NFAs and DFAs can be hard-coded using this pattern:

```python
state := start state
c := first char
while (true) {
case state of {
  1: case c of {
      char1 : {
        c := nextChar();
        state := new state;
      }
  2: case c of {
      char2 : {
        c := nextChar();
        state := new state;
      }
      char3 : {
        return; /* accept */
      }
  }
}
```
We can also encode the transitions directly into a **transition table**:

<table>
<thead>
<tr>
<th>state</th>
<th>char(_1)</th>
<th>char(_2)</th>
<th>other</th>
<th>Accepting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

States in brackets don’t consume their inputs. Accepting states are indicated by a √. Empty entries represent error states.
Given the table, we can write an interpreter to perform lexical analysis of any DFA:

```plaintext
state := 1
c := first char
while not ACCEPT[state] do {
    newstate := NEXTSTATE[state, c]
    if ADVANCE[state, c] then
        c := nextChar()
    state := newstate
}
if ACCEPT[state] then accept;
```
Table-driven C Comments
Table-driven C Comments...

class Comments {
 public static final int SLASH = 0;
 public static final int STAR = 1;
 public static final int OTHER = 2;
 public static final int END = 3;

 static int[][] NEXTSTATE = {
 // /*/ */ */ other
 { 1, -1, -1 },
 {-1, 2, -1 },
 { 2, 3, 2 },
 { 4, 3, 2 },
 {-1, -1, -1 }
 };
}
static boolean[] ACCEPT =
 {false,false,false,false,true};

static boolean[][] ADVANCE = {
 // "/" "*" other
 {true, true, true},
 {true, true, true},
 {true, true, true},
 {true, true, true},
 {true, true, true}};

static String input;
static int current = -1;

static int nextChar() {
 int ch;
 current++;
 if (current >= input.length()) return END;
 switch (input.charAt(current)) {
 case '/': { ch = SLASH; break; }
 case '*': { ch = STAR; break; }
 default: { ch = OTHER; break; }
 }
 return ch;
}
public static boolean interpret () {
 int state = 0;
 int c = nextChar();
 while ((c != END) && (state>=0) && !ACCEPT[state]) {
 int newstate = NEXTSTATE[state][c];
 if (ADVANCE[state][c]) {
 c = nextChar();
 state = newstate;
 }
 }
 return (state>=0) && ACCEPT[state];
}

public static void main (String[] args) {
 input = args[0];
 boolean result = interpret();
}
Let’s do the same thing again, but this time we will hard-code the interpreter using switch-statements.

nextChar and the constant declarations are the same as for the previous program.
class Comments {
 // Declarations of SLASH,STAR,OTHER,END, and nextChar().
 public static boolean interpret() {
 int state = 0;
 int ch = nextChar();
 while(true) {
 switch (state) {
 case -1 :
 return false;
 case 0 :
 switch (ch) {
 case SLASH:ch=nextChar();state=1;break;
 default :return false;
 }
 break;
 }
 }
 }
case 1:
 switch (ch) {
 case STAR: ch=nextChar(); state=2; break;
 default : return false;
 }
 break;
case 2:
 switch (ch) {
 case SLASH: ch=nextChar(); state=2; break;
 case STAR : ch=nextChar(); state=3; break;
 case OTHER: ch=nextChar(); state=2; break;
 default : return false;
 }
 break;
case 3 :
 switch (ch) {
 case SLASH: ch=nextChar(); state=4; break;
 case STAR : ch=nextChar(); state=3; break;
 case OTHER: ch=nextChar(); state=2; break;
 default : return false;
 }
 break;

case 4 :
 return (ch == END);
}
From REs to NFAs
We will describe our tokens using REs, convert these to an NFA, convert this to a DFA, and finally code this into a program or a table to be interpreted:

We will next show how to construct an NFA from a regular expression. This algorithm is called Thompson’s Construction (after Ken Thompson of Bell Labs).
Thompson’s Construction

- Each piece of a regular expression is turned into a part of an NFA.
- Each part is glued together (using ϵ-transitions) into a complete automaton.
- An RE matching the character a translates into

 ![Diagram](image)

- An RE matching ϵ translates into

 ![Diagram](image)
We represent an RE component r by the figure:

An RE matching the regular expression r followed by the regular expression s (rs) translates into
The regular expression $r | s$ translates into

![Diagram of Thompson's Construction for Alternation]
Thompson’s Construction – Repetition

The regular expression r^* translates into

![Diagram of Thompson's Construction](image-url)
The regular expression \texttt{ab|a} translates into

![Diagram showing the construction of a DFA for the regular expression \texttt{ab|a}]

- First state with \(\epsilon \) transition to itself
- Transition on \(a \) from to first state to second state
- Transition on \(\epsilon \) from second state to third state
- Transition on \(b \) from third state to fourth state
- Transition on \(\epsilon \) from fourth state to fifth state
- Loop on \(\epsilon \) in fifth state

This diagram represents the automaton constructed using Thompson’s Construction for the given regular expression.
The regular expression `letter(letter|digit)*` translates into
From NFA to DFA
We now know how to translate a regular expression into an NFA, and how to translate a DFA into code. The missing piece is how to translate an NFA into a DFA.
From NFA to DFA...

