(T uD).215

Then optimizing over the value of re, such that 0 ≤ re ≤ 1, in the previous two inequalities216

gives the desired lower bound 1
2β area(D) on area(T uD). The lower bound is minimized for217

re = 0. It remains to show that
(
r2
e + (1−re)2

2πβ

)
π ≤ area(T uD). The first term is due to218

the fact that D(re) ⊆ T since p ∈ T .219

To get the second term we consider slices S(r) = T ∩ C(r), for re ≤ r ≤ 1. First, we220

treat r ∈ [re, 1+re
2 ]. We claim that S

( 1+re
2 − t

)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of221

angular length greater than or equal to 1
β · 2

1−re−2t
1+re−2t . The claim is proved with the help of222

the following lemma; see Figure 1 for an illustration.223
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p

p1

p2

C( 1+re
2 − t)

C(1)

αt

C(1)

A(x)

∂T

p1

p2
C(x)

p

τ1

τ2

C(re)

Figure 1 An illustration of Lemma 5 (left) and inequality (3) (right).

I Lemma 5. The slice S(x), re < x ≤ 1, contains a circular arc A(x), whose relative interior224

is contained in the interior of T uD, and whose endpoints p1 ∈ ∂T and p2 ∈ ∂T split ∂T225

into two parts τ1 and τ2 sharing p1 and p2, such that τ2 ∩ C(re) 6= ∅ and τ1 ∩ C(1) 6= ∅.226

Proof. Refer to Figure 1 (left). First, we perturb ∂T a little bit to eliminate touchings227

between C(x) and ∂T without increasing the total length of C(x) contained in the interior228

of T . Let p′1 and p′2 denote a point in ∂T ∩C(re) and ∂T ∩C(1), respectively. Let τ ′1 and τ ′2229

denote the two parts of ∂T connecting p′1 and p′2. We assume that τ ′2 is shortest possible. In230

particular, τ ′2 is contained in ∂(T uD). Note that both τ ′1 and τ ′2 intersect C(x) in an odd231

number of path connected components.232

Let A1, . . . , Ak denote the path connected components of T ∩ C(x). Note that none of233

Ai’s is a point since we eliminated touchings between ∂T and C(x). It must be that there234

exists Aj , 1 ≤ j ≤ k, such that one endpoint of Aj belongs to τ ′1 and the other to τ ′2. Indeed,235

otherwise the number of path connected components in τ ′1 ∩ C(x) and τ ′2 ∩ C(x) would be236

even.237

By the choice of τ ′2, putting A(x) = Aj concludes the proof. J238

We show that A
( 1+re

2 − t
)
from Lemma 5 is an arc of the desired angular length, which239

is at least 1
β ·2

1−re−2t
1+re−2t . Let τ1 and τ2, and p1 and p2 be as in Lemma 5 for x = 1+re

2 − t. Note240

that due to the choice of t and the fact that C(re)∩τ2 6= ∅, we have dτ2(p1, p2) ≥ 2
( 1−re

2 − t
)
.241

The same inequality holds for dτ1(p1, p2), since τ1 ∩ C(1) 6= ∅. Let αt denote the smaller242

angle defined by the rays emanating from p through p1 and p2. Since ∂T is β-stretch, we243

have, see Figure 1 (right),244

β ≥
2
( 1−re

2 − t
)

‖p1 − p2‖
=

2
( 1−re

2 − t
)

2 sin αt
2
( 1+re

2 − t
) . (3)245

The desired lower bound 1
2β ·

1−re−2t
1+re−2t on the angular length of A

( 1+re
2 − t

)
follows since this246

is lower bounded by 2 sin αt
2 .247

Similarly we prove that S
( 1+re

2 + t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of angular248

length at least 1
β · 2

1−re−2t
1+re+2t .249

Finally, by summing up infinitesimal thickenings of the slices of width dt we get250

area(D u T ) ≥ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re − 2t

((
1 + re

2 − t
)2
−
(

1 + re
2 − t− dt

)2
)

+251
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252

+ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re + 2t

((
1 + re

2 + t

)2
−
(

1 + re
2 + t− dt

)2
)
,253

which simplifies to254

area(D u T ) ≥ 2
β

∫ 1−re
2

0
(1− re − 2t)dt.255

It follows that (1−re)2

2β ≤ area(T uD), concluding the proof of the first part of the theorem.256

ε p

D
(√

2
4 − ε

2

)

Figure 2 A family of topological disks T witnessing that a locally 1
32π -fat shape can have boundary

with an arbitrarily large stretch factor, which is achieved by choosing ε arbitrarily small.

Refer to Figure 2. For the second part of the theorem, consider a topological disk T , that257

is a unit square with an ε > 0 wide slit from the middle of an edge to the center as in Figure 2.258

Clearly, if we choose ε < 1
β then ∂T is not a β-stretch cycle. However, T stays locally 1

32π -fat259

for any ε > 0. Indeed, it is not hard to see that for r <
√

2
4 −

ε
2 , a disk D(r) centered at a260

point p in T of radius r has area(T uD(r)) ≥
(
r√
2

)2
> r2

32 = area(D(r))
32π . For r ≥

√
2

4 −
ε
2 , we261

have area(T uD(r)) ≥ 1
16 , but it is enough to consider r ≤

√
2, since otherwise the whole T262

is contained in D(r). Hence, area(T uD(r)) ≥ 1
16 = 2π

32π ≥
area(D(r))

32π . J263

3 NP-completeness of βSP264

The aim of this section is to prove Theorem 1. Let G, f, s and t be as in the statement of265

the problem βSP. First, we show that we can certify that a given path π in f is a β-stretch266

path in polynomial time, which follows by the next lemma.267

I Lemma 6. Let π be a non-self-intersecting path in f between s and t. There exists a268

quadratic time algorithm to check if π is a β-stretch path.269

Proof. Note that it is enough to compute the maximum of270

max
s∈e,t∈f

dπ(s, t)
‖f(s)− f(t)‖ , (4)271

over pairs of edges e and f on the path P in G such that π = f(P ). Due to a constant272

algebraic complexity of edges in f , (4) can be seen as a rational function of two variables whose273

maximum can be computed in constant time by the standard calculus and approximated274

by solving a system of polynomial equations, and therefore the quadratic time complexity275

follows. J276
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6:8 Computing β-Stretch Paths in Drawings of Graphs

