CSc 372

Comparative Programming Languages

17: Prolog — Second-Order Predicates

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science
University of Arizona

Copyright © 2004 Christian Collberg
Second-Order Predicates

When we ask a question in Prolog we will (if everything goes right) get an answer. One answer. We can if we want to ask Prolog to backtrack (using the semi-colon), but we will still only get one answer at a time.

Furthermore, when we backtrack all the information gathered previously is lost.

It isn’t possible (in pure Prolog) to find the set of all possible solutions to a query.

However, if we go outside pure Prolog (using the database manipulation features) we can construct procedures which collect all solutions to a query.

They are called second-order because they deal with sets and the properties of sets, rather than about individual elements of sets.
Second-Order Predicates

- **setof(X,Goal,List)**
 - List is a collection of xs for which Goal is true.
 - List is sorted and contains no duplicates.

- **bagof(X,Goal,List)**
 - List is a collection of xs for which Goal is true.
 - List is may contain duplicates.

- **setof and bagof will fail if no Goals succeed.**

```prolog
remove_duplicates(X, Y) :-
    setof(M, member(M,X), Y).

children(X,Kids) :-
    setof(C, father(X,C), Kids).
```
SetOf — Drinkers

:- op(500, yfx, 'drinks').

john drinks whiskey.
martin drinks whiskey.
david drinks milk.
ben drinks milk.
helder drinks beer.
laurance drinks beer.
chris drinks coke.
louise drinks l_and_p.

?- setof(X, X drinks milk, S).
 X = _9109,
 S = [ben,david]
Implementing \textit{bagof}

\begin{verbatim}
bagof(Item, Goal, _) :-
 assert(bag(marker)),
 Goal,
 assert(bag(Item)),
 fail.

bagof(_, _, Bag) :-
 retract(bag(Item)),
 collect(Item, [], Bag).

collect(marker, L, L).
collect(Item, ThisBag, FinalBag) :-
 retract(bag(NextItem)),
 collect(NextItem,
 [Item|ThisBag], FinalBag).
\end{verbatim}
Implementing setof

setof is implemented as a call to bagof followed by a call to sort which puts the elements in order and removes duplicates.
Lee’s Algorithm

- VLSI routing on a grid.
- Find a shortest Manhattan route between A and B that doesn’t pass through any obstacles.
Lee’s Algorithm...

\[
\text{lee_route}(A,B,\text{Obstacles},\text{Path}) :\neg \\
\text{waves}(B,[[A],[\]],\text{Obstacles},\text{Waves}), \\
\text{path}(A,B,\text{Waves},\text{Path}).
\]

?- \text{lee_route}(1-1,5-5, [\text{obst}(2-3, 4-5), \\
\text{obst}(6-6, 8-8)], \text{P}).
Lee’s Algorithm...

Lee’s algorithm works in two stages:

1. First we generate a sequence of waves, where the first wave consists of the starting point itself.

2. Then we use the set of waves to find a shortest path.
Lee’s Algorithm...

- We start out with one wave which consists solely of the source point.
- From that point we generate all neighboring points. This forms the second wave.
- Each wave consists of points which are
 1. neighbors to points on the previous wave,
 2. not members of previous waves,
 3. not obstructed by any obstacles.
- We stop when the destination point is on the last generated wave.
Lee’s Algorithm...

LastW = []
Wave = [1-1]
NextW = [0-1, 1-0, 1-2, 2-1]
Lee’s Algorithm...

LastW = [1-1]
Wave = [0-1, 1-0, 1-2, 2-1]
NextW = [0-0, 0-2, 1-3, 2-0, 2-2, 3-1]
Lee’s Algorithm...

\[\text{LastW} = [0-1, 1-0, 1-2, 2-1] \]
\[\text{Wave} = [0-0, 0-2, 1-3, 2-0, 2-2, 3-1] \]
\[\text{NextW} = [0-3, 1-4, 3-0, 3-2, 4-1] \]
Lee’s Algorithm...

waves(Destination,Wavessofar,Obstacles,Waves) :-
Waves is a list of waves including Wavessofar (except, perhaps, it’s last wave) that leads to Destination without crossing Obstacles.

next_waves(Wave,LastWave,Obstacles,NextWave) :-
Nextwave is the set of admissible points from Wave, that is excluding points from Lastwave, Wave, and points under Obstacles.
Lee’s Algorithm...