- Each state in the DFA corresponds to a set of states in the NFA.
- The DFA will be in state \(2, 3, 4\) if the NFA could have been in any of the states \(\{2, 3, 4\}\).
- After reading \(a_1a_2\cdots a_n\) the DFA is in a state that represents the states the NFA could be in after seeing the input \(a_1a_2\cdots a_n\).
From NFA to DFA...

- A in the DFA represents the set of states \{1, 2, 4\} in the NFA. These are the states the FAs could be in before any input is consumed (the start states).

- B in the DFA represents the set of states \{2, 3, 4\} in the NFA. These are the states we can get to on the symbol a from A.
We need three functions:

1. \texttt{\textit{ϵ-closure}(T)} is the set of NFA states reachable from some NFA state \(s \) in \(T \) on \(\epsilon \)-transitions alone. This is essentially a graph exploration algorithm that finds the nodes in a graph reachable from a given node.

2. \texttt{\textit{move}(T,a)} is the set of NFA states to which there is a transition on input symbol \(a \) from some NFA state \(s \in T \).

3. \texttt{\textit{SubsetConstruction}(N)} returns a DFA \(D=\text{\textit{Dstates}},\text{\textit{Dtrans}} \) corresponding to NFA \(N \).
procedure ϵ-closure(T)
 push all states in T onto stack
 $C := T$
 while stack is not empty do
 $t := \text{pop}(\text{stack})$
 for each edge $t \xrightarrow{\epsilon} u$ do
 if u is not in C then
 $C := C \cup u$
 push(stack, u)
 return C
\(\varepsilon\)-closure(\(T\)) – Example

\(\varepsilon\)-closure(1) = \{1, 2, 4\}

\(\varepsilon\)-closure(2) = \{2\}

\(\varepsilon\)-closure(4) = \{2, 4\}

\(\varepsilon\)-closure(\{3, 4\}) = \{2, 3, 4\}
move\((T,a)\) – Example

\[
\begin{align*}
\text{move}(&\{1\}, a) = \{2, 3\} \\
\text{move}(&\{2, 3\}, b) = \{4\}
\end{align*}
\]
procedure SubsetConstruction(NFA N)
 Dstates := \{ \epsilon\text{-closure}(s_0) \}
 Dtrans := \{
 repeat
 T := an unexplored state in Dstates
 for each input symbol \(a \) do
 U := \epsilon\text{-closure}(\text{move}(T,a))
 if \(U \) is not in Dstates then
 Dstates := Dstates \cup U
 Dtrans := Dtrans \cup (T \xrightarrow{a} U)
 until all states have been explored
 return (Dstates,Dtrans)
NFA \Rightarrow DFA

The diagram illustrates the conversion of an NFA to a DFA. The NFA has start states 1 and 3, with transitions on symbols a, b, and c. The DFA has a single start state A, with transitions on symbols a, b, and c. The unexplored state is marked as state C.
SubsetConstruction(N) – Example

1 \(\varepsilon\)-closure(1) = \{1, 2, 4\} = \text{A} \\
 \text{A} will be the DFA's start state.
Example...

\[\varepsilon\text{-closure}(\text{move}(\{A\}, a)) = \varepsilon\text{-closure}(\text{move}(\{1, 2, 4\}, a)) = \varepsilon\text{-closure}(\{2, 3\}) = \{2, 3, 4\} = B \]

- We add the transition \(A \xrightarrow{a} B\)
Example...

\[\epsilon\text{-closure}(\text{move}(A, b)) = \epsilon\text{-closure}(\text{move}([1, 2, 4], b)) = \epsilon\text{-closure}([4]) = [2, 4] = C \]

- We add the transition \(A \xrightarrow{b} C \)
\[\epsilon - \text{closure}(\text{move}(B, b)) = \epsilon - \text{closure}(\text{move}([2, 3, 4], b)) = \epsilon - \text{closure}([4]) = [2, 4] = C \]

We add the transition \(B \xrightarrow{b} C \).
Example...

\[\varepsilon\text{-closure}(\text{move}(C, b)) = \varepsilon\text{-closure}(\text{move}(\{2, 4\}, b)) = \varepsilon\text{-closure}(\{2, 4\}) = \{2, 4\} = C \]

- We add the transition \(C \xrightarrow{b} C \)
A slightly different approach is to generate the power-set of the set of NFA states, and then add all the edges we get from ϵ-closure().
On ϵ we can go to states 1, 2, 4 which becomes our start state, A.
From states $1, 2, 4$ we can go to states $2, 3, 4$ on an a.
Example, Take 2...