Thus, the problem is in NP, and it remains to argue the NP-hardness. We proceed by a277

reduction from the graph vertex cover problem, which is one of the first known NP-complete278

problems from Karp’s seminal paper [13], and which we state next. A vertex cover in a279

graph G = (V,E) is a subset V ′ of its vertex set V such that every edge in E has at least280

one vertex in V ′.281

B Problem 3. Vertex cover. We are given a graph G, and a positive integer k. Decide282

whether there exists a vertex cover in G of size at most k. The instance of the problem is283

denoted by (G, k).284

For any instance (G, k) of vertex cover we construct an instance (H, f, β, s, t) of βSP285

that is positive if and only if (G, k) is positive. It will follow from the reduction that βSP is286

strongly NP-complete, since all of the numerical values in the constructed instance of βSP287

are bounded by a polynomial in the size of G. The construction follows.288

Note that the problem βSP in trees is solvable in quadratic time, by Lemma 6, since in a289

tree there exists exactly one path between every pair of vertices. Our reduction shows that290

βSP becomes NP-hard even for graphs whose maximal 2-connected components are cycles.291

We put β = n5, where n is the number of vertices in G. Let m be the number of edges in292

G. We identify V (G) with [n] = {0, . . . , n− 1} and label the edges e0, . . . , em−1. The graph293

H = (V (H), E(H)) is constructed as follows; see Figure 3 for an illustration. Roughly, H is294

composed of chains of 4-cycles arranged in a serial fashion between the distinguished vertices295

s and t, and drawn as diamonds. Each 4-cycle in a chain (except the two rightmost chains)296

corresponds to an edge-vertex pair in G, and each pair of consecutive chains except the last297

one corresponds to an edge of G. Two consecutive chains are joined by an edge or a subdivided298

edge. The abstract graph H depends only on the number of vertices and edges in G, that is,299

n and m, and the structure of G is encoded in the drawing of H. Every vertex of H is either300

a triplet or a 4-tuple: the first element corresponds to an index of an edge of G or is equal to301

m, the second element corresponds to a vertex of G or is equal to −1 or n, the third element302

is “L” (for left) or “R” (right), and the fourth element is “E” (for east), “S” (for south) or “W”303

(for west). Formally, the vertex set is V (H) = {s = (0,−1, L), t} ∪ {(v, e, α, β)| v ∈ [n], e ∈304

[m + 1], α ∈ {L,R}, β ∈ {E,S,W}} ∪ {(e, n, α, S), (−1, e, α)| e ∈ [m + 1], α ∈ {L,R}},305

and the edge set E(H) = {(e, v, α,W )(e, v, α, S), (e, v, α, S)(e, v, α,E), (e, v, α,E)(e, v +306

1, α, S), (e, v + 1, α, S)(e, v, α,W )| v ∈ [n], α ∈ {L,R}, e ∈ [m + 1]} ∪ {(e,−1, R)(e +307

1,−1, L), (e, n, L)(e, n,R)| e ∈ [m]} ∪ {(e,−1, α)(e, 0, α, S)| e ∈ [m + 1], α ∈ {L,R}} ∪308

{(m,−1, R)t}.309

The drawing f represents H in a zig-zag fashion, and has a grid-like structure reminiscent310

of the edge-vertex incidence matrix of G with rows corresponding to the vertices and columns311

corresponding to the edges of G. Thus, every chain of 4-cycles of H occupies its own column,312

and 4-cycles corresponding to the same vertex of G occupy their own row. First, we define313

f(v) for each v ∈ V (H). Let ε = β−1 = n−5. Let h > 0 and h′ > 0 be sufficiently small314

constants that we specify later. We put f(t) =
(
2m+ 1

2 + h′, n− 1
2
)
. We put f((e,−1, L)) =315

(2e − h,−1) and f((e,−1, R)) = (2e + h,−1). We put f((m,−1, L)) = (2m,−1) and316

f((m,−1, R)) = (2m+ 1,−1). We put f((e, v, L,E)) = (2e− ε, v), f((e, v,R,E)) = (2e+ 1−317

ε, v), f((e, v, L,W )) = (2e−1+ε, v), and f((e, v,R,W )) = (2e+ε, v). We put f((e, v, L, S)) =318 (
2e− 1

2 , v −
1
2
)
and f((e, v,R, S)) =

(
2e+ 1

2 , v −
1
2
)
, for v ∈ [n] and e ∈ [m+ 1].319

In f , all of the edges are drawn as straight-line segments except in the following cases.320

For every v ∈ V and ei such that v ∈ ei, we draw the edge (i, v, R,W )(i, v + 1, R, S)321

in a close neighborhood of the straight-line segments connecting their end vertices as an322

xy-monotone curve (that is, a curve that intersects every vertical and horizontal line in323
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s

t

0 1 2 3 4

vertex 0

vertex 1

vertex 2

-1

-1

(0,-1,R) (1,-1,L) (1,-1,R) (2,-1,L) (2,-1,R)

(0,3,L,S) (0,3,R,S) (1,3,L,S) (1,3,R,S) (2,3,L,S) (2,3,R,S)

(0,0,L,E)

(0,0,L,S)

(0,0,L,W)

(2,2,R,E)

(2,1,R,E)