- The first wave-rule (the recursive base case for wave) states that once the last generated wave contains the destination point, we’re done generating waves.

- The second wave-rule simply generates the next wave (using next_wave), and then adds it to the beginning of the list of waves. Note that the list of waves is a list-of-lists.
Lee’s Algorithm...

- `next_wave` takes three input parameters:
 1. `Wave` is the last generated wave.
 2. `LastWave` is the wave generated before the last wave.
 3. `Obstacles` is the list of obstacles.

- `next_wave` uses `setof` to generate the set of all *admissible* points. A point is admissible if it belongs to the next wave.
Lee’s Algorithm...

w a v e s (B, \{Wave\mid Waves\}, Obstacles, Waves) :-
 member(B, Wave), !.

w a v e s (B, \{Wave, LastWave\mid LastWaves\},
 Obstacles, Waves) :-
 next_wave(Wave, LastWave, Obstacles, NextWave),
 waves(B, \{NextWave, Wave, LastWave\mid LastWaves\},
 Obstacles, Waves).

next_wave(Wave, LastWave, Obstacles, NextWave) :-
 setof(X, admissible(X, Wave, LastWave, Obstacles),
 NextWave).
Lee’s Algorithm...

\(X \) is adjacent to the points on \(\text{Wave} \) (i.e. \(X \) is a point on the next wave) if

- \(X \) is a neighbor to a point \(X_1 \) on the previous wave (\(\text{Wave} \), that is).
- \(X \) is not obstructed by an obstacle.
Lee’s Algorithm...

Notice that adjacent uses a generate-and-test scheme:

1. member & neighbor work together to generate new possible points:
 (a) member generates points on the previous wave.
 (b) neighbor uses the points generated by member to generate points which are neighbors to the points on the last wave.

2. obstructed weeds out generated point that are under an obstacle.
Lee’s Algorithm...

x is an admissible point if

1. it is a neighbor of a point on the previous wave
2. it is not on any previous wave
3. is is not obstructed by an obstacle

\[
\text{admissible}(X, \text{Wave}, \text{LastWave}, \text{Obst}) :\neg \\
\text{adjacent}(X, \text{Wave}, \text{Obst}), \\
\text{not member}(X, \text{LastWave}), \\
\text{not member}(X, \text{Wave}).
\]

\[
\text{adjacent}(X, \text{Wave}, \text{Obstacles}) :\neg \\
\text{member}(X_1, \text{Wave}), \\
\text{neighbor}(X_1, X), \\
\text{not obstructed}(X, \text{Obstacles}).
\]
Lee’s Algorithm...

next_to takes a number A and returns B=A+1 and B=A−1. A−1 is returned only if the result is >0.

neighbor uses next_to to generate neighboring points. The rules of neighbor state:

1. The point X2−Y is a neighbor of point X1−Y if X2 is X1+1, or X2=X1−1. In other words, the first neighbor rule generates the points immediately above and below a given point.

2. The point X−Y2 is a neighbor of point X−Y1 if Y2 is Y1+1, or Y2=Y1−1. In other words, the second neighbor rule generates the points immediately to the left and right of a given point.
Lee’s Algorithm...

neighbor(X1-Y, X2-Y) :- next_to(X1, X2).
neighbor(X-Y1, X-Y2) :- next_to(Y1, Y2).

next_to(A, B) :- B is A+1.
next_to(A, B) :- A > 0, B is A-1.
Lee’s Algorithm...

- `obstructed(Point, Obstacles)` checks to see if the point is on the perimeter of any of the obstacles in the list of obstacles `Obstacles`.

