Constructing Lists

- The most important data structure in Scheme is the list.
- Lists are constructed using the function `cons`:

  ```scheme
  (cons first rest)
  ```

 `cons` returns a list where the first element is `first`, followed by the elements from the list `rest`.

  ```scheme
  > (cons 'a ()
  (a)
  > (cons 'a (cons 'b ()])
  (a b)
  > (cons 'a (cons 'b (cons 'c ()]))
  (a b c)
  ```

Examining Lists

- There are a variety of short-hands for constructing lists.
- Lists are heterogeneous, they can contain elements of different types, including other lists.

  ```scheme
  > '(a b c)
  (a b c)
  > (list 'a 'b 'c)
  (a b c)
  > '(l a "hello")
  (l a "hello")
  ```

  ```scheme
  > (car '(a b c))
  'a
  > (cdr '(a b c))
  '(b c)
  ```
Examining Lists...

Note that (cdr L) always returns a list.

> (car (cdr '(a b c)))
'b
> (cdr '(a b c))
'(b c)
> (cdr (cdr '(a b c)))
'(c)
> (cdr (cdr (cdr '(a b c))))
'(a)
> (cdr (cdr (cdr (cdr '(a b c)))))
error

Lists of Lists

Any S-expression is a valid list in Scheme.
That is, lists can contain lists, which can contain lists, which...

> '(a (b c))
(a (b c))
> '(l "hello" ("bye" 1/4 (apple)))
(l "hello" ("bye" 1/4 (apple)))
> (caaddr '(l "hello" ("bye" 1/4 (apple))))
"bye"

Examining Lists...

A shorthand has been developed for looking deep into a list:

(c list of "a" and "d" r L)

Each "a" stands for a car, each "d" for a cdr.
For example, (caddar L) stands for

(car (cdr (cdr (car L))))

> (cadr '(a b c))
'b
> (cddr '(a b c))
'(c)
> (caddr '(a b c))
'c

List Equivalence

(equal? L1 L2) does a structural comparison of two lists, returning #t if they “look the same”.
(eqv? L1 L2) does a “pointer comparison”, returning #t if two lists are “the same object”.

> (eqv? '(a b c) '(a b c))
false
> (equal? '(a b c) '(a b c))
true
List Equivalence...

- This is sometimes referred to as **deep equivalence** vs. **shallow equivalence**.

  ```scheme
  > (define myList '(a b c))
  > (eqv? myList myList)
  true
  > (eqv? '(a (b c (d))) '(a (b c (d))))
  false
  > (equal? '(a (b c (d))) '(a (b c (d))))
  true
  ```

Predicates on Lists

- `(null? L)` returns `#t` for an empty list.
- `(list? L)` returns `#t` if the argument is a list.

  ```scheme
  > (null? '())
  #t
  > (null? '(a b c))
  #f
  > (list? '(a b c))
  #t
  > (list? "(a b c)"
  #f
  ```

List Functions — Examples...

  ```scheme
  > (memq 'z '(x y z w))
  #t
  > (car (cdr (car '((a) b (c d)))))
  (c d)
  > (caddr '((a) b (c d)))
  (c d)
  > (cons 'a '())
  (a)
  > (cons 'd '(e))
  (d e)
  > (cons '(a b) '(c d))
  ((a b) (c d))
  ```

Recursion over Lists — cdr-recursion

- Compute the length of a list.
- This is called **cdr-recursion**.

  ```scheme
  (define (length x)
    (cond
     [(null? x) 0]
     [else (+ 1 (length (cdr x)))]
    )
  )
  ```

  ```scheme
  > (length '(1 2 3))
  3
  > (length '(a (b c) (d e f)))
  3
  ```
Recursion over Lists — car-cdr-recursion

- Count the number of atoms in an S-expression.
- This is called **car-cdr-recursion**.

```scheme
(define (atomcount x)
  (cond
    [(null? x) 0]
    [(list? x)
     (+ (atomcount (car x))
       (atomcount (cdr x)))]
    [else 1]]
)
```

```scheme
> (atomcount '(1))
1
> (atomcount '("hello" a b (c 1 (d))))
6
```

Recursion Over Lists — Returning a List

- Map a list of numbers to a new list of their absolute values.
- In the previous examples we returned an atom — here we’re mapping a list to a new list.

```scheme
(define (abs-list L)
  (cond
    [(null? L) '()]
    [else (cons (abs (car L))
                (abs-list (cdr L)))]
  )
)
```

```scheme
> (abs-list '(1 -1 2 -3 5))
(1 1 2 3 5)
```

