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ABSTRACT
Traditional HPC performance and energy characterization approaches
assume homogeneity and predictability in the performance of the
target processor platform. Consequently, processor performance
variation has been considered to be a secondary issue in the broader
problem of performance characterization. In this work, we present
an empirical survey of the variation in processor performance and
energy efficiency on several generations of HPC-grade Intel proces-
sors. Our study shows that, compared to the previous generation of
Intel processors, the problem of performance variation has become
worse on more recent generation of Intel processors. Specifically,
the performance variation across processors on a large-scale pro-
duction HPC cluster at LLNL has increased to 20% and the run-
to-run variation in the performance of individual processors has
increased to 15%. We show that this variation is further magnified
under a hardware-enforced power constraint, potentially due to
the increase in number of cores, inconsistencies in the chip manu-
facturing process and their combined impact on processor’s energy
management functionality. Our experimentation with a hardware-
enforced processor power constraint shows that the variation in
processor performance and energy efficiency has increased by up
to 4x on the latest Intel processors.
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Figure 1: Comparison of sequential processor performance
on three Intel processors for a computation-heavyworkload

1 INTRODUCTION
HPC performance optimization efforts have traditionally focused
solely on application performance characterization with the as-
sumption that the performance variation on the underlying plat-
form is predictable within a small, known bound. However, with
the increase in the complexity of both the processor power man-
agement features and the system software, performance variation
has become an increasingly challenging problem towards improv-
ing overall system efficiency[22]. Run-to-run variation is typically
attributed to system noise which is primarily caused by system
processes[13], on-node and off-node resource contention[5], and
platform bugs[22]. Inter-processor performance variation is typ-
ically caused by the process inaccuracies introduced during the
chip manufacturing process which affect processor’s dynamic fre-
quency throttling operation and energy efficiency[2]. In this paper,
we study both the run-to-run and the inter-processor performance
variations with an emphasis on inter-processor variation on several
generations of Intel processors.

Inter-processor variation occurs in identical processors in the
same stock keeping unit (SKU) that operate at different effective
frequencies. Modern Intel processors increasingly rely on dynamic
overclocking of the Turbo Boost Technology to achieve maximum
performance possible for a given type of workload and operat-
ing conditions[2]. For a processor, the effective frequency attained
by Turbo Boost depends on the number of active cores, the type
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of workload and processor’s power and thermal headroom. This
variation in frequency on seemingly homogeneous processors is
typically a collective effect of transistor-level variation introduced
by the CMOS manufacturing process, variations in other node level
components, and thermal conditions[3, 20]. We call this type of
variation in the processor performance, power and thermal charac-
teristics due to process variation manufacturing variability.

Figure 1 compares the performance variation on three Intel pro-
cessors viz., Sandy Bridge, Ivy Bridge and Broadwell (from left
to right) for a computation-heavy, embarrassingly parallel bench-
mark called Firestarter[10]. The boxplot shows the performance of
Firestarter on two set of processors over several runs on the three
clusters normalized to the best-performing run. The plot shows
that Ivy Bridge and Broadwell show progressively worse perfor-
mance variation on both sockets compared to Sandy Bridge. This
observation motivates us to study the performance variation on the
three clusters for several HPC benchmarks with different degrees
of compute-boundedness, cache and memory access patterns, and
types of instructions.

Constraining processor power has been shown to magnify the
inter-processor variation in performance and energy efficiency.
Previous studies have shown Intel Sandy Bridge and Intel Ivy
Bridge clusters to exhibit up to 30% and 60% inter-processor perfor-
mance variation, respectively, upon severely constraining processor
power[3, 7, 9, 12, 17, 20]. These studies suggest that future gener-
ations of processors may show higher impact of manufacturing
variation on performance and power efficiency as they scale up in
number of cores. Our study confirms, for the first time on Broad-
well, that this variation is worse than anticipated, which further
complicates achieving better system efficiency.

In this work, we analyze several types of performance and en-
ergy efficiency variations on three generations of Intel processors.
Specifically, we present the following observations on the Intel
Broadwell cluster relative to the performance on our Intel Sandy
Bridge and Intel Ivy Bridge clusters at LLNL:

• For a computation-heavy workload, the variation in sequential
processor performance has increased from 4.7% to 13.5% in
the median case and from 7% to 17% in the worst-case.