- The rule `obstructs(Point, Obstacle)` checks to see if the point is on the perimeter of the obstacle.

Note that `obstructed` is another generate-and-test procedure. `member` generates one obstacle at a time from this list, and `obstructs` checks to see if that obstacle obstructs the point.
Lee’s Algorithm...

- obstructed(Point, Obstacles) checks to see if the point is on the perimeter of any of the obstacles in the list of obstacles Obstacles.

- The rule obstructs(Point, Obstacle) checks to see if the point is on the perimeter of the obstacle.

Note that obstructed is another generate-and-test procedure. member generates one obstacle at a time from this list, and obstructs checks to see if that obstacle obstructs the point.
Lee’s Algorithm...

% Generate an obstacle, then test
% if it obstructs a point Pt.
obstructed(Pt,Obsts) :-
 member(Obst,Obsts), obstructs(Pt,Obst).

obstructs(X-Y,obst(X-Y1,X2-Y2)) :-
 Y1=<Y, Y=<Y2. % X-Y on bottom edge.

obstructs(X-Y,obst(X1-Y1,X-Y2)) :- Y1=<Y, Y=<Y2.

obstructs(X-Y,obst(X1-Y,X2-Y2)) :- X1=<X, X=<X2.

obstructs(X-Y,obst(X1-Y1,X2-Y)) :- X1=<X, X=<X2.
Lee’s Algorithm...

- Why do we only need to check the perimeter? Shouldn’t we have to check if a point lies *inside* an object as well?
- No, such points will never be considered. Their neighbors (which are on a perimeter) cannot be on a previous wave:

![Diagram of Lee’s Algorithm](image)

Why don’t we have to test for this point? Because it’s neighbors are not on any previous wave!
Lee’s Algorithm...

The last part of the algorithm is to construct the actual path from the list of waves. The procedure \texttt{path} does this for us.

1. \texttt{path} starts by looking in the last wave for a neighbor of the destination node. In our example, the destination node is 5-5, and a neighbor of 5-5 in the last wave is the node 5-4.

2. \texttt{path} next looks for a neighbor for the new node in the next wave. Our example yields node 5-3 which is a neighbor of node 5-4.

3. Eventually we’ll get to the last wave which only contains the source node, in our case node 1-1.
Lee’s Algorithm...

\[
\text{Waves} = \begin{bmatrix}
[0-7, 1-8, 2-7, 3-6, 5-4, 6-3, 7-0, 7-2, 8-1], \\
[0-6, 1-7, 2-6, 5-3, 6-0, 6-2, 7-1], \\
[0-5, 1-6, 5-0, 5-2, 6-1], \\
[0-4, 1-5, 4-0, 4-2, 5-1], \\
[0-3, 1-4, 3-0, 3-2, 4-1], \\
[0-0, 0-2, 1-3, 2-0, 2-2, 3-1], \\
[0-1, 1-0, 1-2, 2-1], \\
[1-1]
\end{bmatrix}
\]

\[
\text{path}(A, A, \text{Waves}, [A]) :- !.
\]

\[
\text{path}(A, B, [\text{Wave} | \text{Waves}], [B | \text{Path}]) :-
\begin{align*}
&\text{member}(B1, \text{Wave}), \\
&\text{neighbor}(B, B1), !, \\
&\text{path}(A, B1, \text{Waves}, \text{Path}).
\end{align*}
\]
Write Prolog predicates that given a database of countries and cities

% country(name, population, capital).
country(sweden, 8823, stockholm).
country(usa, 221000, washington).
country(france, 56000, paris).
% city(name, in_country, population).
city(lund, sweden, 88).
city(paris, usa, 1). % Paris, Texas.

answer the following queries:

1. Which countries have cities with the same name as capitals of other
countries?

2. In how many countries do more than \(\frac{1}{3} \) of the population live in the capital?

3. Which capitals have a population more than 3 times larger than that of the
secondmost populous city?