Recursion Over Two Lists

- **(atom-list-eq? L1 L2)** returns #t if L1 and L2 are the same list of atoms.

```scheme
(define (atom-list-eq? L1 L2)
  (cond
    [(and (null? L1) (null? L2)) #t]
    [(or (null? L1) (null? L2)) #f]
    [else (and
           (atom? (car L1))
           (atom? (car L2))
           (eqv? (car L1) (car L2))
           (atom-list-eq? (cdr L1) (cdr L2)))]
  )
)
```

```scheme
> (atom-list-eq? '(1 2 3) '(1 2 3))
#t
> (atom-list-eq? '(1 2 3) '(1 2 a))
#f
```

Recursion Over Two Lists...

```scheme
> (atom-list-eq? '(1 2 3) '(1 2 3))
#t
> (atom-list-eq? '(1 2 3) '(1 2 a))
#f
```
Append

(define (append L1 L2)
 (cond
 [(null? L1) L2]
 [else
 (cons (car L1)
 (append (cdr L1) L2))]
)
)

> (append '(1 2) '(3 4))
(1 2 3 4)
> (append '() '(3 4))
(3 4)
> (append '(1 2) '())
(1 2)

Deep Recursion — equal?

(define (equal? x y)
 (or (and (atom? x) (atom? y) (eq? x y))
 (and (not (atom? x))
 (not (atom? y))
 (equal? (car x) (car y))
 (equal? (cdr x) (cdr y))))

> (equal? 'a 'a)
#t
> (equal? '(a) '(a))
#t
> (equal? '((a)) '((a)))
#t

Patterns of Recursion — cdr-recursion

- We process the elements of the list one at a time.
- Nested lists are not descended into.

(define (fun L)
 (cond
 [(null? L) return-value]
 [else ...(car L) ...(fun (cdr L)) ...]
)
)

Patterns of Recursion — car-cdr-recursion

- We descend into nested lists, processing every atom.

(define (fun x)
 (cond
 [(null? x) return-value]
 [(atom? x) return-value]
 [(list? x)
 ...(fun (car x)) ...
 ...(fun (cdr x)) ...]
 [else return-value]
)
)
Patterns of Recursion — Maps

Here we map one list to another.

```scheme
(define (map L)
  (cond
    [(null? L) '()] ;
    [else (cons (... (car L) ...)
      (map (cdr L)))])
)
```

Example: Binary Trees

- A binary tree can be represented as nested lists:

 \[(4 (2 () ()) (6 (5 () ()) ()()))\]

- Each node is represented by a triple

 \[(\text{data left-subtree right-subtree})\]

- Empty subtrees are represented by ()

Example: Binary Trees...

```scheme
(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

(define (print-spaces N)
  (cond
    [(= N 0) ""]
    [else (begin
      (display " ")
      (print-spaces (- N 1)))]))

(define (print-tree-rec tree D)
  (cond
    [(null? tree)]
    [else (begin
      (print-spaces D)
      (display (key tree)) (newline)
      (print-tree-rec (left tree) (+ D 1))
      (print-tree-rec (right tree) (+ D 1)))]))

> (print-tree-rec '(4 (2 () ()) (6 (5 () ()) ()())))
4
  2
  6
  5
```

Example: Binary Trees...

```scheme
(define (print-tree tree) (print-tree-rec tree 0))
```
We can use structures to define tree nodes.

```
(define-struct node (data left right))
```

```
(define (tree-member x T)
  (cond
    [(null? T) #f]
    [(= x (node-data T)) #t]
    [(< x (node-data T))
      (tree-member x (node-left T))]
    [else
      (tree-member x (node-right T))])
)
```

```
(define tree
  (make-node 4
    (make-node 2 '() '())
    (make-node 6
      (make-node 5 '() '())
      (make-node 9 '() '()))))
```

```
> (tree-member 4 tree)
true
> (tree-member 5 tree)
true
> (tree-member 19 tree)
false
```

Homework

- Write a function `swapFirstTwo` which swaps the first two elements of a list. Example: `(1 2 3 4) ⇒ (2 1 3 4).

- Write a function `swapTwoInLists` which, given a list of lists, forms a new list of all elements in all lists, with first two of each swapped. Example: `((1 2 3) (4) (5 6)) ⇒ (2 1 3 4 6 5).`