
Representing and Reasoning about Dynamic Code
Jesse Bartels

Department of Computer Science

The University Of Arizona

Tucson, AZ 85721, USA

jessebartels@cs.arizona.edu

Jon Stephens

Department of Computer Science

University Of Texas

Austin, TX 78712, USA

jon@cs.utexas.edu

Saumya Debray

Department of Computer Science

The University Of Arizona

Tucson, AZ 85721, USA

debray@cs.arizona.edu

ABSTRACT
Dynamic code, i.e., code that is created or modified at runtime, is

ubiquitous in today’s world. The behavior of dynamic code can

depend on the logic of the dynamic code generator in subtle and non-

obvious ways, e.g., JIT compiler bugs can lead to exploitable vul-

nerabilities in the resulting JIT-compiled code. Existing approaches

to program analysis do not provide adequate support for reason-

ing about such behavioral relationships. This paper takes a first

step in addressing this problem by describing a program represen-

tation and a new notion of dependency that allows us to reason

about dependency and information flow relationships between the

dynamic code generator and the generated dynamic code. Experi-

mental results show that analyses based on these concepts are able

to capture properties of dynamic code that cannot be identified

using traditional program analyses.

KEYWORDS
Program Analysis, Program Representations, Dynamic Code, Self-

Modifying Code, Slicing

1 INTRODUCTION
Dynamic code, i.e., code that is created or modified at runtime, is

ubiquitous in today’s world. Such code arises in many contexts, in-

cluding JIT-compilation, obfuscation, and dynamic code unpacking

in malware. Dynamic code raises a host of new program analy-

sis challenges, arising partly from the fact that the behavior of

an application containing dynamic code may depend in part on

logic that is not part of the application itself, but rather is in the

dynamic code generator. As a concrete example, Rabet describes

a JIT compiler bug in Chrome’s V8 JavaScript engine that causes

some initialization code in the application program to be (incor-

rectly) optimized away, resulting in an exploitable vulnerability

(CVE-2017-5121) [38]. As another example, Frassetto et al. describe
how a memory corruption vulnerability can be used to modify the

byte code of an interpreted program such that subsequent JIT com-

pilation results in the creation of the malicious payload [14]. To

reason about such situations, it would be helpful to be able to start

from some appropriate point in the dynamically generated code

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00

https://doi.org/10.1145/3324884.3416542

and trace dependencies back, into and through the JIT compiler’s

code, to understand the data and control flows that influenced the

JIT compiler’s actions and caused the generation of the problem-

atic code. E.g., for the CVE-2017-5121 bug mentioned above, we

might want to perform automated analyses to identify which anal-

yses/transformations within the JIT-compiler led to removal of the

program’s initialization code, and which data flows and control-

flow logic influenced those transformations. Such analyses, which

we refer to as end-to-end analyses, can significantly speed up the

process of identifying and fixing such problems.

Unfortunately, existing approaches to (static or dynamic) pro-

gram analysis do not adequately support such reasoning about dy-

namic codemodification. Traditional program representations, such

as control flow graphs, cannot handle the effects of runtime changes

to the code, which require accommodating the possibility of some

memory locations having different instructions at different times

during execution. JIT compilers [15, 23] and dynamic binary trans-

lators [34] maintain representations of the code being dynamically

modified, but not together with that of the code that performs code

modification. Whole-system analyses [11, 13, 21, 53, 54] perform

dynamic taint propagation, taking into account explicit informa-

tion flows via data dependencies but not implicit flows via control

dependencies. As we discuss later, they also do not take into ac-

count dependencies that can arise through the act of dynamic code

modification. Thus, existing approaches to automated reasoning

about program behaviors suffer from the following shortcomings:

(a) They do not provide program representations that let us an-

swer questions such as “Which code in the dynamic code gen-
erator affected the generation of the faulty application code?”
or “What data flows influenced the behavior of those compo-
nents of the dynamic code generator, and in what ways?”.

(b) They do not support notions of dependence that can allow

us to reason about the computation in ways that can help

answer such questions.

This paper shows how this problem can be addressed via a program

representation that is able to capture the structure and evolution

of code that can change dynamically, together with a notion of

dependency that arises from the process of dynamic code gener-

ation and which is not captured by conventional notions of data

and control dependencies. We also discuss an optimized represen-

tation that yields significant improvements in space requirements.

