Variables in Java I

- Variables are used to store information.
- The information can come from many sources:
 1. It is often provided by the user. (It is read by the program.)
 2. It can be temporary data that we need to store to solve a particular problem.
- Variables have type. The type of a variable describes what kind of data we can store in it. A string variable can only store strings, an int variable only integers, a double variable only real numbers, etc.

Variables in Java II

- We must declare a variable before we can use it. The declaration gives the name of the variable and its type:
 int hello;
 double bob;
 String message;
- We use assignment statements to store data into a variable:
 hello = 5;
 bob = 5.5;
 message = "Hello Dolly!"
- We can also initialize a variable directly in the declaration:
 int hello = 5;
 String message = "Hello Dolly!"
Variables in Java III

- Variable values can be used:
  ```
  System.out.println(hello);
  bob = bob + 5.5;
  ```

- Only certain types of assignments are legal:
 1. ints can be assigned to ints, doubles to doubles, Strings to Strings, etc.
 2. ints can be assigned to doubles; the integer is automatically converted to a real number.

- Variables must be initialized (given an initial value) before they can be used.
 These statements are wrong:
  ```
  int hello, bob;
  System.out.println(hello);
  bob = bob + 5.5;
  ```

Slide 2–4

class Assign {
 public static void main (String [] args) {
 int hello;
 double bob;
 String message;

 hello = 54;
 bob = 45.6;
 message = "Hello Dolly!";

 System.out.println("hello = " + hello);
 System.out.println("bob = " + bob);
 System.out.println("message = " + message);
 }
}

Slide 2–5

- What does the compiler print when given this program?

```java
class Type {
    public static void main (String [] args) {
        int jane = 5;
        double bob = 45.6;
        String message = "Jane Dolly!";

        jane = bob;
        jane = message;

        bob = jane;
        bob = message;

        message = bob;
        message = jane;

        int john, sally;
        john = john + sally;

        int karl = 54;
        karl = karl + 56;
    }
}
```
public class java.io.PrintStream extends java.io.FilterOutputStream {
 public void flush();

 public void print(boolean b);
 public void print(char c);
 public void print(char s[]);
 public void print(double d);
 public void print(float f);
 public void print(int i);
 public void print(long l);
 public void print(Object obj);
 public void println(String s);
 public void println();

 public void println(boolean b);
 public void println(char c);
 public void println(char s[]);
 public void println(double d);
 public void println(float f);
 public void println(int i);
 public void println(long l);
 public void println(Object obj);
 public void println(String s);
}

Arithmetic Operations

- Java has the standard built-in arithmetic operators:
 \[
 a + b \quad \text{Add a and b.}
 \]
 \[
 a - b \quad \text{Subtract a and b.}
 \]
 \[
 a \times b \quad \text{Multiply a and b.}
 \]
 \[
 a/b \quad \text{Divide a and b, i.e. } \frac{a}{b}.
 \]
 \[
 a\%b \quad \text{Remainder when a is divided by b, i.e. } a - b \times \lfloor \frac{a}{b} \rfloor.
 \]
- If both a and b are integers then the result of \(a \oplus b\) is an integer (\(\oplus\) is one of +, −, ∗, /).
- If a or b (or both) are real numbers then the result of \(a \oplus b\) is a real number.

- What will the output be from the program in the next slide?
The Class Math

- Java has most common mathematical operators (+, -, /, *, etc.) built into the language.
- Other standard mathematical functions (trigonometric, exponentiation, etc.) are supplied by a standard, built-in class called Math.

```java
public final class java.lang.Math
    extends java.lang.Object {
    public final static double E=...;
    public final static double PI=...;

    public static int max(int a, int b);
    public static int min(int a, int b);
    public static int round(float a);

    public static double abs(double a);

    public static double ceil(double a);
    public static double floor(double a);

    public static double exp(double a);
    public static double log(double a);
    public static double pow(double a, double b);
    public static double sqrt(double a);

    public static double max(double a, double b);
    public static double min(double a, double b);
    public static double random();

    public static double acos(double a);
    public static double asin(double a);
    public static double atan(double a);
    public static double atan2(double a, double b);

    public static double cos(double a);
    public static double sin(double a);
    public static double tan(double a);
}
```

Class Math Problem #1—#2

1. Write a program which "shows" that

\[x^y = e^{y \ln x} \]

by trying the formula for some values of \(x \) and \(y \).

