What do we Optimize?

1. Optimize everything, all the time. The problem is that optimization interferes with debugging. In fact, many (most) compilers don’t let you generate an optimized program with debugging information. The problem of debugging optimized code is an important research field. Furthermore, optimization is probably the most time consuming pass in the compiler. Always optimizing everything (even routines which will never be called!) wastes valuable time.

2. The programmer decides what to optimize. The problem is that the programmer has a local view of the code. When timing a program programmers are often very surprised to see where most of the time is spent.
3. Turn optimization on when program is complete. Unfortunately, optimizers aren’t perfect, and a program that performed OK with debugging turned on often behaves differently when debugging is off and optimization is on.

4. Optimize inner loops only. Unfortunately, procedure calls can hide inner loops:

```plaintext
PROCEDURE P(n);
BEGIN
  FOR k:=1 TO n DO · · · END;
END P;

FOR i:=1 TO 10000 DO P(i) END;
```

5. Use profiling information to guide what to optimize.

6. Runtime code generation/optimization. We delay code generation and optimization until execution time. At that time we have more information to guide the optimizations:
Peephole optimization—Jumps-to-jumps

- Complicated boolean expressions (with many and, or, nots) can easily produce lots of jumps to jumps.

\[
\begin{align*}
\text{if } a < b \text{ goto } L1 & \Rightarrow \text{ if } a < b \text{ goto } L3 \\
& \ldots \\
L1: \text{ goto } L2 & \quad L1: \text{ goto } L3 \\
& \ldots \\
L2: \text{ goto } L3 & \quad L2: \text{ goto } L3
\end{align*}
\]

Algebraic Simplification

- Beware of numerical problems:

\[(x \times 0.00000001) \times 10000000000.0\]

may produce a different result than

\[(x \times 1000.0)\]

!

- FORTRAN requires that parenthesis be honored:

\[(5.0 \times x) \times (6.0 \times y)\] can’t be evaluated as \[(30.0 \times x \times y)\].

- Note that multiplication is often faster than division.

Peephole Optimization

- Can be done at the machine code level or at the intermediate code level.

1. Examine a “window” of instructions.
2. Improve code in window.
3. Slide window.
4. Repeat until “optimal”.

Peephole optimization—Redundant Loads

- A naive code generator will generate the same address or variable several times.

\[
\begin{align*}
A := A + 1; & \Rightarrow \quad \text{set } A, \%10 \\
& \quad \text{set } A, \%11 \\
& \quad \text{ld } [\%11], \%11 \\
& \quad \text{add } \%11, 1, \%11 \\
& \quad \text{st } \%11, [\%10] \\
& \quad \downarrow \\
& \quad \text{set } A, \%10 \\
& \quad \text{ld } [\%10], \%11 \\
& \quad \text{add } \%11, 1, \%11 \\
& \quad \text{st } \%11, [\%10]
\end{align*}
\]
Algebraic Simplification...

\[
x := x + 0; \quad \Rightarrow
\]
\[
x := x - 0; \quad \Rightarrow
\]
\[
x := x \times 1; \quad \Rightarrow
\]
\[
x := 1 \times 1; \quad \Rightarrow \quad x := 1
\]
\[
x := x / 1; \quad \Rightarrow
\]
\[
x := x \times x; \quad \Rightarrow
\]
\[
f := f / 2.0; \quad \Rightarrow \quad f := f \times 0.5;
\]

Reduction in Strength

- **SHL(x,y)** = shift x left y steps.
- Multiplications (and divisions) by constants can be replaced by cheaper sequences of shifts and adds.

\[
x := x \times 32 \Rightarrow x := \text{SHL}(x, 5);
\]
\[
x := x \times 100
\]
\[
\downarrow
\]
\[
x := x \times (64 + 32 + 4)
\]
\[
\downarrow
\]
\[
x := x \times 64 + x \times 32 + x \times 4
\]
\[
\downarrow
\]
\[
x := \text{SHL}(x, 6) + \text{SHL}(x, 5) + \text{SHL}(x, 2)
\]
Global Optimization

- Makes use of control-flow and data-flow analysis.
- Dead code elimination.
- Common subexpression elimination (local and global).
- Loop unrolling.
- Code hoisting.
- Induction variables.
- Reduction in strength.
- Copy propagation.
- Live variable analysis.
- Uninitialized Variable Analysis.