Experimental results show that our ideas make it possible to reason

about dynamic code in novel ways, e.g., we can construct back-

ward dynamic program slices, starting from incorrect dynamically

generated JIT-compiled code, to include the JIT-compiler logic re-

sponsible for the problem; and detect situations where a dynamic

1

https://doi.org/10.1145/3324884.3416542

ASE ’20, September 21–25, 2020, Virtual Event, Australia Jesse Bartels, John Stephens, Saumya Debray

code generator embeds environmental triggers in dynamically gen-

erated code. Such end-to-end analyses are not possible using current

approaches to program analysis.

2 BACKGROUND
This section briefly discusses some key concepts relevant to our

ideas. It may be skipped by readers familiar with this material.

2.1 Interpreters and JIT Compilers
An interpreter is a software implementation of a virtual machine

(VM). Programs are expressed in the VM’s instruction set, with

each instruction encoded as a data structure that records relevant

information such as the operation, source and destination operands,

etc. The computation for each operation x in the VM’s instruction

set is performed by a piece of code called the handler for x . The
interpreter uses a virtual instruction pointer to access the VM in-

structions encoding the input program and a dispatch routine to

transfer control to appropriate handler code.

While interpretation offers a number of benefits such as portabil-

ity, it incurs a performance overhead due to the cost of instruction

decoding and dispatch as well as the limited scope for code opti-

mization resulting from the fact that the user programs executed by

the interpreter are not available for analysis when the interpreter

is compiled to machine code. Additionally, modern dynamic lan-

guages are often implemented using interpreters, and these incur

additional overheads due to runtime type checking.

To address this problem, just-in-time (JIT) compilers are widely

used alongside interpreters to improve performance by compil-

ing selected portions of the interpreted program into (optimized)

code at runtime. The general idea is to take frequently-executed

portions of the program (identified via runtime profiling), apply

optimizing transformations, and generate optimized machine code.

These optimizations are performed at runtime, as the program is

being executed, and results in code that is dynamically created or

modified. Some JIT compilers support multiple levels of runtime

optimization, where the dynamically created code may be subjected

to additional rounds of optimization as execution progresses [45].

2.2 Control Flow Graphs
Program analyses are based on representations of the program’s

structure; for concreteness, we focus on control flow graphs (CFGs).

CFG construction for static code via static analysis is well-understood

[3]. However, this approach is inadequate for dynamic code because

code created at runtime is not available for static inspection; instead,

we use dynamic analysis. This has the benefit of being able to han-

dle dynamic code; its drawback is that the constructed CFGmay not

contain all of the program’s code due to incomplete code coverage.

We sketch here how CFGs for static code can be constructed from

an instruction trace obtained via dynamic analysis. The extension

of this approach to dynamic code is discussed in Section 3.4.

Let G denote the CFG under construction. We process instruc-

tions in the execution trace as they are encountered. For each in-

struction I , its properties (e.g., whether or not it is a control transfer)
and its status within G (e.g., whether or not it is already in G) de-
termine how it is processed; we refer to this as “processing I in the

context of G.” If I has not been encountered previously, it is added

as a new instruction. If I follows a conditional or unconditional

jump, it should begin a basic block: thus, if I is currently in G and

is not the first instruction of its block, the block has to be split and

control flow edges added appropriately.

Multi-threading introduces additional complexity because ad-

jacent instructions in the execution trace may be from different

threads and thus may not represent adjacent instructions in the

code. To handle this, we require that each instruction in the trace

be flagged with a value indicating the thread that executed it; we

refer to this as the thread-id of the instruction. The CFG construc-

tion process separately maintains a summary of the state of each

thread; this summary contains information such as the call stack,

previous instruction seen, current function being reconstructed,

etc. When constructing the CFG G, each instruction I in the trace

is now processed in the context of the state summary for its thread,

which is obtained from the thread-id for I . Thus, the last instruction
from one thread may be appending an instruction to a basic block

whereas a different thread could be splitting a different block.

3 REASONING ABOUT DYNAMIC CODE
This section discusses the concepts underlying our approach to

representing and reasoning about dynamic code.

3.1 Design Goals
In devising program representations that support end-to-end anal-

ysis of dynamic code, we have the following design goals:

(1) It should be a natural and scalable generalization of existing

program representations.

(2) It should provide a basis for extending existing program

analyses to handle dynamic code in a natural way.

(3) It should be precise enough to distinguish between concep-

tually distinct dynamic code changes.

