CSc 520
Principles of Programming Languages

14: Haskell — Recursion

Christian Collberg
collberg@cs.arizona.edu

Department of Computer Science
University of Arizona

Copyright © 2005 Christian Collberg

Stack Recursion

- The dots function returns a string consisting of n dots.
- The dots are “stacked” until we reach the terminating arm of the recursion. \(O(n)\) items are stored on the stack.

\[
dots 0 = ""
dots n = "." ++ dots (n-1)
\]

\[
dots 3 \Rightarrow "." ++ dots 2 \Rightarrow "." ++ ("." ++ dots 1) \Rightarrow "." ++ ("." ++ ("." ++ dots 0)) \Rightarrow "." ++ ("." ++ ("." ++ "")) \Rightarrow "." ++ ("." ++ ".") \Rightarrow "." ++ "." \Rightarrow "."
\]

Accumulative Recursion

- We can sometimes get a more efficient solution by giving the function one extra argument, the accumulator, which is used to gather the final result.
- We will need to use an extra function.
- In the case of the dots function, the stack recursive definition is actually more efficient.

\[
dots n = dots\' n ""
dots\' 0 acc = acc
dots\' n acc = dots\' (n-1) (acc ++ ".")
\]

\[
dots 3 \Rightarrow
dots\' 3 "." \Rightarrow
dots\' 2 ("" ++ ".") \Rightarrow dots\' 2 ("." ++ dots\' 1 ".") \Rightarrow
dots\' 1 ("." ++ ".") \Rightarrow dots\' 1 ("." ++ dots\' 0 ".") \Rightarrow
dots\' 0 ("." ++ ".") \Rightarrow dots\' 0 ("." ++ dots\' 0 "." ++ "") \Rightarrow "."
\]
Stack vs. Accumulative Recursion

Notice how with stack recursion we’re building the result on the way back up through the layers of recursion.

This means that for each recursive call many arguments have to be “stacked”, until they can be used on the way back up.

With accumulative recursion we’re instead building the result on the way down.

Once we’re at the bottom of the recursion (when the base case has been reached) the result is ready and only needs to be passed up through the layers of recursion.

Stack Recursion Over Lists

Stack recursive functions all look very much alike.

All we need to do is to fill in the template below with the appropriate values and functions.

\[f \text{ [] } = \text{final_val} \]
\[f \text{ (x:xs)} = \text{combine} \ (\text{do x}) \ (f \text{ xs}) \]

Template:

\[f \text{ [] } = \text{final_val} \]
\[f \text{ (x:xs)} = \text{combine} \ (\text{do x}) \ (f \text{ xs}) \]

Stack Recursion Over Lists...

\[f \text{ [] } = \text{final_val} \]
\[f \text{ (x:xs)} = \text{combine} \ (\text{do x}) \ (f \text{ xs}) \]

sumlist :: [Int] -> Int
sumlist [] = 0
sumlist (x:xs) = x + sumlist xs

final_val=0; do x = x; combine="+

double :: [Int] -> [Int]
double [] = []
double (x:xs) = 2*x : double xs

final_val=[]; do x = 2*x; combine=":
Accumulative Recursion Over Lists

- **main** calls **aux**, the function that does the actual work.
- **main** passes along **init_val**, the value used to initiate the accumulator.
- **do** is the operation we want to apply to every element of the list.
- **combine** is the operation we want to use to combine the value computed from the head of the list with the accumulator.

Template:

main xs = aux xs init_val

aux [] acc = acc
aux (x:xs) acc = aux xs (combine do x acc)

Example sumlist:

sumlist xs = sumlist’ xs 0

sumlist’ [] acc = acc
sumlist’ (x:xs) acc = sumlist’ xs (x + acc)

init_val=0; do x = x;
combine="+">

Accumulative Recursion Over Lists...

Example maxlist:

maxlist [] = error("...")
maxlist (x:xs) = maxlist’ xs x

maxlist’ [] acc = acc
maxlist’ (x:xs) acc = maxlist’ xs (max x a)

init_val=head xs; do x = x;
combine="max"

The reverse Function

"The reverse of an empty list is the empty list. The reverse of a list (x:xs) is the reverse of xs followed by x."

Examples:

reverse [1,2] ⇒
reverse [2] ++ [1] ⇒
(reverse [] ++ [2]) ++ [1] ⇒
([], [] ++ [2]) ++ [1] ⇒
[2] ++ [1] ⇒ [2,1]

In Haskell:

reverse :: [Int] -> [Int]
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]
The reverse Function...

reverse [1,2,3,4] ⇒
reverse [2,3,4] ++ [1] ⇒
 (reverse [3,4] ++ [2]) ++ [1] ⇒
 ((reverse [4] ++ [3]) ++ [2]) ++ [1] ⇒
 (((reverse [] ++ [4]) ++ [3]) ++ [2]) ++ [1] ⇒
 (((reverse [] ++ [4]) ++ [3]) ++ [2]) ++ [1] ⇒
 (reverse [] ++ [4]) ++ [3] ++ [2] ++ [1] ⇒
 ([4,3,2] ++ [1] ⇒
 [4,3,2,1]

Each list append A ++ B takes $O(\text{length } A)$ time.

There are $O(n)$ applications of reverse, where n is the length of the list. Each application invokes append on a list of length $O(n)$. Total time = $O(n^2)$.

We can devise a more efficient solution by using accumulative recursion.

At each step we tack the first element of the remaining list on to the beginning of the accumulator.

Examples:

reverse [1,2] ⇒
 reverse’ [1,2] [] ⇒
 reverse’ [2] (1:[]) ⇒
 reverse’ [] (2:[]) ⇒ [2,1]

In Haskell:

\[
\text{reverse } \text{xs} = \text{rev } \text{xs} [] \\
\text{rev } [] \text{ acc} = \text{acc} \\
\text{rev } (x:x:\text{xs}) \text{ acc} = \text{rev } \text{xs} (x:\text{acc})
\]
Summary

- Accumulative recursion uses an extra parameter in which we collect new information as we go deeper into the recursion. The computed value is returned unchanged back up through the layers of recursion.
- Stack recursion performs much of the work on the way back up through the layers of recursion.
- Accumulative recursion is often more efficient than stack recursion.

Homework

- occurs x xs returns the number of times the item x occurs in the list xs.

1. Write a stack recursive definition of occurs.
2. Write an accumulative recursive definition of occurs.
3. Try the two definitions with a large list as input. How many cells/reductions do they use?

 Template:

 occurs :: Int -> [Int] -> Int

 Examples:

 ? occurs 1 [3,1,4,5,1,1,2,1]
 4