Higher-Order Functions

A function is Higher-Order if it takes a function as an argument or returns one as its result.

Higher-order function aren’t weird; the differentiation operation from high-school calculus is higher-order:

\[
\text{deriv} :: (\text{Float} \to \text{Float}) \to \text{Float} \to \text{Float}
\]

\[
\text{deriv}\ f\ x = (f(x+dx) - f\ x)/0.0001
\]

Many recursive functions share a similar structure. We can capture such “recursive patterns” in a higher-order function.

We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

Currying Revisited

We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

Uh, what was this currying thing?

A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.

How is a curried function defined?

A curried function of \(n\) arguments (of types \(t_1, t_2, \ldots, t_n\)) that returns a value of type \(t\) is defined like this:

\[
\text{fun} :: t_1 \to t_2 \to \cdots \to t_n \to t
\]

This is sort of like defining \(n\) different functions (one for each \(\to\)). In fact, we could define these functions explicitly, but that would be tedious:

\[
\text{fun}_1 :: t_2 \to \cdots \to t_n \to t
\]

\[
\text{fun}_1\ a_2 \cdots a_n = \cdots
\]

\[
\text{fun}_2 :: t_3 \to \cdots \to t_n \to t
\]

\[
\text{fun}_2\ a_3 \cdots a_n = \cdots
\]
Currying Revisited...

Duh, how about an example?

Certainly. Let's define a recursive function \(\text{get_nth} \ n \ \text{xs} \) which returns the \(n \):th element from the list \(\text{xs} \):

\[
\begin{align*}
\text{get_nth} \ 1 \ (x::_) &= x \\
\text{get_nth} \ n \ (_::\text{xs}) &= \text{get_nth} \ (n-1) \ \text{xs}
\end{align*}
\]

\(\text{get_nth} \ 10 \ "\text{Bartholomew}" \Rightarrow 'e' \)

Now, let's use \(\text{get_nth} \) to define functions \(\text{get_second} \), \(\text{get_third} \), \(\text{get_fourth} \), and \(\text{get_fifth} \), without using explicit recursion:

\[
\begin{align*}
\text{get_second} &= \text{get_nth} \ 2 \\
\text{get_third} &= \text{get_nth} \ 3 \\
\text{get_fourth} &= \text{get_nth} \ 4 \\
\text{get_fifth} &= \text{get_nth} \ 5
\end{align*}
\]

Patterns of Computation

Mappings

Apply a function \(f \) to the elements of a list \(L \) to make a new list \(L' \). Example: Double the elements of an integer list.

Selections

Extract those elements from a list \(L \) that satisfy a predicate \(p \) into a new list \(L' \). Example: Extract the even elements from an integer list.

Folds

Combine the elements of a list \(L \) into a single element using a binary function \(f \). Example: Sum up the elements in an integer list.

The \(\text{map} \) Function

\(\text{map} \) takes two arguments, a function and a list. \(\text{map} \) creates a new list by applying the function to each element of the input list.

\(\text{map} \)’s first argument is a function of type \(\text{a} \to \text{b} \). The second argument is a list of type \(\text{[a]} \). The result is a list of type \(\text{[b]} \).

\[
\begin{align*}
\text{map} \ : & \quad (a \to b) \to [a] \to [b] \\
\text{map} \ f \ [\] &= [\] \\
\text{map} \ f \ (x::xs) &= f \ x : \ \text{map} \ f \ xs
\end{align*}
\]

We can check the type of an object using the \texttt{:type} command. Example: \texttt{:type map}.

Currying Revisited...

get_fifth "\text{Bartholomew}" \Rightarrow 'h'

map (get_nth 3) "\text{mob},"\text{sea},"\text{tar},"\text{bat}" \Rightarrow "\text{bart}"

So, what's the type of \(\text{get_second} \)?

Remember the Rule of Cancellation?

The type of \(\text{get_nth} \) is \(\text{Int} \to [\text{a}] \to \text{a} \).