(2,0,R,E)

e0 e1

h′

hh

Figure 3 The drawing f of H in the NP-hardness reduction if G is a path on three vertices 0, 1
and 2, with edges e0 = 02 and e1 = 21. Letters in the 3rd and 4th component of a vector representing
a vertex stand for Left,Right and East,South,West, respectively. A β-stretch path π between s and
t is depicted bold, and corresponds to the minimum vertex cover VC(π) of G consisting of the single
vertex 2. (A vertex v is contained in VC(π) if and only if π passes through (2, v, R,E).)

at most 1 point) that is longer by more than 20n−4 in comparison with the straight-line324

segment (i, v, R,W )(i, v + 1, R, S). We do not care about the shape of the curve and325

we can think of it as a slightly perturbed line segment. Note that the length of the326

curve is at most
√

2‖f((i, v, R,W )) − f((i, v + 1, R, S))‖. In the same way, we also draw327

all of the edges (m, v,R,E)(m, v + 1, R, S), for all v ∈ [n]. Finally, we draw the edge328

(m,−1, R)t as a concatenation of the horizontal line segment between f(t) and the point329

p = f((m,n,R, S))− (20n−4, 0) ∈ R2 and a y-monotone curve (that is, every horizontal line330

intersects the curve at most once) of length 10n between f(m,−1, R) and p such that its331

relative interior does not pass very close to the rest of the drawing.332

To finish the drawing f = f(h, h′) it remains to choose the values of h and h′. We denote333

faux = f(0, 0) an auxiliary drawing of H with h = h′ = 0. Let πe = faux(Pe) be the 2nd334

shortest path in faux between the vertex (e,−1, L) and (e,−1, R), which is independent of the335

choice of e ∈ [m]. Note that πe is a path all of whose edges but 1 are drawn as line segments,336

and its first and last vertex coincide in the drawing. We put h = ‖πe‖
2β ≤

20n
2n5 = 10n−4. Let337

π′ = faux(P ′) be the (k + 1)-st shortest path in faux between (m,n,R, S) and t. We put338

h′ = ‖π′‖
β ≤ 20n

n5 = 20n−4. Note that π′ is a path with all but k + 1 of its edges drawn as339

line segments, and its first and last vertex t coincide in the drawing.340

B Observation 7. The path f(Pe), for e ∈ [m], and f(P ′) is shorter than πe and π′,341

respectively, and longer than ‖πe‖ − 20n−4 and ‖π′‖ − 20n−4.342

For every v ∈ [n], e ∈ [m + 1] and α ∈ {L,R}, every path in G between s and t must343

pass either through (e, v, α,W ) or (e, v, α,E). Furthermore, due to the very short distances344

between blue vertices in the figure we have the following.345

I Lemma 8. Let π be a β-stretch path in f between s and t. If π passes through (e, v, L,E)346

then π passes through (e, v,R,E) and (e′, v, α,E), for all e′ > e and α ∈ {L,R}. If π passes347
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through (e, v,R,E) then π passes through (e′, v, α,E), for all e′ > e and α ∈ {L,R}.348

Proof. Suppose that π passes through (e, v, L,E), and, for the sake of contradiction, let e′ ≥ e349

denote the smallest value such that π passes through (e, v, α,E) 6= (e, v, L,E) for some α ∈350

{L,R}. Suppose that e = e′. The other case is treated analogously. By the construction of the351

drawing f , ‖f((e, v, L,E))−f((e, v,R,W ))‖ = 2ε = 2
β , and dπ((e, v, L,E), (e, v,R,W ))) > 2.352

Hence, the stretch factor of π is strictly more than β (contradiction). J353

Proof of Theorem 1. It is easy to verify that the construction of (H, f, β, s, t) can be carried354

out in polynomial time, and all of the numerical values appearing in the construction of355

f can be bounded from above by a polynomial function of n, the number of vertices in G.356

Thus, the strong NP-completeness of βSP follows once we show that (G, k) is a positive357

instance if and only if (H, f, β, s, t) is a positive instance.358

First, if (G, k) is a positive instance, there exists a vertex cover V ′ ⊆ V of G of size at359

most k. Let πmax denote the longest path of H in f . Let π be the path in f between s360

and t passing through (e, v, α, w) if and only if v ∈ V ′, for all e ∈ [m+ 1] and α ∈ {L,R}.361

We need to show that π is a β-stretch path. Note that π is uniquely determined, and362

that by the choice of β, the only possible pairs of points that could violate the property363

of π being a β-stretch path are (e,−1, L) and (e,−1, R), for some e ∈ [m], and (m,n,R, S)364

and t. Indeed, it is easy to check that the union of two edges sharing a vertex is always365

a β-stretch path in f , which follows from the fact that an xy-monotone curve is at most366 √
2-stretch. Hence, in order to violate that π is a β-stretch path, we need to find a pair of367

points p ∈ ei ∈ E(H) and q ∈ ei′ ∈ E(H), ei ∩ ej = ∅, such that f(p) ∈ π, f(q) ∈ π, and368

‖f(p) − f(q)‖ < ‖πmax‖
β < 20n3

n5 = 20n−2. We can assume that n is sufficiently large such369

that the pre-image in f of a disk neighborhood of f(p) ∈ R2, p ∈ H, with radius 20n−2 is a370

single component of H, that does not intersect a pair of edges not sharing a vertex, except371

when p is very close to (e,−1, α), for some e ∈ [m+ 1], α ∈ {L,R}, (m,n,R, S) or t, which372

are colored red in the figure.373

Since V ′ is a vertex cover, we have dπ((i,−1, L), (i,−1, R)) ≤ ‖πi‖, for all i ∈ [m].374

Indeed, for each i ∈ [m], the path π misses two non-linear edges incident to (i, v, R, 0)375

for v ∈ ei such that v ∈ V ′. Then by Observation 7, dπ((i,−1,L),(i,−1,R))
‖f(i,−1,L)−f(i,−1,R)‖ ≤

