Constructing Lists

The most important data structure in Scheme is the list. Lists are constructed using the function `cons`:

```scheme
(cons first rest)
```

`cons` returns a list where the first element is `first`, followed by the elements from the list `rest`.

```scheme
> (cons 'a ()
(a)
> (cons 'a (cons 'b ()
(a b)
> (cons 'a (cons 'b (cons 'c ()
(a b c)
```

Examining Lists

There are a variety of short-hands for constructing lists. Lists are heterogeneous, they can contain elements of different types, including other lists.

```scheme
> '(a b c)
(a b c)
> (list 'a 'b 'c)
(a b c)
> '(l a "hello")
(l a "hello")
```

- `(car L)` returns the first element of a list. Some implementations also define this as `(first L)`.
- `(cdr L)` returns the list `L`, without the first element. Some implementations also define this as `(rest L)`.
- Note that `car` and `cdr` do not destroy the list, just return its parts.

```scheme
> (car '(a b c))
'a
> (cdr '(a b c))
'(b c)
```
Examining Lists...

Note that \((\text{cdr } L)\) always returns a list.

> (\text{car (cdr }'(a b c)))
'b
> (\text{cdr }'(a b c))
'(b c)
> (\text{cdr (cdr }'(a b c)))
'(c)
> (\text{cdr (cdr (cdr }'(a b c))))
'(c)
> (\text{cdr (cdr (cdr (cdr }'(a b c))))
error

Lists of Lists

Any S-expression is a valid list in Scheme.

That is, lists can contain lists, which can contain lists, which...

> 'a (b c))
(a (b c))
> 'l "hello" "bye" 1/4 (apple))
(l "hello" "bye" 1/4 (apple))
> (caaddr 'l "hello" "bye" 1/4 (apple))
"bye"

Examining Lists...

A shorthand has been developed for looking deep into a list:

\((\text{clist of "a" and "d"} r L)\)

Each "a" stands for a \text{car}, each "d" for a \text{cdr}.

For example, \((\text{caddar } L)\) stands for

\((\text{car (cdr (cdr (car }L))))\)

> (cadr 'a b c))
'b
> (cddr 'a b c))
'(c)
> (caddr 'a b c))
'c

List Equivalence

\((\text{equal? } L1 \ L2)\) does a structural comparison of two lists, returning \#t if they “look the same”.

\((\text{eqv? } L1 \ L2)\) does a “pointer comparison”, returning \#t if two lists are “the same object”.

> (eqv? 'a b c) '(a b c))
false
> (equal? 'a b c) '(a b c))
true
List Equivalence...

This is sometimes referred to as **deep equivalence** vs. **shallow equivalence**.

```scheme
> (define myList '(a b c))
> (eqv? myList myList)
true
> (eqv? '(a (b c (d))) '(a (b c (d))))
false
> (equal? '(a (b c (d))) '(a (b c (d))))
true
```

Predicates on Lists

- **(null? L)** returns
 #t for an empty list.
- **(list? L)** returns
 #t if the argument is a list.

```scheme
> (null? '())
#t
> (null? '(a b c))
#f
> (list? '(a b c))
#t
> (list? "(a b c)"
#f
```

List Functions — Examples...

```scheme
> (memq 'z '(x y z w))
#t
> (car (cdr (car '((a) b (c d)))))
(c d)
> (caddr '((a) b (c d)))
(c d)
> (cons 'a '())
(a)
> (cons 'd '(e))
(d e)
> (cons '(a b) '(c d))
((a b) (c d))
```

Recursion over Lists — cdr-recursion

- **Compute the length of a list.**
- **This is called **cdr-recursion**.**

```scheme
(define (length x)
  (cond
    [(null? x) 0]
    [else (+ 1 (length (cdr x)))]
  )
)
```

```scheme
> (length '(1 2 3))
3
> (length '(a (b c) (d e f)))
3
```
Recursion over Lists — car-cdr-recursion

Count the number of atoms in an S-expression.

This is called **car-cdr-recursion**.

```
(define (atomcount x)
  (cond
    [(null? x) 0]
    [(list? x)
      (+ (atomcount (car x))
         (atomcount (cdr x)))]
    [else 1]]
  )
```

> (atomcount '(1))
1
> (atomcount '("hello" a b (c 1 (d))))
6

Recursion Over Lists — Returning a List

Map a list of numbers to a new list of their absolute values.