The first two goals aim to avoid reinventing the wheel as much

as possible. The third is motivated by the fact that dynamic code

changes can be quite complex. For example, JIT compilers typi-

cally use shared code buffers that may be repeatedly reused to hold

different, and possibly unrelated, pieces of dynamically generated

code; different dynamically optimized code fragments may involve

different runtime optimizations; pieces of dynamically optimized

code may sometimes be “deoptimized” to free up space in the shared

code buffer; and such deoptimized code and may later get dynami-

cally optimized again, possibly with a different set of optimizations

that involve different parts of the JIT compiler. The third goal aims

to obtain program representations that are able to separate out the

effects of such complex runtime code changes and allow analyses

to reason about them.

3.2 Dynamic Code Modification
Dynamic code modification can give rise to different versions of

the program, with different instructions and behaviors, at different

points in its execution. A representation suitable for end-to-end

analysis of dynamic code should keep track of the different ver-

sions of the code resulting from dynamic modification. There are

two issues to consider here: (1) what constitutes “dynamic code

2

Representing and Reasoning about Dynamic Code ASE ’20, September 21–25, 2020, Virtual Event, Australia

Trace ● ●

φ0 φ1 φ2
…Phases

…

first instruction
modified in φ0

first instruction
modified in φ1

Figure 1: Phases

modification”? and (2) how should such modifications be captured

in the program representation? We address these questions as fol-

lows. First, we note that in general, heuristic approaches, such as

categorizing a memory write as code modification if it targets an ex-

ecutable section of the program’s memory, may not be sufficiently

precise, e.g., because permissions on memory pages can be changed

during execution, making a non-executable memory region exe-

cutable. We therefore consider a write to a memory location ℓ as

“code modification” only if ℓ is part of some instruction that is subse-

quently executed. Second, even small dynamic code modifications

can result in arbitrarily large changes to the program’s represen-

tation and behavior. In the x86 ISA, for example, the arithmetic

instruction “bitwise exclusive or” (opcode: xor; encoding: 0x32)
can, by flipping a single bit, be changed to the control transfer

instruction “jump short if below” (opcode: jb; encoding: 0x72), with
potentially large effect on the control flow graph.

Based on these observations, we build our program’s CFG using

dynamic analysis, as described in Section 2.2, until we encounter

an instruction whose memory locations have been modified. At

this point we are confronted with a potentially arbitrary change

to the program’s behavior and representation. To capture this, we

begin construction of a new CFG, which we link to the previously

constructed CFG using a special type of edge that we call a “dy-

namic edge.” Each such linked CFG corresponds to a “phase” of the

program’s execution. We make this notion more precise below.

Terminology. In some situations, it may make sense to distin-

guish between code created at runtime prior to being executed

(“dynamic code generation”) and code modified at runtime after it

has already been executed (“dynamic code modification”). The ideas

described here apply to both these situations, and we use the terms

“generation” and “modification” of dynamic code interchangeably.

3.3 Concepts and Definitions
3.3.1 Phases. The idea behind phases is to partition an execution

of a program into a sequence of fragments φ0,φ1, . . . ,φi , . . . such
that for each φi , none of the locations written by the instructions in

φi is part of any instruction executed by φi . Each φi is referred to

as a phase. Execution begins in phase φ0 with the program’s initial

code. When the first dynamic instruction is encountered, we switch

to φ1. Execution continues in φ1 (including other instructions that

may have been created or modified in φ0) until an instruction is

encountered that was modified in φ1, at which point we switch to

φ2, and so on. This is illustrated in Figure 1. An execution with no

dynamic code consists of a single phase.

More formally, given a dynamic instance I of an instruction in a

program, let instr_locs(I) denote the set of locations occupied by

I and write_locs(I) the set of locations written by I . These notions
extend in a straightforward way to a sequence of instructions S :

I0

I5

I1⇒ J1

X ⇒ Y dynamic
: modification

of X to Y

I1

I2 I3

I4

(a) Static CFG

I0 dynamic edge

G0 = CFG(φ0) G1 = CFG(φ1)

I1

I2

I4

I5

J1

I3

I4

(b) Dynamic CFG

Figure 2: DCFG: An example

instr_locs(S) =
⋃
I ∈S instr_locs(I)

write_locs(S) =
⋃
I ∈S write_locs(I)

Given an execution trace T for a program, let T [i] denote the

ith instruction in T , and T [i : j] denote the sequence (subtrace)

T [i], . . . ,T [j]. We define the phases of T as follows:

Definition 3.1. Given an execution trace T , the phases of T , de-
noted Φ(T), is a sequence φ0,φ1, . . . ,φi , . . . of subtraces of T such

that the following hold:

• φ0 = T [0 : k], where k = max{j | j ≥ 0 and

write_locs(T [0 : j])
⋂

instr_locs(T [0 : j]) = ∅};
• For i ≥ 0, let φi = T [k : (m − 1)], then

φi+1 = T [m : n], where n = max{j | j ≥ m and

write_locs(T [m : j])
⋂

instr_locs(T [m : j]) = ∅}.

