CSc 520

Principles of Programming Languages

38: Scheme — List Processing

Christian Collberg

collberg+520@gmail.com

Department of Computer Science

University of Arizona

Copyright © 2008 Christian Collberg
Constructing Lists

- The most important data structure in Scheme is the list.
- Lists are constructed using the function \texttt{cons}:

 \[
 \text{(cons first rest)}
 \]

\texttt{cons} returns a list where the first element is \texttt{first}, followed by the elements from the list \texttt{rest}.

\begin{verbatim}
> (cons 'a ()
 (a)
> (cons 'a (cons 'b ()
 (a b)
> (cons 'a (cons 'b (cons 'c ()
 (a b c)
\end{verbatim}
Constructing Lists...

There are a variety of short-hands for constructing lists.

Lists are **heterogeneous**, they can contain elements of different types, including other lists.

```
> '(a b c)
(a b c)
> (list 'a 'b 'c)
(a b c)
> '(1 a "hello")
(1 a "hello")
```
Examining Lists

- \((\text{car } L)\) returns the first element of a list. Some implementations also define this as \((\text{first } L)\).
- \((\text{cdr } L)\) returns the list \(L\), without the first element. Some implementations also define this as \((\text{rest } L)\).
- Note that \text{car} and \text{cdr} do not destroy the list, just return its parts.

\[
\begin{align*}
> (\text{car } '(a b c)) \\
'a
\end{align*}
\]

\[
\begin{align*}
> (\text{cdr } '(a b c)) \\
'(b c)
\end{align*}
\]
Examining Lists...

- Note that \(\texttt{cdr \ L} \) always returns a list.

```lisp
> (car (cdr '(a b c)))
'b
> (cdr '(a b c))
'(b c)
> (cdr (cdr '(a b c)))
'(c)
> (cdr (cdr (cdr '(a b c))))
'()
> (cdr (cdr (cdr (cdr '(a b c)))))
error
```
A shorthand has been developed for looking deep into a list:

$$\text{clist of "a" and "d"r L}$$

Each "a" stands for a car, each "d" for a cdr.

For example, $$(\text{caddar L})$$ stands for

$$(\text{car (cdr (cdr (car L)))})$$

> (cadr '(a b c))
'b
> (cddr '(a b c))
'(c)
> (caddr '(a b c))
'c
Lists of Lists

- Any S-expression is a valid list in Scheme.
- That is, lists can contain lists, which can contain lists, which...

> '(a (b c))
(a (b c))
> '(1 "hello" ("bye" 1/4 (apple)))
(1 "hello" ("bye" 1/4 (apple)))
> (caaddr '(1 "hello" ("bye" 1/4 (apple))))
"bye"
List Equivalence

- `(equal? L1 L2)` does a structural comparison of two lists, returning `#t` if they “look the same”.

- `(eqv? L1 L2)` does a “pointer comparison”, returning `#t` if two lists are “the same object”.

```
> (eqv?  '(a b c)  '(a b c))
false
> (equal?  '(a b c)  '(a b c))
true
```
List Equivalence...

This is sometimes referred to as **deep equivalence** vs. **shallow equivalence**.

```scheme
> (define myList '(a b c))
> (eqv? myList myList)
true
> (eqv? '(a (b c (d))) '(a (b c (d))))
false
> (equal? '(a (b c (d))) '(a (b c (d))))
true
```
Predicates on Lists

- `(null? L)` returns `#t` for an empty list.
- `(list? L)` returns `#t` if the argument is a list.

```
> (null? '())
#t
> (null? '(a b c))
#f
> (list? '(a b c))
#t
> (list? "(a b c)")
#f
```
List Functions — Examples...

> (memq 'z '(x y z w))
#t

> (car (cdr (car '((a) b (c d)))))
(c d)

> (caddr '((a) b (c d)))
(c d)

> (cons 'a '())
(a)

> (cons 'd '(e))
(d e)

> (cons '((a b) (c d)))
(((a b) (c d)))
Recursion over Lists — cdr-recursion

Compute the length of a list.

This is called **cdr-recursion**.

```scheme
(define (length x)
  (cond
    [(null? x) 0]
    [else (+ 1 (length (cdr x)))]
  ))

> (length '(1 2 3))
3
> (length '(a (b c) (d e f)))
3
```
Recursion over Lists — car-cdr-recursion

Count the number of atoms in an S-expression.
This is called car-cdr-recursion.

(define (atomcount x)
 (cond
 [(null? x) 0]
 [(list? x)
 [((list? x)
 (+ (atomcount (car x))
 (atomcount (cdr x)))]
 [else 1]]
)
)

> (atomcount '(1))
1
> (atomcount '("hello" a b (c 1 (d))))
6
Map a list of numbers to a new list of their absolute values.