FUNCTION P (X,n): INT;
IF n=3 THEN RETURN X[1] ELSE RETURN X[n]
BEGIN
K := 3;
_________________ After Global Optimization _____________

FUNCTION P (X,n): INT;
IF n=3 THEN RETURN X[1] ELSE RETURN X[n]
BEGIN
_________________ After Inter-Procedural Opt _____________

BEGIN
_________________ After Another Local Opt _____________
BEGIN

- Delete P if it isn’t used elsewhere. This can maybe be deduced by an inter-procedural analysis.

Control Flow Graphs

Perform optimizations over the control flow graph of a procedure.

FUNCTION P (X,n): INT;
IF n=3 THEN RETURN X[1] ELSE RETURN X[n]
BEGIN
_________________ After Global Optimization _____________

FUNCTION P (X,n): INT;
IF n=3 THEN RETURN X[1] ELSE RETURN X[n]
BEGIN
_________________ After Inter-Procedural Opt _____________

BEGIN
_________________ After Another Local Opt _____________
BEGIN

- Delete P if it isn’t used elsewhere. This can maybe be deduced by an inter-procedural analysis.
- A piece of code is dead if we can determine at compile time that it will never be executed.

- If i and j are updated simultaneously in a loop, and $j = i \cdot c_1 + c_2$ (c_1, c_2 are constants) we can remove one of them, and/or replace \cdot by $+$.

- Many optimizations produce $X := Y$.
- After an assignment $X := Y$, replace references to X by Y. Remove the assignment if possible.
Loop Unrolling – Variable Bounds

FOR i := 1 TO n DO
A[i] := i
END
down
i := 1;
WHILE i <= (n-4) DO
 A[i]:=i; A[i+1]:=i+1; A[i+2]:=i+2;
 A[i+3]:=i+3; A[i+4]:=i+4; i:=i+5;
END;
WHILE i<= n DO
 A[i]:=i; i:=i+1;
END

Inter-procedural Optimization

• Consider the entire program during optimization.
• How can this be done for languages that support separately compiled modules?

Transformations

Inline expansion: Replace a procedure call with the code of the called procedure.
Procedure Cloning: Create multiple specialized copies of a single procedure.
Inter-procedural constant propagation: If we know that a particular procedure is always called with a constant parameter with a specific value, we can optimize for this case.

Loop Unrolling – Constant Bounds

FOR i := 1 TO 5 DO
 A[i]:=i
END
down

• Loop unrolling increases code size. How does this effect caching?
INLINE EXPANSION—ORIGINAL CODE

FUNCTION Power (n, exp:INT):INT;
 IF exp < 0 THEN result := 0;
 ELSIF exp = 0 THEN result := 1;
 ELSE result := n;
 FOR i := 2 TO exp DO
 result := result * n;
 END;
 END;
RETURN result;
END Power;

BEGIN
 X := 7;
 PRINT Power(X,2)
END;

INLINE EXPANSION—EXPANDED CODE

BEGIN
 X := 7;
 result := X;
 FOR i := 2 TO 2 DO
 result := result * X;
 END;
 PRINT result;
END

INLINE EXPANSION—AFTER COPY PROPAGATION

BEGIN
 X := 7;
 result := 7;
 FOR i := 2 TO 2 DO
 result := result * 7;
 END;
 PRINT result;
END

INLINE EXPANSION—MORE OPTIMIZATION

BEGIN
 X := 7;
 result := 49;
 PRINT result;
END

BEGIN
 X := 7;
 result := X;
 FOR i := 2 TO 2 DO
 result := result * X;
 END;
 PRINT result;
END

INLINE EXPANSION—AFTER LOOP UNROLLING

BEGIN
 X := 7;
 result := 7;
 result := result * 7;
 PRINT result;
END

INLINE EXPANSION—AFTER CONSTANT FOLDING

BEGIN
 result := 49;
 PRINT result;
END
Machine (In-)Dependent Optimization?

