Higher-Order Functions

- A function is Higher-Order if it takes a function as an argument or returns one as its result.
- Higher-order functions aren’t weird; the differentiation operation from high-school calculus is higher-order:

\[
\text{deriv :: (Float->Float)->Float->Float} \\
\text{deriv } f \ x = (f(x+dx) - f \ x)/0.0001
\]

- Many recursive functions share a similar structure. We can capture such “recursive patterns” in a higher-order function.
- We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

Currying Revisited

- We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

 Uh, what was this currying thing?

- A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.

How is a curried function defined?

- A curried function of \(n \) arguments (of types \(t_1,t_2,\ldots,t_n \)) that returns a value of type \(t \) is defined like this:

\[
\text{fun :: } t_1 \to t_2 \to \cdots \to t_n \to t
\]

- This is sort of like defining \(n \) different functions (one for each \(\to \)). In fact, we could define these functions explicitly, but that would be tedious:

\[
\text{fun}_1 :: t_2 \to \cdots \to t_n \to t \\
\text{fun}_1 \ a_2 \cdots a_n = \cdots
\]

\[
\text{fun}_2 :: t_3 \to \cdots \to t_n \to t \\
\text{fun}_2 \ a_3 \cdots a_n = \cdots
\]
Currying Revisited...

Duh, how about an example?

Certainly. Let's define a recursive function \(\text{get_nth\ n\ xs} \) which returns the \(n \)th element from the list \(xs \):

\[
\begin{align*}
\text{get_nth\ 1\ (x:_)} &= x \\
\text{get_nth\ n\ (_::xs)} &= \text{get_nth\ (n-1)\ xs}
\end{align*}
\]

\(\text{get_nth\ 10\ "Bartholomew"} \Rightarrow \text{"e"} \)

Now, let's use \(\text{get_nth} \) to define functions \(\text{get_second}, \text{get_third}, \text{get_fourth}, \) and \(\text{get_fifth} \), without using explicit recursion:

\[
\begin{align*}
\text{get_second} &= \text{get_nth\ 2} \\
\text{get_third} &= \text{get_nth\ 3} \\
\text{get_fourth} &= \text{get_nth\ 4} \\
\text{get_fifth} &= \text{get_nth\ 5}
\end{align*}
\]

So, what's the type of \(\text{get_second} \)?

Remember the Rule of Cancellation?

The type of \(\text{get_nth} \) is \(\text{Int} \rightarrow [\text{a}] \rightarrow \text{a} \).

\(\text{get_second} \) applies \(\text{get_nth} \) to one argument. So, to get the type of \(\text{get_second} \) we need to cancel \(\text{get_nth} \)'s first type: \(\text{Int} \rightarrow [\text{a}] \rightarrow \text{a} \equiv [\text{a}] \rightarrow \text{a} \).

Patterns of Computation

Mappings

Apply a function \(f \) to the elements of a list \(L \) to make a new list \(L' \). Example: Double the elements of an integer list.

Selections

Extract those elements from a list \(L \) that satisfy a predicate \(p \) into a new list \(L' \). Example: Extract the even elements from an integer list.

Folds

Combine the elements of a list \(L \) into a single element using a binary function \(f \). Example: Sum up the elements in an integer list.

The map Function

map takes two arguments, a function and a list. map creates a new list by applying the function to each element of the input list.

map's first argument is a function of type \(\text{a} \rightarrow \text{b} \). The second argument is a list of type \([\text{a}] \). The result is a list of type \([\text{b}] \).

\[
\begin{align*}
\text{map} &\quad :\quad (\text{a} \rightarrow \text{b}) \rightarrow [\text{a}] \rightarrow [\text{b}] \\
\text{map}\ f\ [\] &= [\] \\
\text{map}\ f\ (x::xs) &= f\ x:\ \text{map}\ f\ xs
\end{align*}
\]

We can check the type of an object using the :type command. Example: :type map.
The map Function...

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

inc x = x + 1

map inc [1,2,3,4] ⇒ [2,3,4,5]

Simulation:
map square [5,6] ⇒
square 5 : map square [6] ⇒
25 : map square [6] ⇒
25 : (square 6 : map square []) ⇒
25 : (36 : map square []) ⇒
25 : [36] ⇒
[25,36]

The filter Function

Filter takes a predicate p and a list L as arguments. It returns a list L' consisting of those elements from L that satisfy p.

- The predicate p should have the type a -> Bool, where a is the type of the list elements.