‖πi‖
2h = β.376

Furthermore, since |V ′| ≤ k, we have dπ((m,n, S,R), t) ≤ ‖π′‖. Then by Observation 7,377

dπ((m,n,S,R),(t))
‖f(m,n,S,R)−f(t)‖ ≤

‖π′‖
h = β.378

Second, if π is a β-stretch path between s and t, let VC(π) ⊆ V be defined as follows. A379

vertex v is contained in VC(π) if and only if π passes through (m, v,R,E). Since π is β-stretch,380

we have dπ((m,n,R, S), t) ≤ h′β = ‖π′‖
β β = ‖π′‖. If |VC(π)| > k then by Observation 7 and381

the length of non-geodesic edges dπ((m,n,R, S), t) > ‖π′‖ − 20n−4 + 20n−4 = ‖π′‖, which382

is in contradiction with the previous claim. Hence, |VC(π)| ≤ k. It remains to show that383

VC(π) is a vertex cover of G.384

For the sake of contradiction, suppose that there exists an uncovered edge, that is, an385

edge uv = ei ∈ E such that ei∩VC(π) = ∅. On the one hand, by Lemma 8 and the definition386

of VC(π), π passes through (i, u,R,W ) and (i, v, R,W ). Hence, by Observation 7 and the387

length of non-geodesic edges, dπ((e,−1, L), (e,−1, R)) > ‖πe‖ − 20n−4 + 20n−4 = ‖πe‖.388

On the other hand, since π is β-stretch, dπ((e,−1, L), (e,−1, R)) ≤ 2hβ = 2‖πe‖2β β = ‖πe‖389

(contradiction). J390

Note that our NP-hardness proof involves large stretch values (here, β = n5). It would391

be interesting to show NP-hardness for small stretch values.392
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4 Approximation Algorithms393

In Section 3, we proved that βSP is strongly NP-complete, which rules out that there exists394

a FPTAS [22, Section 8] for it, unless P=NP; see [22, Corollary 8.6]1. Let (G, f, β, s, t) be395

an instance of βSP, and let β∗ = argminβ((G, f, β, s, t) is positive), which is well defined396

by compactness. In other words, it is highly unlikely that we can approximate β∗ within a397

factor of (1 + ε), for any ε > 0, in time that is polynomial in both |V (G)| and 1
ε .398

To complement our hardness result, we show that there exists an algorithm with a quasi-399

polynomial, that is O(npoly(logn)), running time that for a given ε > 0 and β, 1 ≤ β ≤ logc n,400

for some fixed c ≥ 1, returns a β-stretch path between s and t if a β(1 − ε)-stretch path401

between s and t exists thereby proving Theorem 2. We assume that ε, c and β satisfy the402

above properties in the rest of the section. Unless specified otherwise, the base of log is 2.403

4.1 A Path Filtering Scheme404

We give a path filtering scheme that we use in Section 4.2 to prove Theorem 2. The main405

idea behind our algorithm is the following. Since we are aiming only at ε > 0 approximation,406

we do not need to take into account all of the possible paths between s and t. From a set407

of paths that are very “similar“ to each other, in the sense that we specify later, we only408

keep one candidate and delete the rest. Our algorithm proceeds in dlogne rounds; in the409

i-th round we compute a set of at most quasi-polynomially many (in terms of n, ε and β)410

paths of G with at most 2i edges that are (1− εi)β-stretch in f , for some small εi’s, such411

that ε0 = ε, εi > εi+1, and εdlogne = 0. In the following, we rigorously define what we mean412

by “similar”, and how we cluster similar paths. In particular, we cluster paths connecting413

the same pair of verices u and v according to their behaviour with respect to stretched radial414

grids centered at their end vertex u or v; see Figure 4 for an illustration.415

u

π2π1

(1 + ε′)2

ε′

β

1

2π(1 + ε′)
⌈
2π
∆

⌉−1

u

π2π1

v v

Figure 4 A pair of paths π1 and π2 that are not equivalent (on the left) and that are equivalent
(on the right) w.r.t. a radial grid centered at u .

Radial grid. Let ε > 0, ε′ = ε/β, ri = (1 + ε′)i and ∆ = ε′

1+ε′ . The radial grid Fu(ε, β)416

centered at a point (vertex) u ∈ V (G) consists of
⌈
β
ε′

⌉
circles centered at f(u) of radius i ε

′

β ,417

for i ∈
[⌈

β
ε′

⌉]
, and circles of radius ri, for i ∈ [dc log1+ε′ ne+ 1], and D =

⌈ 2π
∆
⌉
equiangular418

spaced rays emanating from f(u). (Recall that we assumed that the shortest edge has length419

1 Indeed, we can place the vertices in the construction of the reduction on a grid of polynomial size in
n = |V (G)| with the unit corresponding to n1/10.
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1 and the largest simple path length is nc for some constant c > 0.) The complement of the420

radial grid Fu(ε, β) in R2 consists of at most N = D · (
⌈ 1
ε′

⌉
+ log1+ε′ n

c) = O(poly(logn))421

two-dimensional open path connected components, whose closures are cells of Fu(ε, β). Note422

that, ε is treated as a constant and β = O(poly(logn)) by the hypothesis of Theorem 2.423

In the following, we disregard unbounded cells since they do not intersect f(G). Without424

loss of generality, we assume that Fu(ε, β) is sufficiently generic with respect to f , that is,425

Fu(ε, β)∩f(G) consists of a finite set of points. To this end we might need to slightly perturb426

the value of ε.427

Let π = π(u, v) be a path in f . Let Σu
π denote the subset of cells of Fu(ε, β) that π428

intersects. We group paths π = π(u, v) between u and v according to Σuπ and approximate429

distances between u and cells σ in Σuπ, which we define next. Let dπ(σ, u) be the minimum430

length of the sub-path of π between the point p on π such that f(p) ∈ σ and u. Let rσ431

denote the Euclidean distance from u to a furthest point in σ from u. Let Ξuπ = Ξuπ(ε, β) =432 {(
σ,
⌊
log1+ε′

dπ(σ,u)
rσ

⌋)
| σ ∈ Σuπ

}
. If π is a β-stretch path, then dπ(σ,u)

rσ
≤ β. Therefore the433

second component of each pair in Ξuπ is a natural number not bigger than
⌊
log1+ε′ β