3.3.2 Dynamic Control Flow Graphs. We use the notion of phases

to construct control flow graphs for dynamic code: we construct a

CFG for each phase of the execution, as discussed in Section 2.2, and

link them together using special edges, called dynamic edges, that
represent the control flow from the last instruction of one phase to

the first instruction of the next phase. We refer to such a CFG as a

dynamic control flow graph (DCFG). More formally:

Definition 3.2. Given an execution trace T for a program, let

Φ(T) = φ0, . . . ,φn denote the phases of T , and let Gi = (Vi ,Ei)
denote the CFG constructed from the subtraceϕi . Then the dynamic

control flow graph for T is given by G = (V ,E), where:

• V =
⊎n
i=0Vi is the disjoint union of the sets of vertices Vi of the

individual phase CFGs Gi ; and

• E = (
⊎n
i=0 Ei) ∪ Edyn is the disjoint union of the sets of edges Ei

together with a set of dynamic edges Edyn defined as follows:

Edyn = (last (φi),first (φi+1)), where last (φi) and first (φi+1) de-
note, respectively, the basic blocks corresponding to the last

instruction of φi and the first instruction of φi+1.

Example 3.3. Figure 2 gives a simple example of a DCFG. The

static CFG of the program under consideration is shown in Figure

2(a). When instruction I2 is executed, it changes instruction I1 to J1
(indicated by the dashed red arrow), where J1 is a conditional branch
with possible successors I3 and I5. The following is an execution

trace for this program along with its phases:

3

ASE ’20, September 21–25, 2020, Virtual Event, Australia Jesse Bartels, John Stephens, Saumya Debray

Trace: I0 I1 I2 I4︸ ︷︷ ︸ J1 I3 I4 J1 I5︸ ︷︷ ︸
Phases φ0 φ1

The first phase, φ0, consists of the instruction sequence I0, I1, I2, I4.
When control returns to the top of the loop at the end of this se-

quence, instruction I1 is found to have been changed to J1. This
ends φ0 and begins φ1, which comprises the rest of the trace,

J1, I3, I4, J1, I5. The CFGs corresponding to phases φ0 and φ1 in Fig-

ure 2(b) are G0 and G1 respectively. Finally, the control transfer

from φ0 to φ1 is indicated via a dynamic edge from the basic block

of the last instruction of φ0 to the basic block of the first instruction
in φ1, i.e., from the block for I4 in G0 to the block for J1 in G1.

The reader may notice, in Example 3.3, that the basic block

containing I4 occurs in both G0 and G1. This illustrates a potential

drawback of a naive implementation of DCFGs, namely, that CFG

components may be replicated across different phases. It is possible

to implement DCFGs to avoid such replication, but in this case it is

important to ensure that algorithms that traverse the DCFG (e.g.,

for slicing) do not follow unrealizable paths. The details for merging

phases are discussed in Section 4; Section 6.3.3 briefly sketches the

performance improvements we see from implementing sharing of

DCFG components across phases.

3.3.3 Codegen Dependencies. Dynamic code modification can in-

duce a dependency between the code performing the modification

and the resulting modified code. Consider the following example:

addi r0, imm
loc

mov loc := r1A B

dynamic code modification

code modifier modified code

In this example, B is an instruction that adds an immediate value

imm to the register r0; the bytes of B containing imm are at address

loc. Thus, if loc contains the value 5, then B ≡ ‘addi r0,5’. Instruction
A writes the contents of register r1 to address loc, thereby modify-

ing B. When B is executed, the value added to r0 depends on the

value written to address loc by A. Thus, the execution of A affects

the behavior of B through the act of dynamic code modification,

independent of any data or control dependencies that may exist in

the program. We refer to dependencies arising in this way due to

dynamic code modification as codegen dependencies. More formally:

Definition 3.4. Given an execution trace T , a dynamic instance

of an instruction I ≡ T [i] is codegen-dependent on a dynamic

instance of an instruction J ≡ T [j] (j < i) if and only if, for some

loc ∈ instr_locs(I), the following hold:

(1) loc ∈ write_locs(J), i.e., J modifies the location loc; and
(2) ∀k s.t. j < k < i : loc < write_locs(T [k]), i.e., J most recently

modifies loc before I is executed.

