Computing Data-Flow Info.

- There are two principal methods of solving data-flow problems:
 1. Let gen, kill, in, out be AST attributes and the data-flow equations attribute evaluation rules. We’ll look at this later.
 2. Treat data-flow equations as recurrences, and iterate over the set of equations until a solution is found.
- Sets are stored as bit-vectors, with one element for each possible object.

\[
in[B] = \{d_3, d_5, d_7\} \\
\equiv \begin{array}{cccccccc}
 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
 d_1 & d_2 & d_3 & d_4 & d_5 & d_6 & d_7 & d_8
\end{array}
\]

Slide 7–1

Reaching Definitions

Equations

\[
\begin{align*}
\text{out}[B] &= \text{gen}[B] \cup (\text{in}[B] - \text{kill}[B]) \\
\text{in}[B] &= \bigcup_{\text{pred}P \text{ of } B} \text{out}[P]
\end{align*}
\]

- A definition \(d : a := b + c \) reaches a use of \(a \) at point \(p \), if the value given to \(a \) at \(d \) could be used at \(p \).
- \(\text{gen}[B] \) is the set of definitions generated within \(B \), that reach the end of \(B \).
- \(\text{kill}[B] \) is the set of definitions outside \(B \), killed by definitions within \(B \).
- \(\text{in}[B] \) is the set of definitions valid at the entrance to \(B \), \(\text{out}[B] \) is those valid at the exit of \(B \).
- The equations for in and out are valid for each basic block.

Slide 7–2

Iterative Algorithms I

1. Compute gen and kill for each block.
2. Set up the \(2n \) in- and out-equations for the \(n \) basic blocks, and set \(\text{in}[B] = \text{out}[B] = \{\} \) for each block \(B \).
3. Repeat until no more changes:
 - For each block \(B \) eval. \(\text{in}[B] \& \text{out}[B] \).

Formal Algorithm:

\[
\text{FOR each block } B \text{ DO} \\
\text{out}[B] := \text{in}[B] := \{\} \; ; \\
\text{END;} \\
\text{WHILE any out}[B] \text{ has changed DO} \\
\text{FOR each block } B \text{ DO} \\
\quad \text{in}[B] := \bigcup_{\text{pred}P \text{ of } B} \text{out}[P] \\
\quad \text{out}[B] := \text{gen}[B] \cup (\text{in}[B] - \text{kill}[B]) \\
\text{END;} \\
\text{END}
\]

Slide 7–3
Iterative Alg. Example I (a)

\[
\text{REPEAT} \\
\quad d_1: i := \ldots; \\
\quad \text{IF } \ldots \text{THEN} \\
\quad d_2: i := \ldots \\
\quad \text{ELSE} \\
\quad d_3: i := \ldots \\
\quad \text{ENDIF} \\
\quad d_4: k := \ldots \\
\text{UNTIL } \ldots;
\]

- Start by setting up the \(2n\) in- and out-equations (slide (b)).
- Simplify the example by inlining gen and kill into the equations for in and out (slide (c)).
- Visit each block in turn (we use numerical order, B1, B2, B3, B4) and evaluate in and out (slides (d)–(g)).
Example II (b) – 2nd Iteration

\[d_1: i := m - 1 \]
\[d_2: j := n \]
\[d_3: a := \ldots \]
\[g = \{d_1, d_2, d_3\} \]
\[k = \{d_4, d_5, d_6, d_7\} \]
\[i = \{\} \]
\[o = \cup (i \cdot k) \]
\[\{d_1, d_2, d_3\} \]
\[\{d_1 \ldots d_3\} \]
\[\{d_3 \ldots d_6\} \]
\[\{d_3 \ldots d_5\} \]
\[= \{d_4 \ldots d_6\} \]
\[= \{d_4 \ldots d_5\} \]
\[= \{d_3 \ldots d_6\} \]
\[= \{d_3 \ldots d_5\} \]

Live Variable Analysis I

- For each definition/use of a variable \(V \), Global Live Variable Analysis answers the question
 “Could the value of \(V \)
 computed/used here be used
 further on in the program?”
- If a variable \(V \) is stored in a register
 \(R5 \) and \(V \) is dead at the end of the block, then we don’t have to store \(R5 \)
 back into \(V \).
- Assignments to dead variables can be removed.

\[\begin{align*}
R5 &: = V; \\
R5 &: = R5 + 1;
\end{align*} \]

V (stored in R5)
\[\text{is incremented} \]

V is dead here.