\(\text{get_second} \) applies \(\text{get_nth} \) to one argument. So, to get the type of \(\text{get_second} \) we need to cancel \(\text{get_nth} \)'s first type: \(\text{Int} \to [\text{a}] \to \text{a} \equiv [\text{a}] \to \text{a} \).
The map Function

\[
\text{map} :: (a \to b) \to [a] \to [b] \\
\text{map } f \ [\] = [\] \\
\text{map } f \ (x:xs) = f \ x : \text{map } f \ xs \\
\text{inc } x = x + 1 \\
\text{map inc } [1,2,3,4] \Rightarrow [2,3,4,5]
\]

Simulation:

\[
\text{map square } [5,6] \Rightarrow \\
\text{square 5 : map square } [6] \Rightarrow \\
25 : \text{map square } [6] \Rightarrow \\
25 : (\text{square 6 : map square } [\]) \Rightarrow \\
25 : (36 : \text{map square } [\]) \Rightarrow \\
25 : [36] \Rightarrow \\
[25,36]
\]

The filter Function

- Filter takes a predicate \(p \) and a list \(L \) as arguments. It returns a list \(L' \) consisting of those elements from \(L \) that satisfy \(p \).
- The predicate \(p \) should have the type \(a \to \text{Bool} \), where \(a \) is the type of the list elements.

Examples:

\[
\begin{align*}
\text{filter even } [1..10] & \Rightarrow [2,4,6,8,10] \\
\text{filter even } (\text{map square } [2..5]) & \Rightarrow [4,9,16,25] \\
\text{filter gt10 } [2,5,9,11,23,114] & \Rightarrow [11,23,114]
\end{align*}
\]
We can define `filter` using either recursion or list comprehension.

Using recursion:

```haskell
filter :: (a -> Bool) -> [a] -> [a]
f \_ \_ = []
filter p (x:xs)
  | p x = x : filter p xs
  | otherwise = filter p xs
```

Using list comprehension:

```haskell
filter :: (a -> Bool) -> [a] -> [a]
filter p [x | x <- xs, p x]
```

Examples:

- `filter even [1,2,3,4] ⇒ [2,4]`

`doublePos` doubles the positive integers in a list.

```haskell
doublePos :: [Int] -> [Int]
doublePos xs = map dbl (filter pos xs)
  where dbl x = 2 * x
        pos x = x > 0
```

Simulations:

- `getEven [1,2,3] ⇒ [2]`
- `doublePos [1,2,3,4] ⇒ [2,4]`
Haskell provides a function `foldr` ("fold right") which captures this pattern of computation. `foldr` takes three arguments: a function, a seed value, and a list.

Examples:

```haskell
foldr (+) 0 [1,2,3,4,5] \Rightarrow 15
foldr (++) "" ["H","i","!"] \Rightarrow "Hi!"
```

`foldr`:

```haskell
foldr :: (a->b->b) -> b -> [a] -> b
foldr f z [ ] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

Remember that `foldr` binds from the right:

```haskell
foldr (+) 0 [1,2,3] \Rightarrow (1+(2+(3+0)))
```

There is another function `foldl` that binds from the left:

```haskell
foldl (+) 0 [1,2,3] \Rightarrow (((0+1)+2)+3)
```

In general:

```haskell
foldl(\oplus)z[x_1 \ldots x_n] = foldr(\oplus)z[x_1 \ldots x_n]
```

However, one version may be more efficient than the other.
fold Functions...

\[
\begin{align*}
 \text{foldr } \oplus z [x_1 \cdots x_n] & \quad \text{foldl } \oplus z [x_1 \cdots x_n]
\end{align*}
\]

Operator Sections

- We’ve already seen that it is possible to use operators to construct new functions:

\[
\begin{align*}
 (*2) & \quad \text{function that doubles its argument} \\
 (>2) & \quad \text{function that returns True for numbers > 2.}
\end{align*}
\]

- Such partially applied operators are known as operator sections. There are two kinds:

\[
\begin{align*}
 (\text{op } a) b &= b \text{ op } a \\
 (*2) 4 &= 4 \times 2 = 8 \\
 (>2) 4 &= 4 > 2 = \text{True} \\
 (++ "\n") "Bart" &= "Bart" ++ "\n"
\end{align*}
\]

Operator Sections...

\[
\begin{align*}
 (a \text{ op } b) &= a \text{ op } b \\
 (3:) & \quad [1,2] = 3 : [1,2] = [3,1,2] \\
 (0<) & \quad 5 = 0 < 5 = \text{True} \\
 (1/) & \quad = 1/5
\end{align*}
\]

Examples:

- \((+1) \) – The successor function.
- \((/2) \) – The halving function.
- \((\cdot[]) \) – The function that turns an element into a singleton list.

More Examples:

\[
\begin{align*}
 ?\ & \text{filter} \ (0<) \ (\text{map} \ (+1) \ [-2,-1,0,1]) \\
 & \text{map} \ (+1) \ [-2,-1,0,1]) = [-1]
\end{align*}
\]

takeWhile & dropWhile

- We’ve looked at the list-breaking functions \(\text{drop} \) & \(\text{take} \):

\[
\begin{align*}
 \text{take} 2 \ ['a','b','c'] & \Rightarrow ['a','b'] \\
 \text{drop} 2 \ ['a','b','c'] & \Rightarrow ['c']
\end{align*}
\]

- \(\text{takeWhile} \) and \(\text{dropWhile} \) are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.

\[
\begin{align*}
 \text{takeWhile even} \ [2,4,6,5,7,4,1] & \Rightarrow [2,4,6] \\
 \text{dropWhile even} \ [2,4,6,5,7,4,1] & \Rightarrow [5,7,4,1]
\end{align*}
\]
Summary

- Higher-order functions take functions as arguments, or return a function as the result.
- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called **partial application**.
- **Operator sections** are partially applied infix operators.

The standard prelude contains many useful higher-order functions:

- **map f xs** creates a new list by applying the function f to every element of a list xs.
- **filter p xs** creates a new list by selecting only those elements from xs that satisfy the predicate p (i.e. $(p \ x)$ should return `True`).
- **foldr f z xs** reduces a list xs down to one element, by applying the binary function f to successive elements, starting from the right.
- **scanl/scanr f z xs** perform the same functions as foldr/foldl, but instead of returning only the ultimate value they return a list of all intermediate results.
Homework

Homework (a):
- Define the map function using a list comprehension.

Template:
map f x = [⋯ | ⋯]

Homework (b):
- Use map to define a function lengthall xss which takes a list of strings xss as argument and returns a list of their lengths as result.

Examples:
> lengthall ["Ay", "Caramba!"]
[2, 8]

Homework

1. Give a accumulative recursive definition of foldl.
2. Define the minimum xs function using foldr.
3. Define a function sumsq n that returns the sum of the squares of the numbers [1⋯n]. Use map and foldr.
4. What does the function mystery below do?

```
mystery xs = foldr (++) [] (map sing xs)
sing x = [x]
```

Examples:
```
minimum [3, 4, 1, 5, 6, 3] ⇒ 1
```

Homework

Define a function zipp f xs ys that takes a function f and two lists xs=[x₁,⋯,xₙ] and ys=[y₁,⋯,yₙ] as argument, and returns the list [f x₁ y₁,⋯,f xₙ yₙ] as result.

If the lists are of unequal length, an error should be returned.

Examples:
```
zipp (+) [1, 2, 3] [4, 5, 6] ⇒ [5, 7, 9]
zipp (==) [1, 2, 3] [4, 2, 2] ⇒ [False, True, True]
zipp (==) [1, 2, 3] [4, 2] ⇒ ERROR
```

Homework

Define a function filterFirst p xs that removes the first element of xs that does not have the property p.

Example:
```
filterFirst even [2, 4, 6, 5, 6, 8, 7] ⇒ [2, 4, 6, 6, 8, 7]
```

Use filterFirst to define a function filterLast p xs that removes the last occurrence of an element of xs without the property p.

Example:
```
filterLast even [2, 4, 6, 5, 6, 8, 7] ⇒ [2, 4, 6, 5, 6, 8]
```