While codegen dependencies resemble data dependencies in

some ways, they differ in one fundamental way. If an instruction I
is data dependent on an instruction J , then J can change the values

used by I , but not the nature of the computation performed by

I . By contrast, if I is codegen dependent on J , then J can change

the nature of the computation performed by I , e.g., from an xor
instruction to a jump-if-below instruction as discussed earlier.

Algorithm 1: DCFG Construction (Unoptimized)

Input: An execution trace T
Result: A DCFG G for T

1 function instr_starts_new_phase(Instr,WrittenLocs):
2 return (instr_locs(Instr) ∩WrittenLocs , ∅)

3 begin
4 G = ∅
5 φ ←− ∅

6 W = ∅

7 Gφ = (∅,∅); add Gφ to G
8 for i = 0 to len(T) − 1 do
9 if instr_starts_new_phase(T[i], W) then
10 φ += 1

11 W = ∅

12 Gφ = (∅,∅); add Gφ to G

13 process T [i] in the context of Gφ (see Sec. 2.2)

14 if instr_starts_new_phase(T[i], W) then
15 add a dynamic edge from last block of Gφ−1

to first block of Gφ

16 W ←−W ∪ write_locs(T [i])

3.4 DCFG Construction
Algorithm 1 shows how we construct a DCFG from an execution

trace. The algorithm is based directly on Definition 3.2 and con-

structs an unoptimized DCFG. The DCFG consists of a sequence

of CFGs {Gφ | φ = 0,1, . . .}, one per phase, linked together by

dynamic edges; we refer to the index φ for these CFGs as their

phase index. The algorithm proceeds as follows. We initialize the

phase index φ to 0 and the DCFG G to ∅. The setW of memory

locations written in the current phase is initialized to ∅. The CFG

Gφ is initialized to the empty graph and added to G (line 7). We

then iterate through the traceT processing each instructionT [i] in
turn. IfT [i] begins a new phase, we increment the phase index (line

10), resetW to ∅ (since no memory locations have been written in

the new phase that has just begun), initialize the CFG Vφ for the

new phase to the empty graph, and add this new Vφ to the DCFG

G (lines 10–12). We then process the instructionT [i] in the context

of the CFGGφ , as discussed in Section 2.2 (line 13). At this point, if

T [i] is the first instruction of a phase (line 14), it has been added to

Gφ , which means Gφ has a basic block for it, so we add a dynamic

edge from the basic block of the last instruction of the previous

phase to the basic block of the first instruction of the current phase

(line 15). Finally, we update the set of written memory locations

by adding in the set of locations written by T [i] (line 16). We then

continue the process with the next instruction of T .

4 SPACE OPTIMIZATION OF DCFGS
DCFGs constructed using the straightforward approach described

in Algorithm 1 may contain redundancies. This is illustrated in

Figure 3, which shows the execution of a program where a function

f is JIT-compiled and the resulting code is executed, after which a

different function д is JIT-compiled and executed. Suppose that the

program’s execution begins in phase φ0. The memory writes that

4

Representing and Reasoning about Dynamic Code ASE ’20, September 21–25, 2020, Virtual Event, Australia

interp(f) JIT(f):

the resulting

code is fJIT

exec(fJIT) interp(g) JIT(g):

the resulting

code is gJIT

exec(gJIT)

execution
trace

phases φ0 φ1 φ2

Figure 3: Potential redundancies in DCFGs

create the JIT-compiled code for f are thus in φ0. The execution
of the JIT-compiled code for f therefore causes a transition to a

new phase φ1. Subsequently executed instructions, including the

JIT-compiled code forf and the JIT-compilation of д, are then a

part of φ1. When the JIT-compiled code for д is executed, there

is a transition to a new phase φ2. Thus, the JIT-compiler code

executed when compiling f is part of φ0; while the JIT-compiler

code executed when compiling д is part of φ1. The control flow

graphs constructed from these two invocations of the JIT-compiler

are therefore replicated, once in φ0 and once in φ1, means that there

is potential for a significant amount of redundancy in a naively

constructed DCFG. In general, the situation described arises if the

same code is invoked multiple times from different phases.