In the previous examples we returned an atom — here we’re mapping a list to a new list.

```
(define (abs-list L)
  (cond
    [(null? L) '()]
    [else (cons (abs (car L))
                (abs-list (cdr L)))]
  )
)
```

> (abs-list '(1 -1 2 -3 5))
(1 1 2 3 5)

Recursion Over Two Lists

(\texttt{atom-list-eq? L1 L2}) returns \#t if L1 and L2 are the same list of atoms.

```
(define (atom-list-eq? L1 L2)
  (cond
    [(and (null? L1) (null? L2)) #t]
    [(or (null? L1) (null? L2)) #f]
    [else (and
               (atom? (car L1))
               (atom? (car L2))
               (eqv? (car L1) (car L2))
               (atom-list-eq? (cdr L1) (cdr L2)))]
  )
)
```

> (atom-list-eq? '(1 2 3) '(1 2 3))
\#t
> (atom-list-eq? '(1 2 3) '(1 2 a))
\#f
Append

```
(define (append L1 L2)
  (cond
    [(null? L1) L2]
    [else
     (cons (car L1)
           (append (cdr L1) L2))])
)
```

> (append '(1 2) '(3 4))
(1 2 3 4)

> (append '() '(3 4))
(3 4)

> (append '(1 2) '())
(1 2)
```

### Deep Recursion — equal?

```
(define (equal? x y)
 (or (and (atom? x) (atom? y) (eq? x y))
 (and (not (atom? x))
 (not (atom? y))
 (equal? (car x) (car y))
 (equal? (cdr x) (cdr y))))
)
```

> (equal? 'a 'a)
#t

> (equal? '(a) '(a))
#t

> (equal? '((a)) '((a)))
#t
```

Patterns of Recursion — cdr-recursion

- We process the elements of the list one at a time.
- Nested lists are not descended into.

```
(define (fun L)
  (cond
    [(null? L) return-value]
    [else ...(car L) ...(fun (cdr L)) ...]
  )
)
```

Patterns of Recursion — car-cdr-recursion

- We descend into nested lists, processing every atom.

```
(define (fun x)
  (cond
    [(null? x) return-value]
    [(atom? x) return-value]
    [(list? x)
     ...(fun (car x)) ...
     ...(fun (cdr x)) ...]
    [else return-value]
  ))
```

Patterns of Recursion — Maps

Here we map one list to another.

```
(define (map L)
  (cond
    [(null? L) '()]
    [else (cons (...(car L) ...)
      (map (cdr L)))]
  )
)
```

Example: Binary Trees

A binary tree can be represented as nested lists:

```
(4 (2 () () ( 6 ( 5 () ()) ()) () ) )
```

Each node is represented by a triple

```
(data left-subtree right-subtree)
```

Empty subtrees are represented by ()..

Example: Binary Trees...

```
(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

(define (print-spaces N)
  (cond
    [(= N 0) ""]
    [else (begin
      (display " ")
      (print-spaces (- N 1)))]
  )
)

(define (print-tree-rec tree D)
  (cond
    [(null? tree)]
    [else (begin
      (print-spaces D)
      (display (key tree)) (newline)
      (print-tree-rec (left tree) (+ D 1))
      (print-tree-rec (right tree) (+ D 1))
    )])
)
```

```
> (print-tree '(4 (2 () ()) (6 (5 () ()) ()) ))
  4
  2
  6
  5
```

Example: Binary Trees...

```
(define (print-tree tree)
  (print-tree-rec tree 0))
```

```
> (print-tree '(4 (2 () ()) (6 (5 () ()) () ) ) )
  4
  2
  6
  5
```
Binary Trees using Structures

We can use structures to define tree nodes.

```
(define-struct node (data left right))

(define (tree-member x T)
  (cond
    [(null? T) #f]
    [(= x (node-data T)) #t]
    [(< x (node-data T))
      (tree-member x (node-left T))]
    [else
      (tree-member x (node-right T))]
  )
)
```

```
(define tree
  (make-node 4
    (make-node 2 () ())
    (make-node 6
      (make-node 5 () ())
      (make-node 9 () ()))))

> (tree-member 4 tree)
  true
> (tree-member 5 tree)
  true
> (tree-member 19 tree)
  false
```

Homework

Write a function `swapFirstTwo` which swaps the first two elements of a list. Example: \((1 \ 2 \ 3 \ 4) \Rightarrow (2 \ 1 \ 3 \ 4)\).

Write a function `swapTwoInLists` which, given a list of lists, forms a new list of all elements in all lists, with first two of each swapped. Example: \(((1 \ 2 \ 3) \ (4) \ (5 \ 6)) \Rightarrow (2 \ 1 \ 3 \ 4 \ 6 \ 5)\).