• The inter-core performance variation for the computation-
heavy workload has increased from 2.5% to 5%.

• Under a hardware-enforced power limit, the worst-case vari-
ation in processor performance for several benchmarks has
increased significantly from 30% on Sandy Bridge to 1.4x on
Ivy Bridge and 4x on Broadwell for severe power limits. Our
analysis shows that existing methods to model the perfor-
mance variations are inadequate to capture the non-linear
relationship between the power limit and the observed met-
rics of performance and power usage.

• The variation in power usage across processors has also in-
creased at higher power limits from 10% to 20%.

2 EXPERIMENTAL SETUP
This section describes in detail our experimental setup in terms of
the hardware, platform configuration and applications.

2.1 Cluster specification
Table 1 lists the specifications of the three HPC clusters at LLNL on
which we performed our experiments: Cab, Catalyst and Quartz.
Nodes in Cab and Catalyst are connected using InfiniBand intercon-
nects whereas, nodes inQuartz are connected using Intel Omni-Path
interconnects. Each node in clusters comprises of two Intel proces-
sors. Memory specified in Table 1 is equally divided among both
the processors on each node. Both the processors are connected via
Intel QPI. All three clusters run the Tri-Lab Operating System Soft-
ware (TOSS) which is based on Red Hat Enterprise Linux Server 7.
Hyper-threading is enabled by default on Catalyst and Quartz and
requires root privileges to disable. Therefore we leave one hyper-
thread idle on each core (unless otherwise specified) to minimize
the effects of system noise[13]. Hyper-threading on Cab is disabled.

2.2 Software tools
We used the Intel compiler tool chain and MVAPICH2 to build all
benchmarks. We used -O2 option to enable compiler-level opti-
mizations and -qopenmp to enable OpenMP threads. For power-
limiting using Intel RAPL and reading performance counters, we
used a lightweight monitoring library called libPowerMon[14] with
msr-safe[19]. Intel Turbo was enabled so that the applications could
extract maximum performance under the power limit[3].

2.3 Design of Experiments
For benchmarking, we used EP, MG, CG, and FT from the NAS
Parallel Benchmark Suite[4], STREAM[15], Firestarter[10], Prime95
[1] and DGEMM[8]. These benchmarks were selected because of the
following reasons (1) they have different average and peak power
consumption, (2) the chosen input problem sizes for STREAM, CG
and MG keep DRAM power consumption high, (3) Firestarter and
Prime95 are compute-intensive benchmarks designed to keep the
CPU power consumption close to its Thermal Design Power (TDP).

For our power-uncapped experiments, we ran Firestarter for 60
seconds over 75 times and collected end-to-end measurements on
all three clusters. For our power-capped runs, we configured the
benchmarks to run for at least 120 seconds to capture potential ef-
fects of steady-state temperatures on processor power consumption.
We ran each benchmark 20 times and reported median measure-
ments. We chose an input problem size of 238 for EP. We used
Class D input size for MG (MG.D) with an iteration count of 80.
We selected benchmarks CG (CG.C) and FT (FT.C) to operate on
a problem size of class C for an iteration count of 1000 and 330,
respectively. We chose to run Prime95 and Firestarter for 120 sec-
onds before terminating them externally. For STREAM, we selected
an array size of 100 million elements with an iteration count of
1700. For DGEMM, we used a 2-D matrix size of 2700 x 2700. We
ran a single instance of each benchmark on each processor so as to
eliminate inter-node and inter-processor communication.