Examples:
filter even [1..10] ⇒ [2,4,6,8,10]
filter even (map square [2..5]) ⇒
filter even [4,9,16,25] ⇒ [4,16]
filter gt10 [2,5,9,11,23,114]
 where gt10 x = x > 10 ⇒ [11,23,114]
The filter Function...

We can define filter using either recursion or list comprehension.

Using recursion:

\[
\text{filter} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
\]
\[
\text{filter} _ _ [] = []
\]
\[
\text{filter} _ p (x:xs)
| \ p x = x \ + \ + \ \text{filter} \ p \ xs
| \ otherwise = \ \text{filter} \ p \ xs
\]

Using list comprehension:

\[
\text{filter} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
\]
\[
\text{filter} \ p \ xs = [x \ | \ x <- xs, p x]
\]

 doublyPos doubles the positive integers in a list.

\begin{align*}
\text{getEven} :: \ [\text{Int}] & \rightarrow \ [\text{Int}] \\
\text{getEven} \ xs &= \text{filter} \ \text{even} \ xs \\
\text{doublePos} :: \ [\text{Int}] & \rightarrow \ [\text{Int}] \\
\text{doublePos} \ xs &= \text{map} \ \text{dbl} \ (\text{filter} \ \text{pos} \ xs) \\
& \quad \text{where} \ \text{dbl} \ x = 2 \ * \ x \\
& \quad \ \text{pos} \ x = x > 0
\end{align*}

Simulations:

\begin{align*}
\text{getEven} \ [1,2,3] &= [2] \\
\text{doublePos} \ [1,2,3,4] &= [2,4,8]
\end{align*}

fold Functions

A common operation is to combine the elements of a list into one element. Such operations are called reductions or accumulations.

Examples:

\begin{align*}
\text{sum} \ [1,2,3,4,5] &= (1 + (2 + (3 + (4 + (5 + 0)))))) = 15 \\
\text{concat} \ ["H","i","!"] &= ("H" ++ ("i" ++ ("!" ++ ""))) = "Hi!"
\end{align*}

Notice how similar these operations are. They both combine the elements in a list using some binary operator (+, ++), starting out with a “seed” value (0, "").
fold Functions...

- Gofer provides a function `foldr` ("fold right") which captures this pattern of computation.
- `foldr` takes three arguments: a function, a seed value, and a list.

Examples:

\[
\text{foldr} (+) 0 [1,2,3,4,5] \Rightarrow 15 \\
\text{foldr} (++) "" [""H",""i",""!""] \Rightarrow "Hi!"
\]

\[
\text{foldr} :: (a\rightarrow b\rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\
\text{foldr} f z [] = z \\
\text{foldr} f z (x:xs) = f x (\text{foldr} f z xs)
\]

- Remember that `foldr` binds from the right:

\[
\text{foldr} (+) 0 [1,2,3] \Rightarrow (1+(2+(3+0)))
\]

- There is another function `foldl` that binds from the left:

\[
\text{foldl} (+) 0 [1,2,3] \Rightarrow (((0+1)+2)+3)
\]

- In general:

\[
\text{foldl}(\oplus)z[x_1\ldots x_n] = (z \oplus x_1) \oplus (x_2 \oplus \ldots \oplus x_n)
\]

fold Functions...

- Note how the fold process is started by combining the last element \(x_n\) with \(z\). Hence the name \textit{seed}.

\[
\text{foldr}(\oplus)z[x_1\ldots x_n] = (x_1 \oplus (x_2 \oplus \cdots (x_n \oplus z)))
\]

- Several functions in the standard prelude are defined using `foldr`:

\[
\text{and,or} :: [\text{Bool}] \rightarrow \text{Bool} \\
\text{and} \; xs = \text{foldr} (&&) \text{True} \; xs \\
\text{or} \; xs = \text{foldr} (||) \text{False} \; xs \\
? \; [\text{True,FALSE,FALSE}] \\
\text{foldr} (||) \text{False} \; [\text{True,FALSE,FALSE}] \Rightarrow \text{True} \\
\text{True} || (\text{False} || (\text{False} || \text{False})) \Rightarrow \text{True}
\]

fold Functions...