⌋
.434

Path equivalence. Two paths π = π(u, v) and π′ = π′(u, v) are equivalent with respect to435

the radial grid Fu(ε, β) if the first and last edge of π and π′ are identical, Ξuπ(ε, β) = Ξuπ′(ε, β),436

and the length of π differs from the length of π′ by a multiplicative factor of at most (1 + ε).437

Intuitively, equivalent paths pass through the same cells with almost similar distances from438

u to each intersected cell. Let N be as above, the number of the cells, and k =
⌊
log1+ε′ β

⌋
+439

1. The crucial aspect of the grid Fu(ε, β) is that there are at most kN pairwise non-440

equivalent paths. We have kN = (log1+ε′ β)cD(d 1
ε′ e+log1+ε′ n) = O(poly(logn)poly(logn)) =441

O(npoly(log logn)), which is quasi-polynomial in n.442

The following lemma (proved in Section 6.1) quantifies the approximation guarantee of443

our filtering scheme.444

I Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =445

π2(vj−1, w = vj), and π′1 = π′1(u = v0, v1), π′2 = π′2(v1, v2), . . . , π′j = π′j(vj−1, w = vj) be446

β-stretch paths such that πi and π′i, for every 1 ≤ i < j, are equivalent with respect to447

Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds.448

If π = π_1 π_2 . . ._ πj is not a β-stretch path, then π′ = π′_1 π′_2 . . ._ π′j is not a (1−31ε)β-449

stretch path.450

4.2 Approximation algorithm for paths451

We give an algorithm proving Theorem 2. Refer to the pseudo-code of Algorithm 1. We452

initialize Ψ0 := E(G) and ε′ := ln (1−ε)−1

32dlogne . The algorithm proceeds in dlogne many steps, and453

in the i-th step it computes a set of 1−ε
(1−31ε′)i β-stretch paths Ψi in G such that every path in454

Ψi has at most 2i edges. The set Ψi+1 is computed from Ψ≤i =
⋃
j≤i Ψj as follows. We pick455

every pair of distinct paths π1(u, v) ∈ Ψ≤i and π2(v, w) ∈ Ψ≤i such that the concatenation456

π = π(u,w) = π1(u, v)_π2(v, w) is a self-intersection free path with at least 2i + 1 edges.457

We put π into Ψi+1 if π is a 1−ε
(1−31ε′)i+1 β-stretch path. At the end of the (i + 1)-st step,458

we recursively delete for every pair of vertices u and v of G in Ψi+1 a path π′(u, v) if an459

equivalent path π′(u, v) with respect to Fu(ε′, β) and Fv(ε′, β) still exists in Ψi+1.460

The algorithm outputs a β-stretch path between s and t if Ψ≤dlogne contains such a path.461

Correctness. Suppose that there exists a (1 − ε)β-stretch path π0 in f connecting s462

and t with ` edges. We show that the algorithm outputs a β-stretch path connecting s and463

t. We show by induction on i that after the i-th step of the algorithm, in Ψ≤i there exists464
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a sequence Si of
⌈
`
2i
⌉
paths, whose concatenation is a β 1−ε

(1−31ε′)i -stretch path πi between s465

and t. If the claim holds, we are done, since, for a sufficiently large n, we have466

(1−31ε′)−dlogne(1−ε)β =
(

1− 31 ln (1− ε)−1

32 dlogne

)−dlogne

(1−ε)β < eln(1−ε)−1
(1−ε)β = β.467

In the base case the claim holds by the existence of π0. By the induction hypothesis, we468

suppose that the claim holds after the i-th round. We apply Lemma 9 with β0 := β, ε := ε′,469

and β := β 1−ε
(1−31ε′)i to the paths in Si, whose concatenation πi in the given order plays470

the role of π′, and to the equivalent representatives of consecutive pairs of paths in Si that471

were not deleted from Ψ≤i+1, whose concatenation plays the role of π. It follows that π is472

β 1−ε
(1−31ε′)i+1 -stretch yielding Si+1. Putting πi+1 = π concludes the proof of the correctness473

of the algorithm.474

Running time. The bottleneck of the algorithm is clearly the path filtering scheme that475

filters all but quasi-polynomially many paths, and therefore the claimed running time follows476

by the fact that the algorithm ends in dlogne steps and Lemma 6.477

Algorithm 1: Approximation algorithm
Data: An instance of βSP (G, f, β, s, t) and ε > 0.
Result: A β-stretch path between s and t in f if a (β(1− ε))-stretch path between s

and t exists. (The algorithm can possibly output a β-stretch path even if no
(β(1− ε))-stretch path exists.)

ε′ := ln (1−ε)−1

32dlogne ;
Ψ0 := E(G), i := 0; (Ψi : the set of candidate β-stretch paths with at most 2i edges.)
while Ψi 6= ∅ do

Ψi+1 := ∅;
for π1(u, v), π2(v, w) ∈

⋃
j≤i Ψj do

if π = π(u,w) = π1(u, v)_π2(v, w) has at least 2i + 1 edges, and is a
β 1−ε

(1−31ε′)i+1 -stretch path. then
add π to Ψi+1

while there exists two equivalent paths π(u, v) and π′(u, v) with respect to Fu(ε′, β)
and Fv(ε′, β) in Ψi+1. do

remove π from Ψi+1
i← i+ 1;

return A β-stretch path between s and t if
⋃
i Ψi contains such path.