3 PERFORMANCE VARIATIONWITHOUT
POWER CAPPING

In this section, we present our detailed analysis of the variation
in performance and energy efficiency of Intel processors observed
in Figure 1. Figure 2 compares core-level performance variation
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Table 1: Cluster Configuration

Cluster Node
Count

Intel
Processor ID Architecture Clock

Speed (GHz)
Cores per
Processor

Processors
per node

Memory per
Node (GB)

Processor
TDP (W)

Cab 1296 Xeon E5-2670 Sandy Bridge 2.6 8 2 32 115
Catalyst 324 Xeon E5-2695-v2 Ivy Bridge 2.4 12 2 128 115
Quartz 2688 Xeon E5-2695-v4 Broadwell 2.1 18 2 128 120

(a) Firestarter on Intel Sandy Bridge (b) Firestarter on Intel Broadwell

Figure 2: Comparison of core-level performance variation on the best-, median- and worst-performing nodes of Sandy Bridge
and Broadwell clusters for Firestarter.

of Firestarter on two processors on our Sandy Bridge and Broad-
well clusters in terms of number of iterations completed within
one minute. We present several observations that show that pro-
cessor and core performance have become worse on Broadwell
compared to Sandy Bridge. First, the median core performance on
the worst node on our Sandy Bridge cluster is up to 5% lower than
the median core performance of the best node, whereas, the same
for our Broadwell cluster has increased to 13.5% (note that we have
removed the outliers in the plot). This shows the degree of perfor-
mance non-homogeneity on Broadwell. Second, the worst-case core
performance on our Broadwell cluster is 17%, which is significantly
worse than the worst-case performance on our Sandy Bridge cluster
which is 7%. Third, the median processor performance (shown by
the green, blue and red lines) between processor 0 and processor 1
on Sandy Bridge show up to 1% difference. However, that difference
in median processor performance increases to up to 5% on Broad-
well (3% even on the median nodes). This result has a direct impact
on how performance metrics must be treated on Broadwell. For
example, to show that a new performance optimizing method actu-
ally yields the expected improvement, the evaluation must conduct
sufficient number of runs to show a median improvement adjusted
to the median core-level variation. Fourth, on both clusters, core 0
on each processor typically shows lower performance compared to

other cores on the processor. Core 0 also shows more variation in
sequential performance than other cores. Intel Ivy Bridge cluster
showed worse median performance than Sandy Bridge but better
median performance than Broadwell. Due to limited space, we do
not show our results on Ivy Bridge in the rest of this section.

Variation in performance of Processor 0 Core 0
Figure 3 shows the distribution of core 0 performance with respect
to its operating frequency on processor 0 for several runs on all
nodes of our Sandy Bridge and Broadwell clusters. Each dot repre-
sents one run of Firestarter. The core frequencies on Broadwell are
more uniformly distributed than on Sandy Bridge, which shows
that the best and worst-performing nodes for the Broadwell cluster
in Figure 2 are not outliers in contrast to the Sandy Bridge cluster.
The difference between the best-performing runs (upper end of the
red and green dots) on Broadwell is 15% compared to 7% on Sandy
Bridge. We observe a strong correlation between the operating
frequency and best-case performance of the cores which explains
the difference in the best-case performance for red and green dots
for both Sandy Bridge and Broadwell. We observe that the core
operating frequency is weakly correlated to core temperatures on
Broadwell (data not shown in the paper). This suggests that the vari-
ation in operating frequency occurs due to manufacturing variation
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(a) Firestarter on Intel Sandy Bridge (b) Firestarter on Intel Broadwell

Figure 3: Correlation between core-level performance variation with frequency for Processor 0, core 0 on Sandy Bridge and
Broadwell clusters for Firestarter.

in the processors. Moreover, the difference between the absolute
best and worst performing cores on best and worst nodes is up to
20.1% on Broadwell compared to 11.9% on Sandy Bridge. For the
median node, the run-to-run variation on Broadwell has increased
to 10% from 5.2% on Sandy Bridge. The operating frequency ap-
pears to limit the best-case performance on individual cores which
suggests that system noise may have caused the run-to-run varia-
tion within a core. Although cores other than core 0 show slightly
lower variation, they follow similar trend on Broadwell relative
to Sandy Bridge. Thus, Figure 3 shows that both manufacturing
variation and system noise potentially induce higher variation in
performance and energy efficiency on Broadwell than Sandy Bridge.