- In the case of \((+)\) and many other functions

\[
\text{foldl}(\oplus)z[x_1\ldots x_n] = \text{foldr}(\oplus)z[x_1\ldots x_n]
\]

- However, one version may be more efficient than the other.
fold Functions...

\[
\begin{align*}
\text{foldr } \oplus \; z \; [x_1 \cdots x_n] \\
\text{foldl } \oplus \; z \; [x_1 \cdots x_n]
\end{align*}
\]

Operator Sections

- We've already seen that it is possible to use operators to construct new functions:

\[
\begin{align*}
(*2) & \quad \text{function that doubles its argument} \\
(>2) & \quad \text{function that returns True for numbers > 2.}
\end{align*}
\]

- Such partially applied operators are known as operator sections. There are two kinds:

\[
\begin{align*}
(a \; \text{op}) \; b & = a \; \text{op} \; b \\
(\text{op a}) \; b & = b \; \text{op} \; a
\end{align*}
\]

\[
\begin{align*}
(*2) 4 & = 4 \times 2 = 8 \\
(>2) 4 & = 4 > 2 = \text{True} \\
(\text{++ "\n"}) "Bart" & = "Bart" \text{ \texttt{++ \"\n\"}}
\end{align*}
\]

Operator Sections...

\[
\begin{align*}
(a \; \text{op}) \; b & = a \; \text{op} \; b \\
(3:) & \quad [1,2] = 3 : [1,2] = [3,1,2] \\
(0<) & \quad 5 = 0 < 5 = \text{True} \\
(1/) & \quad = 1/5
\end{align*}
\]

Examples:

\[
\begin{align*}
(+1) & \quad \text{The successor function}. \\
(/2) & \quad \text{The halving function}. \\
(:[]) & \quad \text{The function that turns an element into a singleton list.}
\end{align*}
\]

More Examples:

\[
\begin{align*}
? \quad \text{filter (0<)} \; (\text{map (+1)} \; [-2,-1,0,1]) \\
& \quad [-1]
\end{align*}
\]

takeWhile & dropWhile

- We've looked at the list-breaking functions drop & take:

\[
\begin{align*}
\text{take 2} \; ['a','b','c'] & \Rightarrow ['a','b'] \\
\text{drop 2} \; ['a','b','c'] & \Rightarrow ['c']
\end{align*}
\]

- takeWhile and dropWhile are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.

\[
\begin{align*}
\text{takeWhile even} \; [2,4,6,5,7,4,1] & \Rightarrow [2,4,6] \\
\text{dropWhile even} \; [2,4,6,5,7,4,1] & \Rightarrow [5,7,4,1]
\end{align*}
\]
Summary

- Higher-order functions take functions as arguments, or return a function as the result.
- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called **partial application**.
- **Operator sections** are partially applied infix operators.

The standard prelude contains many useful higher-order functions:

- `map f xs` creates a new list by applying the function `f` to every element of a list `xs`.
- `filter p xs` creates a new list by selecting only those elements from `xs` that satisfy the predicate `p` (i.e. `(p x) should return True`).
- `foldr f z xs` reduces a list `xs` down to one element, by applying the binary function `f` to successive elements, starting from the right.
- `scanl/scanr f z xs` perform the same functions as `foldr/foldl`, but instead of returning only the ultimate value they return a list of all intermediate results.
Homework

Homework (a):
- Define the map function using a list comprehension.

Template:
map f x = [... | ...]

Homework (b):
- Use map to define a function lengthall xss which takes a list of strings xss as argument and returns a list of their lengths as result.

Examples:
? lengthall ["Ay", "Caramba!"]
[2,8]

1. Give a accumulative recursive definition of foldl.
2. Define the minimum xs function using foldr.
3. Define a function sumsq n that returns the sum of the squares of the numbers [1,…n]. Use map and foldr.
4. What does the function mystery below do?

mystery xs =
 foldr (+) [] (map sing xs)
sing x = [x]

Examples:
minimum [3,4,1,5,6,3] \(\Rightarrow\) 1

Homework...

- Define a function zipp f xs ys that takes a function f and two lists xs=[x_1,…,x_n] and ys=[y_1,…,y_n] as argument, and returns the list [f x_1 y_1,…,f x_n y_n] as result.
- If the lists are of unequal length, an error should be returned.

Examples:
zipp (+) [1,2,3] [4,5,6] \(\Rightarrow\) [5,7,9]
zipp (==) [1,2,3] [4,2,2] \(\Rightarrow\) [False,True,True]
zipp (==) [1,2,3] [4,2] \(\Rightarrow\) ERROR

Homework

- Define a function filterFirst p xs that removes the first element of xs that does not have the property p.

Example:
filterFirst even [2,4,6,5,6,8,7] \(\Rightarrow\) [2,4,6,6,8,7]

- Use filterFirst to define a function filterLast p xs that removes the last occurrence of an element of xs without the property p.

Example:
filterLast even [2,4,6,5,6,8,7] \(\Rightarrow\) [2,4,6,5,6,8]