No further used of \(V \) here.

Live Variable Analysis II

in[B] Variables live on entrance to B.

out[B] Variables live on exit from B.

def[B] Variables assigned values in B
before the variable is used:

\[\begin{align*}
B &: = \ldots C \ldots; \\
C &: = \ldots; \\
\ldots &: = \ldots B \ldots;
\end{align*} \]

use[B] Variables whose values are used
before being assigned to:

\[\begin{align*}
B &: = \ldots C \ldots; \\
C &: = \ldots; \\
\ldots &: = \ldots B \ldots;
\end{align*} \]

Live Variable Analysis III

Data-Flow (Equations):

\[\text{in}[B] = \text{use}[B] \cup (\text{out}[B] - \text{def}[B]) \]

Data-Flow (English):

- \(V \) is live at the entrance to B if
 1. \(V \) is being used before it’s defined
 \(\text{i.e. } V \in \text{use}[B] \)
 \(\text{in} = \{\ldots C \ldots \} \)
 \(\text{use} = \{ C \} \)

\[\begin{align*}
B &: = \ldots C \ldots; \\
C &: = \ldots;
\end{align*} \]

\(C \) is in \(\text{in}[B] \) since
its value is used
before \(C \) is defined.

2. \(V \) is not defined within the block (i.e.
\(V \notin \text{def}[B] \))
\(\text{in} = \{\ldots C \ldots \} \)
\(\text{def} = \{ B \} \)
\(\text{out} = \{ \ldots C,B \ldots \} \)
Live Variable Analysis IV

Data-Flow (Equations):

\[\text{out}[B] = \bigcup \text{in}[S] \]

successors

\(S \) of \(B \)

Data-Flow (English):

- A variable \(V \) is live coming out of \(B \) if it is live going into any one of \(B \)'s successors.

\(B \quad \text{C := ...} \quad \text{out=} \{ \text{C} \} \)

\(\text{in=} \{ \} \quad \text{in=} \{ \text{C} \} \quad \ldots := \ldots \text{C...} \)

Slide 7–16

Live Variables VI – Example

\(\text{out}[B4]=\{\} \) since \text{out} is the union of all of \(B4 \)'s successor's \(\text{in} \), and \(B4 \) doesn't have any successors.

\(\text{in}[B4]=\{\} \) because both \(A \) & \(B \) are live coming in to \(B4 \), i.e. their values will be used before they are assigned new values.

\(\text{out}[B3]=\text{in}[B4]=\{A,B\} \) because the values of \(A \) and \(B \) will be used in \(B3 \)'s successor block, \(B4 \). Note that since \(C \not\in \text{out}[B3] \) \(C \)'s value is \text{dead} and the assignment \(C := 1 \) can be removed.

\(\text{out}[B1]=\{A\} \cup \{A,B\}=\{A,B\} \) since if we take the left branch (through \(B2 \)) \(A \) will be used further on, and if we take the right branch (through \(B3 \)) both \(A \) and \(B \) will have a future use.

\(\text{in}[B1]=\{B\} \) since \(B \)'s value is used but not defined in \(B \).

Slide 7–18

Summary I

- With \(B \) blocks & bit-vectors of length \(V \), iterative data-flow analysis is \(O(B^2 \times V) \) in the worst case.

- Data-flow problems can be classified according to the direction of flow:

 Forward-flow problems: Data flows from the initial block to the end block. Out-sets are computed from In-sets within basic blocks, In-sets are computed from Out-sets across basic blocks.

 Backward-flow problems: Data flows from the end block to the initial block. In-sets are computed from Out-sets within basic blocks, Out-sets are computed from In-sets across basic blocks.