Performance variation with hyper-threads on Broadwell
Figure 4 shows the normalized performance of Firestarter on both
physical and logical threads of the best, median and worst proces-
sors (including processors 0 and 1) on the Broadwell cluster. Figure 4
shows that the performance variation becomesworse when running
on both threads compared to a single thread per core per processor
(Figure 2 (b)) in the following ways. First, the inter-thread perfor-
mance variation on a processor gets magnified to up to 8% for the
best processor and up to 10% on the worst processor compared to
the inter-core performance variation in Figure 2 (b). Second, we
observe that the run-to-run performance variation in the individual
threads is consistently higher than that in individual cores in Figure
2 (b). Within each core, hyper-thread 1 shows consistently better
performance than hyper-thread 0 across all cores and processors
which is surprising. Lastly, at the processor level, the relative worst-
case performance (as shown by the boxplots in red) is as low as
78% compared to the best-case performance. Our analysis extends
previously reported performance variation for hyper-threads[13].

Figure 4: Variation in thread-level performance of
Firestarter on Broadwell. From top to bottom, the three hor-
izontal bands of boxplots show thread-level performance
on the best, median and worst processors. Alternate white
and grey background bands show groups of threads that
belong to the same core. Red boxplots show the spread of
the minimum thread performance on each processor.

4 PROCESSOR VARIATION UNDER A
HARDWARE-ENFORCED POWER LIMIT

This section describes our evaluation of evolution of variation in
processor performance and energy efficiency over three generations
of Intel processors under several processor power limits.
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(a) Cab cluster - Sandy Bridge Architecture

(b) Catalyst cluster - Ivy Bridge Architecture

(c) Quartz cluster - Broadwell Architecture

Figure 5: Performance of Intel processors running eight benchmarks on three clusters under five hardware-enforced power
limits. Three rows show the results collected on Sandy Bridge, Ivy Bridge and Broadwell clusters. Results from the eight
applications are organized column-wise. In each subfigure, one curve shows the normalized Instruction per Cycle (IPC) of
one processor at different power limits. Dots on each curve represent the actual experimental measurements, and dots from
the same processor are connected by line segments. Curves are colored according to the IPC of the processors when running
Prime95 at 50W power limit, and the same coloring are applied to the same processor for other applications. For clarity, we
only show data for same best 200 and worst 200 processors on each cluster.

4.1 Power-constrained performance variation
From top to bottom of Fig. 5, we demonstrate the performance
variation of processors in terms of Instructions per Cycle (IPC) on
Sandy Bridge, Ivy Bridge, and Broadwell clusters, respectively. The

IPC-Power usage curves in each subfigure characterize the perfor-
mance variation of the processors on that cluster when running a
specific application under five different power limits. In each subfig-
ure, the performance of an individual processor is characterized by
an IPC-Power usage curve. The dots on the IPC-Power usage curves
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are measured IPC values averaged over the application run and also
aggregated over all the cores on the same processor. The IPC values
in each cluster and each application are normalized according to
the maximum value in that case. The curves in Figure 5 are colored
according to their performance (in terms of IPC) at 50W power
limit when running the application Prime95, then the same color-
ing is applied to the same processor in the rest of the subfigures
with other applications on the same cluster. In general, we observe
increasingly higher inter-processor performance variations in all
applications from Sandy Bridge to Broadwell.

We make the following interesting observations from Figure 5.
First, within the same cluster, the sequence of the colors of the
curves from top to bottom typically remains the same across appli-
cations. Specifically, the best to worst processors for Prime95 are
typically also the best to worst processors for other applications.
Second, due to the difference in application characteristics and their
ability to draw power at different rate, the processors either meet
the processor TDP first or meet the frequency limit first, resulting
in different shapes at the top-right end of the curves. For Prime95
and Firestarter, the processors meet their TDP first, so there appears
a limit at the end of the curves in terms of maximum power usage
(we find that IPC is strongly correlated to frequency). For DGEMM,
EP, MG, STREAM, and CG, a varying degree of processors meet
the frequency limit first and draw varying amounts of power, so
there appears a horizontal cut at the end indicating variation in
processor power usage. In case of FT, some better-performing pro-
cessors meet the frequency limit first as they cannot draw more
power whereas the worse-performing processors meet the TDP
first. We observe up to 20% variation in processor power usage
at higher power limits for Broadwell compared to 10% on Sandy
Bridge. Third, the shape and trend of the curves are generally con-
sistent for the three clusters. However, the range and shape of
performance variations among the processors are different in these
three clusters. From older Sandy Bridge to the newer Broadwell, we
observe a gradual expansion in the covered range of these curves.
The worst-case power-constrained variation has increased from
30% on Sandy Bridge to up to 1.4x on Ivy Bridge and up to 4x on
Broadwell. Also, the relationship between power limit and perfor-
mance appears to become significantly more non-linear and diverse
across applications from Sandy Bridge to Broadwell.