A natural approach to addressing the redundancy problemwould

be to merge the repeated components of the DCFG. For example, if

the JIT compiler is invokedmultiple times in the course of execution,

as in Figure 3, we can coalesce the various replicated control flow

graphs for the JIT compiler into a single copy and redirect all

control flow edges accordingly. However, a naive approach to such

coalescing can lead to a loss in precision of analysis by propagating

information along unrealizable paths, similar to the issue of context-

sensitivity in interprocedural program analysis [32, 40, 43, 51].

An important difference between the general problem of context-

senstive interprocedural analysis (i.e., k-CFA) and the issue of merg-

ing replicated code in DCFGs is that of the nature and complexity

of the context relationships that arise. Programs can have arbi-

trarily complex call graphs, and increasing the amount of context

information maintained during interprocedural analyses can there-

fore increase the precision of analysis, albeit at increased cost [22].

Phases in a DCFG, on the other hand, have a predictable linear pro-

gression, with phase n transitioning to phase n+ 1 on encountering

dynamic code. This predictable structure of inter-phase relation-

ships means that, given the phase number of a function or basic

block in a DCFG, identifying the phase number of the previous or

next phase is straightforward. This allows us to implement this

optimization efficiently at all levels of granularity—namely, instruc-

tions, basic blocks, edges, and functions—without incurring the

complexity and cost of general k-CFA.

Our implementation of merged DCFGs associates a set of phase

identifiers with each DCFG component (instruction, basic block,

and edge). In the simple case, there are N identical blocks, each

containing the same sequence of instructions, that appear in N
phases a1, . . . ,aN . We merge these into a single block, which is

then associated with a set of phase identifiers {a1, . . . ,aN }. The
resulting merged block must also account for merging the edges

into/out of it. An edge that occurs in a single phase gets the phase

identifier for that phase. Shared edges, on the other hand, are edges

that connect the same blocks in multiple phases. These are merged

0x123 add %rdx, %rcx
0x126 nop
0x127 nop
0x128 nop
0x129 jmp .+0x16

0x123 add %rdx, %rcx
0x126 sub %rdx, 0x2
0x129 jmp .+0x16

0x123 add %rdx, %rcx

0x126 sub %rdx, 0x2 0x126 nop
0x127 nop
0x128 nop

0x129 jmp .+0x16

φ = {1}
φ = {2}

φ = {1,2}

φ = {1,2}

φ = {1}

φ = {1}

φ = {2}

φ = {2}

Phase: 1

Phase: 2

: "ghost edges"

φ = … : phase identifier sets

merge

Figure 4: Merging sub-parts of a basic block. The dashed
edges internal to the block are “ghost edges”.

into a single edge whose set of phase identifiers is the union of the

phase identifiers for the phases in which that edge appears.

Merging basic blocks becomes more complex when sharing sim-

ilar but non-identical blocks. We take advantage of the similar

portions of the blocks using a notion of “splitting a block across

a phase.” To split a block across a phase we introduce a new type

of edge which we call a ghost edge. Conceptually, a ghost edge e
is an intra-block connector and indicates that, for the given phase

identifiers associated with e , the two sub-blocks connected by e
should be treated as a single block. Using ghost edges we can split

a block, merging the shared components across multiple phases

while still keeping unique portions of the block that could not be

shared. Figure 4 shows an example of merging sub-parts of a block.

When traversing a merged DCFG, a traversal along the edges and

basic blocks of one phase should not take an edge leading out of a

shared basic block associated with a different phase if the outgoing

edge is not shared between the two phases. We use the sets of

phase identifiers associated with bsic blocks and edges to enforce

this requirement and only allow traversals across components with

matching phase identifiers.

5 APPLICATIONS
This section discusses a few applications of DCFGs and codegen

dependencies to reasoning about dynamic code.

5.1 Program Slicing for Bug Localization and
Exploit Analysis in JIT Compilers

Program slicing refers to identifying instructions that (may) affect,

or be affected by, the value computed by an instruction in a program

[2, 30, 48]. Slicing can be static or dynamic; and, orthogonally,

forward or backward. By eliminating instructions that are provably

irrelevant to the computation of interest, slicing reduces the amount

of code that has to be examined in order to reason about it. In the

context of dynamic code modification, DCFGs play a crucial role in

providing control flow information needed to construct backward

slices. Analyses that reason about dynamic code solely through

data dependencies, e.g. using taint propagation [11, 13, 21, 54] are

unable to capture the effects of control dependencies and therefore

are unsound with respect to slicing.