From states 1, 2, 4 we can go to states 2, 4 on a b.
Example, Take 2...

- From states 2, 3, 4 we can go to states 2, 4 on a b.
Example, Take 2...

- From states ②, ④ we can go to states ②, ④ on a b.
Finally, removing unreachable states gives us our DFA.
Keywords
Keywords revisited

- For a language with many keywords (Ada-95 has 98, COBOL has hundreds), the transition table can be large.

- We can remove all keywords from the transition table and instead analyze them as IDENTs.

- When an IDENT is found we look it up in a special table to see if it is, in fact, a reserved word.

- We can use a regular hash-table, of course, but if we’re concerned about speed we can use a minimal perfect hash-table. This is a static table and related lookup routines that have been optimized for a particular static set of words.
Keywords revisited...

For example, we could build this perfect hash-table for the words LUCA, MODULA-2, OBERON:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LUCA</td>
</tr>
<tr>
<td>1</td>
<td>MODULA-2</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OBERON</td>
</tr>
</tbody>
</table>

```java
int hash(String s) { return s[0] - 'L'; }
boolean member(String s) { return table[hash(s)] = s; }
```

In this case we use the first character of the string as the hash-value.

This is not a **minimal** table, there’s one wasted entry.
Using Unix gperf

- gperf (http://www.gnu.org/manual/gperf-2.7) is a Unix program that takes a list of keywords as input and returns a perfect hash-table (and related search routines) as output.

- From the gperf manual:

 The perfect hash function generator gperf reads a set of "keywords" from a keyfile. It attempts to derive a perfect hashing function that recognizes a member of the static keyword set with at most a single probe into the lookup table. If gperf succeeds in generating such a function it produces a pair of C source code routines that perform hashing and table lookup recognition.
The following command

```
> echo "BEGIN\nEND" | gperf -L ANSI-C
```

generates the C program below.

```c
/* ANSI-C code produced by gperf version 2.7 */
#define TOTAL_KEYWORDS 2
#define MIN_WORD_LENGTH 3
#define MAX_WORD_LENGTH 5
#define MIN_HASH_VALUE 3
#define MAX_HASH_VALUE 5
```
static unsigned int hash (register const char *str, register unsigned int len) {
 static unsigned char asso_values[] = {
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 <--- Lots more stuff like this --->
 };
 return len + asso_values[(unsigned char)str[len - 1]] +
 asso_values[(unsigned char)str[0]];
}
const char * in_word_set (
 register const char *str,
 register unsigned int len) {
 static const char * wordlist[] = {
 "", "", "", "END", "", "BEGIN"};

 if (len<=MAX_WORD_LENGTH && len>=MIN_WORD_LENGTH) {
 register int key = hash (str, len);
 if (key <= MAX_HASH_VALUE && key >= 0) {
 register const char *s = wordlist[key];
 if (*str == *s && !strcmp (str + 1, s + 1)) return
 }
 }
 return 0;
}

In this particular case, the hash function only looks at the first and last characters of the string, as well as the string length.
Summary
The problem with table-driven methods is that the tables can easily get huge. Much work has gone into constructing table-compression algorithms, and data structures for sparse tables. See the Dragon book for details.

There are also many algorithms for minimizing the number of states in a DFA. See Louden, pp. 72–74.
Read Louden, pp. 31–80.

Or, read the Dragon book, pp. 83–140.

An interview with Ken Thompson:

His Turing award lecture (*Reflections on Trusting Trust)*:

http://www.acm.org/classics/sep95/.

The next slide shows how you insert a Trojan Horse in the C compiler.
compile (String S)
 if (we’re compiling "login.c")
 GENERATE_CODE(
 if (user=="collberg" && passwd="D. Troi")
 login_ok = true
)
 if (we’re compiling "gcc.c")
 GENERATE_CODE(
 if (we’re compiling "login.c")
 GENERATE_CODE(
 if (user=="collberg" && passwd="D. Troi")
 login_ok = true
)
)