- Optimizations such as inline expansion and loop unrolling seem pretty machine independent. You don’t need to know anything special about the machine architecture to implement these optimizations, in fact, both inline expansion and loop unrolling can be applied at the source code level. (May or may not be true for inline expansion, depending on the language).
- However, since both inline expansion and loop unrolling normally increase the code size of the program, these optimizations do, in fact, interact with the hardware.

Machine (In-)Dependent Optimization?

- A loop that previously might have fit in the instruction cache of the machine, may overflow the cache once it has been unrolled, and therefore increase the cache miss rate so that the unrolled loop runs slower than the original one.
- The unrolled loop may even be spread out over more than one virtual memory page and hence affect the paging system adversely.
- The same argument holds for inline expansion.

Procedure Cloning—Original Code

```pascal
FUNCTION Power (n, exp:INT):INT;
    IF exp < 0 THEN result := 0;
    ELSIF exp = 0 THEN result := 1;
    ELSE result := n;
        FOR i := 2 TO exp DO
            result := result * n;
        END;
    END;
    RETURN result;
END Power;
BEGIN PRINT Power(X,2), Power(X,7) END;
```

Procedure Cloning—Cloned Routines

```pascal
FUNCTION Power0 (n):INT; RETURN 1;
FUNCTION Power2 (n):INT; RETURN n * n;
FUNCTION Power3 (n):INT; RETURN n * n * n;
FUNCTION Power (n, exp:INT):INT;
    (* As before *)
    END Power;
BEGIN PRINT Power2(X), Power(X,7) END;
```

Transformed Code:

```pascal
BEGIN PRINT Power2(X), Power(X,7) END;
```
Example – Original code

FOR I:= 1 TO 100 DO
T3 := ADR(A[I]);
FOR J := 1 TO 100 DO
T1 := ADR(T3[J]);
T2 := I * J;
FOR K := 1 TO 100 DO
A[I][J][K] := (I*J)*K;
END;
END;
END

Example – Find Loop Invariants

FOR I:= 1 TO 100 DO
T3 := ADR(A[I]);
T4 := I;
FOR J := 1 TO 100 DO
T1 := ADR(T3[J]);
T2 := T4; (* T4=I*J *)
T5 := T2; (* Init T2*K *)
FOR K := 1 TO 100 DO
A[I][J][K] := (I*J)*K;
END;
END;
END

Example/a – Find Loop Invariants

FOR I:= 1 TO 100 DO
T3 := ADR(A[I]);
T4 := I;
FOR J := 1 TO 100 DO
T1 := ADR(T3[J]);
T2 := T4; (* T4=I*J *)
T5 := T2; (* Init T2*K *)
FOR K := 1 TO 100 DO
T1[K] := T5;
T5 := T5 + T2;
T4 := T4 + I;
END;
END;
END

Example/b – Strength Reduction

FOR I:= 1 TO 100 DO
T3 := ADR(A[I]);
FOR J := 1 TO 100 DO
T1 := ADR(T3[J]);
T2 := I * J;
FOR K := 1 TO 100 DO
T1[K] := T2*K END;
END;
END

• T4 holds I*J: I, I+I, I+I+I, · · · I*J. T5 holds T2*K = I*J*K.

Example/c – Copy Propagation

FOR I:= 1 TO 100 DO
T3 := ADR(A[I]);
T4 := I;
FOR J := 1 TO 100 DO
T1 := ADR(T3[J]);
T2 := T4;
T5 := T2;
FOR K := 1 TO 100 DO
T1[K] := T5;
T5 := T5 + T2;
T4 := T4 + I;
END;
END;
END

We replace T2 by T4.
Example/f – Loop Unrolling

T6 := ADR(A);
FOR I:= 1 TO 100 DO
 T4 := I; T7 := T6;
 FOR J := 1 TO 100 DO
 T5 := T4; T8 := T7;
 FOR K := 1 TO 100 DO
 T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;
 T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;
 T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;
 END;
 T4:=T4 + I; T7:=T7 + 100;
 END; T6:=T6 + 10000;
END

Example/e – Strength Red. + Copy Prop.