We implemented backward dynamic slicing as an application for

evaluating the efficacy of DCFGs and codegen dependencies, with

the goal of bug localization and exploit analysis in JIT compilers.

5

ASE ’20, September 21–25, 2020, Virtual Event, Australia Jesse Bartels, John Stephens, Saumya Debray

Backward dynamic slicing aims to identify the set of instructions

that may have affected the value of a variable or location at some

particular point in a particular execution of the program. Our im-

plementation is based on Korel’s algorithm for dynamic slicing of

unstructured programs [30]; however, any slicing algorithm for

unstructured programs would have been adequate.

In Korel’s slicing algorithm [30], an instruction I at position p in

a traceT (i.e., I ≡ T [p]) depends on an instruction J ≡ T [q] (written
I ⇝(Korel) J) if and only if, for some source operand a of I , J is the
last definition of a at position p. More formally:

I ⇝(Korel) J iff (∃ a source operand a of I):
[a ∈ write_locs(J); and
(∀n : q < n < p : a < write_locs(T [n])]

When processing an instruction I , Korel’s algorithm (lines 5 and

16 of Fig. 11 [30]) marks all instructions J such that I ⇝(Korel) J .
To work with dynamic code, we modify this notion to also take

codegen dependencies into account, writing the resulting notion of

dependency as I ⇝ J :

I ⇝ J iff I ⇝(Korel) J or I is codegen-dependent on J .

Our slicing algorithm is identical to Korel’s except for two general-

izations:

(1) Codegen dependencies are taken into account in propagating

dependencies. In the marking step of the algorithm (lines 5

and 16 of Fig. 11 [30]) we use the⇝ relation rather than the

⇝(Korel) relation used by Korel [30].

(2) The structure of the DCFG is taken into account by treating

dynamic edges similarly to jumps (in the terminology used

by Korel [30], this corresponds to the notions of j-entry and

j-exit).

5.2 Detecting Environmental Triggers in
Malware

Malware sometimes use environmental triggers to evade detection

by performing malicious actions only if the right environmental

conditions are met, e.g., if the date has some specific value. Current

work on detecting such behaviors is geared towards static code,

e.g., identifying conditional branches with input-tainted operands

[6]. The idea is to use dynamic taint analysis to identify conditional

branches of the form ‘if expr then behavior1 else behavior2’ where
expr is tainted from (i.e., influenced by) some input values. Once

such conditionals have been identified, other techniques, e.g., using

SMT solvers to generate alternate inputs, can be used to further

explore the program’s behavior.

Dynamic code opens up other ways to implement environmental

triggers, e.g., by using the environmental input to directly affect

what instruction bytes are generated. This idea can be illustrated

by adapting an example of evasive behavior, described by Brumley

et al. [6], to use dynamic code instead of a conditional. The code,

shown in Figure 5, uses bit-manipulation instead of conditionals

to evaluate the trigger expression, thereby rendering inapplicable

techniques that rely on tainted conditionals. The variable day_bits
is set to 1 or 0 depending on whether or not the most significant

bit of the value of the expression day-9 is 0, i.e., whether or not

the predicate day ≥ 9 is true. Similarly, mth_bits is 1 or 0 de-

pending on whether or not month ≥ 7 is true. Thus, the variable
trigger is 1 or 0 depending onwhether the environmental trigger—

in this example, the predicate day ≥ 9 && month ≥ 7—is true
or not. The assignment to *(addInstrPtr+11) writes this value

into the source byte of an assignment to a variable that is used

in a conditional to determine whether the malicious behavior is

manifested.
1
Note that the conditional that controls the execution

of the payload() function is neither data-dependent nor control-

dependent on the input; instead there is a codegen dependency

between this conditional and the patching instructions, which are

data dependent on the input.

Our current implementation generalizes the approach of Brumley

et al. [6] to incorporate codegen dependencies: we taint the values

obtained from any environmental inputs of interest, then propagate

taint in a forward direction. We determine that an environnmental

trigger is present if either of the following hold:

(1) A conditional jump instruction with one or more tainted

operands is executed; or

(2) There is a codegen dependency where the value written is

tainted (equivalently: one or more memory locations con-

taining an executed instruction are tainted).