Slide 7–19
Summary II

<table>
<thead>
<tr>
<th>Forward-Flow</th>
<th>Backward-Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(o_B = g_B \cup (i_B - k_B))</td>
<td>(i_B = \bigcap_{b \in S(B)} o_b)</td>
</tr>
</tbody>
</table>
| \(i_B = \bigcup_{b \in P(B)} (i_b - k_b) \) | \(o_B = \bigcup_{b \in P(B)} i_b \)

\(P(B) \) = Predecessors of \(B \), \(S(B) \) = Successors of \(B \).

\(i_B = \text{in}_B \), \(o_B = \text{out}_B \), \(g_B = \text{gen}_B \), \(k_B = \text{kill}_B \).

- Show each step of the iterative reaching definitions algorithm applied to the procedure body below:

\[
\begin{align*}
K &:= 1; I := 2; \\
\text{REPEAT} & \quad \text{IF I = 4 THEN} \\
& \quad \quad A := K + 1; \\
& \quad \text{ELSE} \\
& \quad \quad A := K + 2; \\
& \quad \quad I := I + A; \\
& \quad \text{ENDIF;} \\
& \quad \text{UNTIL I \leq 10;} \\
K &:= K + A;
\end{align*}
\]

Summary III

- We classify data-flow problems by the way they combine incoming information:

\[
\begin{array}{ll}
\text{Any-path problems:} & \quad \text{Any-Path problems:} \\
\text{All values coming in to a block are valid. Use \(\bigcup \).} & \quad \text{All-path problems:} \\
\text{Only values coming in to a block through every path are valid. Use \(\bigcap \).}
\end{array}
\]

<table>
<thead>
<tr>
<th>Forward-Flow</th>
<th>Backward-Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Reaching Definitions</td>
<td>Live Variables</td>
</tr>
<tr>
<td>Path Uninitialized Variables</td>
<td>Du-chains</td>
</tr>
<tr>
<td>All Available Expressions</td>
<td>Very Busy Expressions</td>
</tr>
<tr>
<td>Paths Copy Propagation</td>
<td></td>
</tr>
</tbody>
</table>

Homework I

Exam Problem I (a) [07.430 '95]

- An expression \(E \) is very busy if – regardless of which path we take through the flow graph – \(E \)'s value will be used before it is killed. Example (\(A+3 \) is very busy):

\[
\begin{align*}
(1) & \quad \text{BEGIN} \\
(2) & \quad \text{IF expr THEN} \\
(3) & \quad \quad V := A + 3; \\
(4) & \quad \quad R := K + 3; \\
(5) & \quad \text{ELSE} \\
(6) & \quad \quad Z := A + 3; \\
(7) & \quad \quad K := 5; \\
(8) & \quad \quad L := K + 3; \\
(9) & \quad \text{END;} \\
(10) & \quad \text{END}
\end{align*}
\]
Exam Problem I (b) [07.430 ’95]

Data-Flow Equations:

- The data-flow equations for computing very busy expressions are:

\[\text{in}[B] = \text{used}[B] \cup (\text{out}[B] \setminus \text{killed}[B]) \]
\[\text{out}[B] = \bigcap_{\text{successors } S \text{ of } B} \text{in}[S] \]

Problems:

1. Give an iterative pseudo-code routine for computing \text{in} and \text{out}.
2. Is \textit{very-busy expressions} a forward-flow or a backward-flow problem?
3. Show the workings of the algorithm on the procedure body in the next slide:

Exam Problem I (c) [07.430 ’95]

\[
\text{BEGIN} \\
\text{X} := 5; \\
\text{Y} := 10; \\
\text{IF } e_1 \text{ THEN} \\
\text{IF } e_2 \text{ THEN} \\
\text{A} := \text{X} \times \text{Y}; \\
\text{ELSE} \\
\text{B} := 3; \\
\text{V} := \text{X} \times \text{Y}; \\
\text{X} := 1; \\
\text{END}; \\
\text{ELSE} \\
\text{Y} := 2; \\
\text{A} := \text{X} \times \text{Y}; \\
\text{END} \\
\text{END}
\]

Slide 7–24

Slide 7–25