4.3 Approximation Algorithm for Cycles478

We discuss an extension of the algorithm from Section 4.2 from paths to cycles thereby479

establishing Theorem 3. Let (G, f, β, s, t) be the input instance for βCP. Let G0 = G \ {s, t}.480

We subdivide the edges of G0 such that every edge has the length at least 1 and at most 2481

in f . Let f0 denote the drawing of G0 inherited from f . The graph G0 has polynomially482

many vertices in terms of the number of vertices of G. We will work with the input instance483

(G0, f0, β, s0, t0) of βSP, where s0, t0 ∈ V (G0) and ε0 = 1 −
√

1− ε. The reason for the484

choice of smaller ε0 is that we will need to work with ε0 such that (1 − ε0)2 = (1 − ε).485

Intuitively, we try to combine all pairs of paths joining the same pair of vertices in Ψ≤dlogne486

constructed by the algorithm from Section 4.2.487

A self-intersection free cycle in f0 separates f0(s) from f0(t) if and only if it crosses the488

line segment between f0(s) and f0(t) an odd number of times. In order to keep track of489
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the parity of crossings of paths with the line segment between s and t, we extend the path490

filtering scheme from Section 4.1 as follows.491

Path equivalence. Two paths π = π(u, v) and π = π′(u, v) are equivalent with respect492

to the radial grid Fu(ε, β) in f0 if the first and last edge of π and π′ are identical, Ξuπ(ε, β) =493

Ξuπ′(ε, β), the length of π differs from the length of π′ by a multiplicative factor of at most494

(1 + ε), and additionally the parities of the number of crossings of π′ and π with the line495

segment connecting f0(s) and f0(t) are the same.496

Algorithm. First, we run a brute-force algorithm to find a β-stretch separating cycle C497

such that the length of γ = f(C) is at least 4
ε0

+ 2. If we fail to find a β-stretch cycle C,498

we run the algorithm from Section 4.2 with the input instance (G0, f0, β, s0, t0), for ε0 > 0,499

using the previously modified notion of path equivalence with radial grids parametrized by500

ε′(ε0) = ln (1−ε0)−1

3200dlogne and β, that is, Fu(ε′/100, β) rather than Fu(ε′, β) in comparison with501

the original algorithm. The algorithm returns Ψ≤dlogne. We check if there exists a pair of502

paths in Ψ≤dlogne, whose concatenation is a β-stretch cycle C separating s from t. If this is503

the case we output C.504

Correctness. Suppose that there exists a (1−ε)β-stretch cycle γ = f(C) inG0 separating505

s from t. Let P1 and P2 denote a pair of paths in G between u ∈ V (G0) and v ∈ V (G0),506

whose union is C. We choose P1 and P2 so that the difference of the length of π1 = f(P1)507

and π2 = f(P2) is minimized. Note that this difference is at most 2. Suppose that π1 is508

not shorter than π2. We claim that π1 and π2 are 1−ε
1−ε0

β-stretch paths. Indeed, for any509

p1, p2 ∈ P1 dγ(p1, p2) ≥ dπ1(p1, p2)− 2 ≥ (1− ε0)dπ1(p1, p2). The first inequality is by the510

choice of P1 and P2, and the second one by the fact that the length of π1 is at least 2
ε0
, since511

the length of γ is at least 4
ε 0 + 2.512

Note that 1−ε
1−ε0

β = (1− ε0)β. Mimicking the proof of the correctness of the algorithm513

from Section 4.2, we derive that Ψ≤dlogne contains a pair of (1− ε0)β-stretch paths P ′1 and514

P ′2 joining the same pair of vertices at P1 and P2 such that the concatenation of π′1 = f0(P ′1)515

and π′2 = f0(P ′2) is a β-stretch cycle γ′. To this end we need to adapt Lemma 9 to the case516

when u = w.517

I Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =518

π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′1 = π′1(u = v0, v1), π′2 =519

π′2(v1, v2), . . . , π′j = π′j(vj−1, u = vj) be β-stretch paths such that πi and π′i, for every520

0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some521

β0 ≥ β. Then the following holds. If γ = π_1 π_2 . . ._ πj has length at least 20, and is not a522

β-stretch cycle, then γ′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch cycle. Furthermore, γ523

separates s from t if and only if γ′ separates s from t.524

5 Conclusion and Future Work525

We proved that βSP is strongly NP-complete, but our reduction seems to work only with large526

β that is polynomial in the number of vertices n of the input graph. A natural open problem527

is to determine the complexity of βSP for β constant or logarithmic in n. We proposed a528

quasi-polynomial algorithm for βSP that works only for β that is at most logarithmic in n,529

and that has a quasi-polynomial running already for constant values of β. Therefore we find530

the problem of devising a PTAS for βSP interesting even when β is a fixed constant.531

This leads us to suspect that devising an approximation algorithm for βSP becomes532

easier if we restrict ourselves to drawings of graphs in which the vertex set is supported by533

an integer grid of a polynomial size and edges are straight-line segments.534
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In the future, we intend to extend our work in the following direction, motivated by the535

computation of districts that avoid gerrymandering. We mark some vertices in a plane graph536

as “important” and we wish to cut the graph into regions, whose boundaries are β-stretch537

cycles, such that each region contains exactly one important vertex. A related work by538

Eppstein et al. [10] describes a method for defining geographic districts in road networks539

using stable matching. However, their resulting regions might even be disconnected. As540

we discussed in Section 2, the β-stretch condition is more constraining than local fatness;541

a locally fat region, whose boundary has a large stretch factor, might look like the shape542

in Figure 2, which is indicative of a gerrymandered district, with a selective slit removed.543

We propose that partitioning of geographic regions using β-stretch paths/cycles can lead to544

districting solutions that may better avoid gerrymandering. We leave this work for future545

study.546
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6 Appendix598

6.1 Proof of Lemma 9599

p p′

q

p′′

q′′

q′

u

v

w
π2 π′2

σp

σq

π′1

π1

Figure 5 An illustration of Lemma 9 when j = 2. A radial grid centered at v1, and a pair of
paths π = π_1 π2 and π′ = π′_

1 π′
2 that are equivalent with respect to the radial grid centered at v1.

Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =600

π2(vj−1, w = vj), and π′1 = π′1(u = v0, v1), π′2 = π′2(v1, v2), . . . , π′j = π′j(vj−1, w = vj) be601

β-stretch paths such that πi and π′i, for every 1 ≤ i < j, are equivalent with respect to602

Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds. If π = π_1 π_2 . . ._ πj603

is not a β-stretch path, then π′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch path.604

Proof. Refer to Figure 5. Assume that π is not a β-stretch path. It follows that either π605

contains a self-intersection, or there exists two points q and p on π, whose stretch factor is606

bigger than β. Formally, in either case, there exists a pair of points p an q in G such that607

dπ(p, q)
‖f(p)− f(q)‖ > β. (5)608

It is enough to consider the case, in which p is on π1 and q is on πj , and p and q are not609

contained in the union of 2 consecutive edges of π. Indeed, these 2 consecutive edges would610

be also both on π′ by the definition of the equivalent paths.611
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We show that π′ is not a β(1−31ε)-stretch path. Consider the cell σq and σp in the radial612

grid Fv1(ε, β0) and Fvj−1(ε, β0), respectively, that contains p and q. Let q′ ∈ G and q′′ ∈ G,613

and p′ ∈ G and p′′ ∈ G, respectively, be the points such that f(q′) ∈ σq and f(q′′) ∈ σq, and614

f(p′) ∈ σp and f(p′′) ∈ σp, respectively, minimizing dπ′(q′, v) and dπ(q′′, v), and dπ′(p′, v)615

and dπ(p′′, v). We show that the stretch factor of p′ and q′ along π′ is bigger than β(1− 16ε),616

which will conclude the proof. To this end we first derive several simple inequalities.617

Since π1 and π′1, and πj and π′j are equivalent with respect to Fv1(ε, β0) and Fvj−1(ε, β0),618

respectively, the values of dπ′(q′, v1) and dπ(q′′, v1), and dπ′(p′, vj−1) and dπ(p′′, vj−1) are619

within the factor of (1 + ε′) of each other, where ε′ = ε/β0. Since π1 is a β-stretch paths,620

dπ(q, q′′) ≤ βLσq , where Lσq is the diameter of σq. Therefore621

dπ(q, v1) = dπ(q, q′′) + dπ(q′′, v1) ≤ βLσq + (1 + ε′)dπ′(q′, v1). (6)622

The same holds for p, p′ and p′′. By the construction of Fv1(ε, β) and Fvj−1(ε, β), the diameter623

of σ ∈ {σp, σq} such that rσ = (1 + ε′)i+1 can be bounded from the above as follows624

Lσ < (1 + ε′)i+1 − (1 + ε′)i + 2πε′

1 + ε′
(1 + ε′)i ≤ (1 + 2π) ε′

1 + ε′
rσ. (7)625

The upper bound on the diameter of all of the other cells σ contained in the unit disk626

centered at v1 and vj−1, respectively, follows if p and q is contained in the annulus between627

the unit circle and the circle of radius 1
β0

centered at v1 and vj−1.628

Lσ <
ε′

β0
+

2πε′
(
rσ − ε′

β0

)
ε′ + 1 < ε′

(
rσ −

ε′

β0

)
+2π

(
rσ −

ε′

β0

)
ε′ = (1+2π)ε′

(
rσ −

ε′

β0

)
(8)629

By the triangle inequality, ‖f(q)−f(p)‖ ≥ ‖f(q′)−f(p′)‖−‖f(q)−f(q′)‖−‖f(p)−f(p′)‖ ≥630

‖f(p′)− f(q′)‖ − Lσq − Lσp . Therefore631

β
(5)
<
dπ(q, v1) + dπ(v1, v2) + . . .+ dπ(vj−1, p)

‖f(q)− f(p)‖632

633

(6)
≤

(1 + ε′)(dπ′(q′, v1) + . . .+ dπ′(vj−1, p
′)) + β(Lσq + Lσp)

‖f(q′)− f(p′)‖ − Lσq − Lσp
634

635

≤ dπ′(q′, v1) + . . .+ dπ(vj−1, p
′)

‖f(q′)− f(p′)‖
1 + ε′

1− Lσq+Lσp
‖f(q′)−f(p′)‖

+ β

Lσq+Lσp
‖f(q′)−f(p′)‖

1− Lσq+Lσp
‖f(q′)−f(p′)‖

. (9)636

We consider two cases depending on whether π′ is a β-stretch path. If π′ is not a β-stretch637

path, then it is also not a β(1− 16ε′)-stretch path and we are done. If π′ is a β-stretch path638

and both σq and σp are not contained in the unit disk centered at v1 and vj−1, respectively,639

then we must have640

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖

β
≥
rσq + rσp
(1 + ε′)β . (10)641

Combining (10) with the upper bound (7) on Lσ from the above yields642

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)ε′(rσq + rσp)
(rσq + rσp)/β = (1 + 2π)ε β

β0
≤ (1 + 2π)ε. (11)643
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If σq and σp is contained in the annulus between the unit circle and the circle of radius 1
β0

644

centered at v1 and vj−1, respectively, then (10) becomes645

‖f(p′)− f(q′)‖ > ‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖
β

≥
rσq − ε′/β0 + rσp − ε′/β0

β
. (12)646

Then using (8) and (12), we recover the upper bound from (11).647

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)(rσq − ε′/β0 + rσp − ε′/β0)ε′
rσq−ε′/β0+rσp−ε′/β0

β

= (1 + 2π)ε β
β0
≤ (1 + 2π)ε (13)648

If σq is contained in the annulus between the unit circle and the circle of radius 1
β0

649

centered at v1, and σp is not contained in the unit disk centered at vj−1 then (10) becomes.650

‖f(p′)− f(q′)‖ > ‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖
β

≥
rσp

(1+ε′) + (rσq − ε′

β0
)