2. Do the same thing, but this time choose \(x \) and \(y \) to be random numbers between 5.0 and 20.0.

(Note: Math.random() returns a double between 0.0 and 1.0.)
- These are the operations provided by the class `Input`. There are operations for reading strings, integers, and reals. If you don’t provide a prompt, a default prompt will be given.

```java
class Input {
    public static String toText(String prompt) {
        // ...
    }

    public static int toInt(String prompt) {
        // ...
    }

    public static int toInt() {
        return toInt("Enter an integer");
    }

    public static double toDouble(String prompt) {
        // ...
    }

    public static double toDouble() {
        return toDouble("Enter a double");
    }
}
```

- Most programs interact with the user in some way. We have already seen how printing to the screen using `System.out.println` allows us the program to provide information to the user.

- You will be provided with two classes called `Input`. Which one to use depends on which system you use.

- `Input` provides methods for getting information from the user.

- `Input.toText("Prompt")` will print `Prompt` on the screen (or put up a window with "Prompt" in it) and allow the user to enter a text (string). That string will then be returned to the program.

Class Input Problem

1. Karl, Lisa, and Peter are playing a game and want a program to help to figure out who’s winning. Write a program that reads Karl’s, Lisa’s, and Peter’s scores and writes the highest score.

```bash
cmdtool - /usr/local/bin/tcsh
java InMax.java
java InMax
Enter Karl's Score: 34
Enter Lisa's Score: 67
Enter Peter's Score: 22
The highest score is 67
```
Choice in Java

- Real programs make choices. Depending on some condition, we either do one thing, or another. Such conditions are called **Boolean Expressions**.

- In Java we write:

  ```java
  if (Condition)
  DoThis;
  ```

- We can compare numbers to numbers and strings to strings, but not numbers to strings. What's the result of the program fragment below?

  ```java
  int i = 15;
  String s = "Hello";
  double d = 15.5;
  if (i == 15) System.out.println("i is 15");
  if (d == 15) System.out.println("d is 15");
  if (s == "Bye") System.out.println("s is Bye");
  if (s == i) System.out.println("s is 15");
  ```

Choice Problem

Write a program which

1. reads in the names of two tri-athletes, and their three individual scores,
2. Computes and writes out the two total scores and the name of the winner, if any.
<table>
<thead>
<tr>
<th>Program Point</th>
<th>First-Contestant</th>
<th>FirstContestantScore</th>
<th>Second-Contestant</th>
<th>SecondContestantScore</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/H/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>/I/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>/J/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>/K/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

Output="The highest score is 47"

<table>
<thead>
<tr>
<th>Program Point</th>
<th>First-Contestant</th>
<th>FirstContestantScore</th>
<th>Second-Contestant</th>
<th>SecondContestantScore</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/L/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td>"None"</td>
</tr>
<tr>
<td>/M/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td>"None"</td>
</tr>
<tr>
<td>/N/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td>"Lisa"</td>
</tr>
<tr>
<td>/O/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>47</td>
<td>"Lisa"</td>
</tr>
</tbody>
</table>

Output="Lisa wins!!"

<table>
<thead>
<tr>
<th>Program Point</th>
<th>First-Contestant</th>
<th>FirstContestantScore</th>
<th>Second-Contestant</th>
<th>SecondContestantScore</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/A/</td>
<td>"Bart"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output="Enter the 1st contestant’s name:"

<table>
<thead>
<tr>
<th>Program Point</th>
<th>First-Contestant</th>
<th>FirstContestantScore</th>
<th>Second-Contestant</th>
<th>SecondContestantScore</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>"Bart"</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output="Enter the 1st contestant’s 3 scores:"

<table>
<thead>
<tr>
<th>Program Point</th>
<th>First-Contestant</th>
<th>FirstContestantScore</th>
<th>Second-Contestant</th>
<th>SecondContestantScore</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/C/</td>
<td>"Bart"</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/D/</td>
<td>"Bart"</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/E/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output="Enter the 2nd contestant’s name:"

<table>
<thead>
<tr>
<th>Program Point</th>
<th>First-Contestant</th>
<th>FirstContestantScore</th>
<th>Second-Contestant</th>
<th>SecondContestantScore</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/F/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>/G/</td>
<td>"Bart"</td>
<td>30</td>
<td>"Lisa"</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>