T6 := ADR(A);
FOR I:= 1 TO 100 DO
 T4 := I;
 T7 := T6;
 FOR J := 1 TO 100 DO
 T5 := T4;
 T8 := T7;
 FOR K := 1 TO 100 DO
 T8↑ := T5; T5 := T5 + T4; T8 := T8 + 1;
 END;
 T4 := T4 + I;
 T7 := T7 + 100;
 END;
 T6 := T6 + 10000;
END

Example/d – Expand Array Indexing

- Expand subscripting operations. Pascal array indexing turns into C-like address manipulation!

VAR A:ARRAY[1..100,1..100,1..100] OF INT;
VAR I:= 1 TO 100 DO
 T3 := ADR(A) + (10000*I)-10000;
 FOR J := 1 TO 100 DO
 T1 := T3 +(100*J)-100;
 T5 := T4;
 FOR K := 1 TO 100 DO
 (T1+K-1)↑:= T5; T5 := T5 + T4;
 END;
 T4 := T4 + I;
 END;
END

Example – Inline Expansion

- ftp://cs.washington.edu/pub/pardo. The code has been simplified substantially...
- bitblt copies image region regions while performing an operation on the moved part.
- s is the source, d the destination, i the index in the x direction, j the index in the y direction.
Example — Inline Expansion

Every time around the loop we have to execute a switch (case) statement, which is very inefficient.

Here we’ll show how bitblt can be optimized by inlining. It’s also amenable to run-time (dynamic) code generation. I.e. we include the code generator in the executable and generate code for bitblt when we know what it’s arguments are.

Example — Dead Code Elimination

main () {
 d = src; s=dst;
 for (j=0; j<dy;++j) {
 for (i=nw+1; i>0; --i) {
 switch (BB_S) {
 case (0) : *d &= ~mask; break;
 case (BB_D&~BB_S) : *d ^= ((s &*d) & mask); break;
 case (~BB_S) : *d ^= ((~s ^ *d) & mask); break;
 /* Another 12 cases... */
 case (BB_X) : *d |= mask; break;
 }; d++;
 }; d++; s++;
 }
}

#define BB_S (0xc)

bitblt (mask_t m, word s, word d, int op){
 for (j=0; j<dy;++j) {
 for (i=nw+1; i>0; --i) {
 switch (op) {
 case (0) : *d &= ~mask; break;
 case (BB_D&~BB_S) : *d ^= ((s &*d) & mask); break;
 case (~BB_S) : *d ^= ((~s ^ *d) & mask); break;
 /* Another 12 cases... */
 case (BB_X) : *d |= mask; break;
 }; d++;
 }; d++; s++;
 }
}

main () {
 bitblt(mask,src,dest,...,BB_S);
}
Readings and References

- Read Louden: 468–484.
- Debugging optimized code: See the Dragon book, pp. 703–711.

Summary

- Difficult problems:
 - Which transformations are actually profitable?
 - How do we avoid unsafe optimizations?
 - What part of the code should we optimize?
 - How do we take machine dependencies (cache size) into account?
 - At which level(s) do we optimize (source, interm. code, machine code)?
 - How do we order the different optimizations?

Proebsting’s Law

Compiler Advances Double Computing Power Every 18 Years

I claim the following simple experiment supports this depressing claim. Run your favorite set of benchmarks with your favorite state-of-the-art optimizing compiler. Run the benchmarks both with and without optimizations enabled. The ratio of of those numbers represents the entirety of the contribution of compiler optimizations to speeding up those benchmarks. Let’s assume that this ratio is about 4X for typical real-world applications, and let’s further assume that compiler optimization work has been going on for about 36 years. These assumptions lead to the conclusion that compiler optimization advances double computing power every 18 years. QED.

Proebsting’s Law...

This means that while hardware computing horsepower increases at roughly 60%/year, compiler optimizations contribute only 4%. Basically, compiler optimization work makes only marginal contributions.

Perhaps this means Programming Language Research should be concentrating on something other than optimizations. Perhaps programmer productivity is a more fruitful arena.

http://research.microsoft.com/~toddpro/papers/law.htm