4.2 Variation in energy efficiency
Figure 6 compares STREAM and DGEMM benchmarks over metrics
that describe the energy efficiency of applications. The X-axis shows
five processor power limits including the TDP, which corresponds
to the operational limit of individual processors. The Y-axis on
each plot shows the measurements normalized per cluster for each
application over all five power limits. Figures 6 (a) and (b) show that
the variation in processor power efficiency (in terms of IPC per watt)
depends on the application characteristics. For STREAM (Figure 6
(a)), Broadwell shows significantly higher variation in IPC per watt
at 50W limit where the variation in IPC is the highest, and at TDP
where the variation in power usage is high. The variation in IPC
per watt reduces between 70W and 100W limit. The lower variation
occurs due to the memory-boundedness of STREAM which spends
much of its cycles waiting for memory accesses to finish. On the

other hand, Figure 6 (b) shows that DGEMM suffers from higher
variation in IPC per watt on Broadwell even between 70W and
100W limits. The worst-case variation on Broadwell is significantly
higher (up to 4x at 50W) compared to lower variation in IPC per
watt on Sandy Bridge (up to 30%) and Ivy Bridge (2x).

Figures 6 (c) and (d) compare the variation in execution time of
STREAM and DGEMM, respectively. STREAM shows significant
variation in execution time at 50W power limit on both Ivy Bridge
and Broadwell, but the variation reduces significantly at higher
power limits at different rates. While the execution time variation
is consistently higher on Broadwell, the execution time of STREAM
is largely unaffected by the effects of manufacturing variability
due to its memory-boundedness. DGEMM (Figure 6 (d)), however,
shows a significant variation in execution time on Broadwell even
at high power limits due to its compute-boundedness. Also, the
rate of change in variation over increasing power limits is different
from STREAM on the three clusters. We observe that the execution
time is strongly correlated with the effective processor frequency,
which is severely affected on low-efficiency processor compared to
high-efficiency processors on Broadwell.

Figures 6 (e) and (f) compare the variation in processor power
usage for the two applications. For both applications, the variation
in power usage on Broadwell only appears near TDP, whereas, the
variation is consistently higher on Sandy Bridge and Ivy Bridge
at lower power limits as well. This result on Broadwell is quite
surprising as we expected the difference in effective frequencies to
manifest itself into power usage variation even at lower power lim-
its. We also observed that for compute-intensive applications such
as DGEMM, the power usage on Broadwell was consistently lower
than the applied power limit by 10% to 15% unlike on Sandy Bridge
which showed the power usage within 1% to 5% of the applied
power limits for all power limits except 50W. These observations
suggest that for Broadwell cluster, power must be allocated differ-
ently for configurations with power limits set to TDP compared to
configurations with lower power limits.

Finally, Figures 6 (g) and (h) compare variation in energy con-
sumption of STREAM and DGEMM. For different architectures,
both applications show different trade-offs in terms of median en-
ergy and variation in energy at various processor power limits. Ivy
Bridge and Broadwell show higher variations in energy at extreme
power limits primarily due to the variation in runtime and power us-
age at those power limits. On the other hand, Sandy Bridge shows
a negligible change in observed energy variation over different
power limits. These observations show that for efficient allocation
of energy for Ivy Bridge and Broadwell, variation in energy must
be taken into account.

Ramifications for modeling power and performance. Our analysis
shows that simple linear models are only effective in capturing
the relationship between processor power limit and the variation
in its energy efficiency metrics on older Intel processors such as
Sandy Bridge. Also, the same linear models are assumed to be
effective across a variety of applications[12]. In contrast, on newer
Intel architectures we observe that the relationship between the
processor power limit and the observed variation in its energy
effieciency metrics is often non-linear across the processors of
the same architecture and is different across applications. This
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(a) IPC per Watt (Power Efficiency) (b) IPC per Watt (Power Efficiency)

(c) Runtime (d) Runtime

(e) Power Usage (f) Power Usage

(g) Energy (h) Energy

Figure 6: Comparison of energy-efficiency metrics for two applications (DGEMM & STREAM) on three clusters with Sandy
Bridge, Ivy Bridge, and Broadwell processors.

motivates future work to apply more accurate models to describe
the variation in processor power and performance on modern HPC
processors.