In the previous examples we returned an atom — here we're mapping a list to a new list.

```
(define (abs-list L)
  (cond
    [(null? L) '()] ;; null case
    [else (cons (abs (car L)) ;; non-null case
              (abs-list (cdr L)))]
  )
)
```

```
> (abs-list '(1 -1 2 -3 5))
(1 1 2 3 5)
```
Recursion Over Two Lists

(\texttt{atom-list-eq? \ L1 \ L2}) \textbf{returns} \#t \textbf{if} \ L1 \textbf{ and} \ L2 \textbf{ are the same list of atoms.}

\begin{verbatim}
(define (atom-list-eq? L1 L2)
 (cond
 [(and (null? L1) (null? L2)) #t]
 [(or (null? L1) (null? L2)) #f]
 [else (and
 (atom? (car L1))
 (atom? (car L2))
 (eqv? (car L1) (car L2))
 (atom-list-eq? (cdr L1) (cdr L2)))]
)
)
\end{verbatim}
Recursion Over Two Lists...

> (atom-list-eq? '(1 2 3) '(1 2 3))
#t
> (atom-list-eq? '(1 2 3) '(1 2 a))
#f
(define (append L1 L2)
 (cond
 [(null? L1) L2]
 [else
 (cons (car L1)
 (append (cdr L1) L2))]
))

> (append '(1 2) '(3 4))
(1 2 3 4)
> (append '() '(3 4))
(3 4)
> (append '(1 2) '())
(1 2)
Deep Recursion — equal?

(define (equal? x y)
 (or (and (atom? x) (atom? y) (eq? x y))
 (and (not (atom? x))
 (not (atom? y))
 (equal? (car x) (car y))
 (equal? (cdr x) (cdr y))))

> (equal? 'a 'a)
#t
> (equal? '(a) '(a))
#t
> (equal? '((a)) '((a)))
#t
Patterns of Recursion — cdr-recursion

- We process the elements of the list one at a time.
- Nested lists are not descended into.

```
(define (fun L)
  (cond
    [(null? L) return-value]
    [else ...(car L) ...(fun (cdr L)) ...])
)
```
Patterns of Recursion — car-cdr-recursion

We descend into nested lists, processing every atom.

(define (fun x)
 (cond
 [(null? x) return-value]
 [(atom? x) return-value]
 [(list? x)
 ...(fun (car x)) ...
 ...(fun (cdr x)) ...]
 [else return-value]
))
Here we map one list to another.

\[
\text{(define (map L)}
\text{(cond)}
\text{[(null? L) '()]}
\text{[else (cons (...(car L) ...)}
\text{ (map (cdr L)))]]}
\text{)}
\)
Example: Binary Trees

- A binary tree can be represented as nested lists:
 \[(4 \ (2 \ () \ () \ (\ 6 \ (\ 5 \ () \ () \) \) \) \)\]
- Each node is represented by a triple
 \[(data \ left\text{-subtree} \ right\text{-subtree})\]
- Empty subtrees are represented by \(()\).
Example: Binary Trees...

(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

(define (print-spaces N)
 (cond
 [(= N 0) ""]
 [else (begin
 (display " ")
 (print-spaces (- N 1))))
)

(define (print-tree tree)
 (print-tree-rec tree 0))
Example: Binary Trees...

(define (print-tree-rec tree D)
 (cond
 [(null? tree)]
 [else (begin
 (print-spaces D)
 (display (key tree)) (newline)
 (print-tree-rec (left tree) (+ D 1))
 (print-tree-rec (right tree) (+ D 1))
)]]))

> (print-tree '(4 (2 () ()) (6 (5 () () () ()))))
4
 2
 6
 5
Binary Trees using Structures

We can use structures to define tree nodes.

```
(define-struct node (data left right))

(define (tree-member x T)
  (cond
   [(null? T) #f]
   [(= x (node-data T)) #t]
   [(< x (node-data T))
     (tree-member x (node-left T))]
   [else
     (tree-member x (node-right T))])
)
```
Binary Trees using Structures...

(define tree
 (make-node 4
 (make-node 2 '() '())
 (make-node 6
 (make-node 5 '() '())
 (make-node 9 '() '()))))

> (tree-member 4 tree)
true
> (tree-member 5 tree)
true
> (tree-member 19 tree)
false
Write a function `swapFirstTwo` which swaps the first two elements of a list. Example: $(1\ 2\ 3\ 4) \Rightarrow (2\ 1\ 3\ 4)$.

Write a function `swapTwoInLists` which, given a list of lists, forms a new list of all elements in all lists, with first two of each swapped. Example: $((1\ 2\ 3)\ (4)\ (5\ 6)) \Rightarrow (2\ 1\ 3\ 4\ 6\ 5)$.