β
. (14)651

Then using (7),(8) and (10), we again recover the upper bound from (11).652

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)
(
rσq − ε′/β0 + rσp

(1+ε′)

)
ε′

rσp

(1+ε′) +(rσq−ε′/β0)
β

= (1 + 2π)ε β
β0
≤ (1 + 2π)ε (15)653

Finally, if σq is contained in the disk of radius 1
β0

centered at v1 we distinguish two cases654

depending on whether σp is contained in the unit disk centered at vj−1. If this is the case, q655

is contained on an edge of π1 incident to vj , since π1 is a β-stretch path, and β0 ≥ β. Hence,656

as every edge has length at least 1 in f , we have that σp is not contained in the unit disk657

centered at vj−1 with diameter 1
β0
. Indeed, q and p are not contained in two consecutive658

edges of π and therefore they are at distance more than 1 along π, and thus, σp is not in659

the disk of radius 1
β , but β0 ≥ β. Depending on whether σp is contained in the unit disk660

centered at vj−1, we obtain one of the following bounds.661

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(vj−1)− f(p′)‖

β
≥

rσp
(1+ε′)

β
(16)662

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(vj−1)− f(p′)‖

β
≥
rσp − ε′/β0

β
(17)663

Then using (7),(8) and (16) and (17), we again recover an upper bound analogous to (11),664

but worse by a multiplicative factor of 2.665

Lσq + Lσp
‖f(q′)− f(p′)‖ ≤

2Lσp
‖f(q′)− f(p′)‖ ≤ 2(1 + 2π)ε (18)666

Using (11), (13), (15), and (18), (9) can be in every possible case rewritten as follows,667

which concludes the proof.668

dπ′(q′, p′)
‖f(q′)− f(p′)‖ = dπ′(q′, v1) + . . .+ dπ(vj−1, p

′)
‖f(q′)− f(p′)‖ > β

1− 4(1 + 2π)ε
1 + ε/β

669

670

> β
1− 4(1 + 2π)ε

1 + ε
>

1− 31ε
1 + ε

β > (1− 31ε)β671

J672
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6.2 Proof of Lemma 10673

Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =674

π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′1 = π′1(u = v0, v1), π′2 =675

π′2(v1, v2), . . . , π′j = π′j(vj−1, u = vj) be β-stretch paths such that πi and π′i, for every676

0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some677

β0 ≥ β. Then the following holds. If γ = π_1 π_2 . . ._ πj has length at least 20, and is not a678

β-stretch cycle, then γ′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch cycle. Furthermore, γ679

separates s from t if and only if γ′ separates s from t.680

Proof. The proof is analogous to the proof of Lemma 9 except that we consider distances681

along γ and γ′, which are cycles rather than paths. Due to this reason we slightly weaken682

some inequalities. The second claim of the lemma is immediate from the definition of the683

path equivalence. In the following we derive the first claim.684

Assume that γ is not a β-stretch cycle. It follows that either γ contains a self-intersection,685

or there exists two points q and p on π, whose stretch factor is bigger than β. Formally, in686

either case, there exists a pair of points p an q in G0 such that687

dγ(p, q)
‖f0(p)− f0(q)‖ > β. (19)688

It is enough to consider the case, in which p is on πi′ and q is on πj′ , and p and q are not689

contained in the union of 2 consecutive edges of γ. Indeed, these 2 consecutive edges would690

be also both on γ′ by the definition of the equivalent paths, and the edges have length at691

most 2. Therefore the minimum length curve between p and q in γ is contained in these 2692

consecutive edges.693

We show that π′ is not a β(1 − 31ε)-stretch path. Consider the cell σq and σp in the694

radial grid Fv1(ε/100, β0) and Fvj−1(ε/100, β0), respectively, that contains p and q. We695

have ε′ = ε
100β0

. The rest of the proof differs from the proof of Lemma 9 in the following696

weaker consequence of a variant of (6), and other inequalities with dπ′(q′, p′) that needs to697

be replaced with dγ′(q′, p′).698

dγ(q, p) = β(Lσq + Lσp) + (1 + 100ε′)dγ′(q′, p′), (20)699

where f0(q′) ∈ πi′ ∩ σq and f0(p′) ∈ π′j′ ∩ σp.700

In the following we derive (20). Let π = π(q, p) ⊂ γ such that dπ(q, p) = dγ(q, p). Let701

π′ = π′(q′, p′) ⊂ γ such that π′ ∩ π′i 6= ∅ if and only if π ∩ πi 6= ∅. Thus, π′ is equivalent to π.702

Let `(γ) and `(γ′) denote the length of γ and γ′, respectively. If dπ′(q′, p′) = dγ′(q′, p′)703

then (20) holds by the same argument as in the proof of Lemma 9.704

Otherwise, dγ′(q′, p′) = `(γ′) − dπ′(q′, p′). Furthermore, dπ′(q′, p′) = β(Lσq + Lσp) +705

(1 + ε′)dγ(q, p) ≤ β(Lσq + Lσp) + 1
2`(γ) ≤ β(Lσq + Lσp) + 1

2`(γ
′)(1 + ε′). Combining the706

previous two (in)equalities we get that dγ′(q′, p′) ≥ `(γ′)− β(Lσq + Lσp)− 1
2`(γ

′)(1 + ε′) =707

1
2`(γ

′)(1− ε′)− β(Lσq + Lσp).708

By the previous paragraph, and (7) and (8),709

dπ′(q′, p′)
dγ′(q′, p′)

≤
1
2`(γ

′)(1 + ε′) + β(Lσq + Lσp)
1
2`(γ′)(1− ε′)− β(Lσq + Lσp)

≤
1
2`(γ

′)(1 + ε′) + 16ε′`(γ′)
1
2`(γ′)(1− ε′)− 16ε′`(γ′)

≤ 1 + 33ε′

1− 33ε′ (21)710

Now, (20) follows from (6) using (21) for sufficiently small ε′. J711
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