5 RELATEDWORK
This section presents a brief overview of the existing literature
on characterization and mitigation of manufacturing variation on
HPC compute resources. Previous work on characterizing proces-
sor performance variation can be categorized into two distinct
classes: 1. run-to-run processor variation, and 2. inter-processor
variation. A large piece of work exists on the highly researched
topic of characterizing system noise-induced run-to-run variation
at various levels of a cluster. Recent work on this topic includes
characterizing and mitigating noise induced by specific compute
and non-compute components in the system. For example, Leon
et al.[13] and Rosenthal et al. [16] characterized system noise on
Sandy Bridge and showed that using Simultaneous Multi-Threading

(SMT) to co-schedule system processes can reduce system noise.
Bhatele et al.[5] studied the impact of network congestion on ap-
plication performance variation. Since our work primarily focuses
on processor-level performance variation due to manufacturing
variability, our controlled experimental setup based on the feed-
back of previous work on run-to-run variation typically minimizes
the impact on run-to-run performance variation. Even though the
run-to-run variation on modern Intel processors has marginally
increased, its characterization is beyond the scope of this work.

Inter-processor performance variation is increasingly becoming
a hot topic of research due to its impact on system performance and
efficiency. At the hardware manufacturing level, Borkar et al.[6] and
Zhang et al.[23] present a detailed study of causes and characteriza-
tion of chip-level variation in processor performance. Teodorescu
et al.[21] and Herbert et al.[11] provide low-level solutions to miti-
gate effects of processor variation on early multi-processors with
frequency scaling. Rountree et al. present one of the first surveys on
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performance variation under a hardware-enforced power constraint
on Sandy Bridge [17]. Acun et al.[3] present a comprehensive analy-
sis of inter-processor variation induced by dynamic overclocking in
Intel processors including Sandy Bridge and Ivy Bridge. Schuchart
et al.[18] show performance variation on Intel Haswell processors
at different frequencies. We extend the previous work in two ways.
First, we validate the findings in previous work on a similar set of
benchmarks on our clusters with similar processor architectures at
several processor power limits. Second, we extend previous work
by including the results from our Broadwell cluster, which are quite
surprising. Our results show that existing solutions[7, 9, 12] to
mitigate processor performance variation are rather simplistic and
cannot be practically applied to Broadwell.

6 RECOMMENDATIONS FOR BROADWELL
In this section, we propose a set of recommendations for the com-
munity towards designing and running applications on Broadwell.

• Characterizing node performance based on averaged perfor-
mance distorts the true impact of manufacturing variation on
processors on the node and therefore should be avoided.

• On large-scale clusters, co-locating high and low efficiency
processors on the same node should be avoided because it
complicates resource allocation under a power budget.

• Reporting just the average or best-case performance and power
usage on individual processors is inadequate. HPC perfor-
mance and power characterization must include extreme-case
measurements along with average or median measurements
on processors over several runs.

• Results reported for energy-efficient and power-efficient tech-
niques must be collected on a range of pre-characterized pro-
cessors to demonstrate their effectiveness.

• On hyper-threaded systems, leaving one hyper-thread on each
core idle for the system processes shows lower variation.

• Previous approaches to model processor manufacturing vari-
ability [12] cannot be applied effectively due to non-linearity
and non-repeatability in the relationship between processor
performance and power usage across processors and applica-
tions. Sophisticated approaches towards modeling this rela-
tionship across several dimensions will be required.

7 CONCLUSION
Our experiments on three generations of Intel processors show
that, while the computation capacity is increasing, the variation in
processor performance and energy efficiency is becoming worse.
With increase in the complexity of processor features and number
of cores, we expect this variation to grow in the future. While
the practice of filtering out the least-efficient, worst-performing
processors may partially limit the variation at a practically high
cost, a robust runtime-based solution will be required to effectively
manage processor variation at the software level.
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