The first condition is that originally used by Brumley et al. [6],
while the second condition incorporates the effects of dynamic

code modification. Analysis of the code shown in Figure 5 proceeds

as follows. The values obtained from the call localtime() are

tainted. This causes the variables day_bits and mth_bits, and
thence the variable trigger, to become tainted; this tainted value

is then written to memory via the assignment

*(addInstrPtr+11) = trigger

When the function hide() is subsequently executed, the location

written by the above assignment is found to be a code location,

thereby indicating a codegen dependency where the value written

is tainted. This indicates the presence of an environmental trigger.

6 EVALUATION
6.1 Overview
We built a prototype implementation to evaluate the efficacy of

our ideas and ran our experiments on a machine with 32 cores

(@ 3.30 Ghz) and 1 TB of RAM, running Ubuntu 16.04. We used

Intel’s Pin software (version 3.7) [31] for program instrumentation

and collecting instruction-level execution traces; and XED (version

8.20.0) [24] for instruction decoding. We iterate over the instruction

trace to construct a DCFG for the execution. We identify dynamic

code and determine codegen dependencies using taint analysis: we

taint writes to memory, with each memory write getting a distinct

taint label. For each instruction in the trace we check whether any

of its instruction bytes is tainted, in which case the instruction is

flagged as dynamic.

Our evaluations focused on the following questions:

1
This code relies on the appropriate byte of the modified instruction being at a specific

offset—in this case, 11 bytes—from the beginning of that function’s code, and therefore

is oviously highly compiler- and system-dependent. This is not atypical of malware,

which are usually launched as system-specific binary executables.

6

Representing and Reasoning about Dynamic Code ASE ’20, September 21–25, 2020, Virtual Event, Australia

void hide() {
volatile int environmental_trigger = 0;
if (environmental_trigger) {

payload(...); // perform malicious action
}

}

void patch() {
int pg_sz = sysconf(_SC_PAGE_SIZE);
mprotect((void*) ((((long) &hide) / pg_sz) * pg_sz),

pg_sz * 2, PROT_READ | PROT_WRITE | PROT_EXEC);
time_t rawtime;
struct tm * systime;
time(&rawtime);
systime = localtime(&rawtime);

int day = systime->tm_mday;
int day_test = ~(day - 9);
int day_bits = day_test >> 31; // day_bits == 1 iff day >= 9

int month = systime->tm_mon+1;
int mth_test = ~(month - 7);
int mth_bits = mth_test >> 31; // mth_bits == 1 iff month >= 7

// trigger == 1 iff (day >= 9 && month >= 7)
int trigger = day_bits & mth_bits;

unsigned char* addInstrPtr = ((unsigned char*) &hide);
*(addInstrPtr+11) = trigger;

}

int main() {
hide();
patch();
hide();
return 0;

}

Figure 5: Environmental trigger based on dynamic code

(1) How capable are existing state-of-the-art dynamic analysis
tools at end-to-end reasoning of dynamic code?
To answer this question we used two small synthetic bench-

marks to evaluate three widely-used modern dynamic anal-

ysis tools: PinPlay [36], angr [44, 47], and Triton [42].

(2) How effective are our ideas in reasoning about dynamic code
in scenarios involving problems in real-world software?
To evaluate this question, we consider two kinds of experi-

ments: (1) dynamic slicing for bug reports and exploits for

the JIT compiler in V8, the JavaScript engine in Google’s

Chrome browser; and (2) two benchmarks that use dynamic

code for environmental triggers in malware.

(3) What is the performance impact of the merging optimizations
discussed in Section 4?
The bug/exploit proof-of-concept code used in the slicing

experiments mentioned are deliberately constructed to crash

the software quickly, and thus do not reflect typical applica-

tion behavior. We use the Jetstream benchmarks (Sec. 6.4)

to more accurately evaluate the impact of our memory opti-

mizations on typical application code.

The code for our prototype implementation is available at https://

github.com/skdebray/ASE-2020/ and https://www2.cs.arizona.edu

/projects/lynx-project/Samples/ASE-2020. Our data samples are

available at https://www2.cs.arizona.edu/projects/lynx-project

/Samples/ASE-2020/DATA.

6.2 Assessing the Capabilities of Existing Tools
We evaluated the capabilities of existing state-of-the-art tools using

three widely-used modern dynamic analysis tools that implement

backward dynamic slicing, namely: PinPlay [36] (revision 1.29), angr

[44, 47] (commit bd3c6d8 on github), and Triton [42] (build no. 1397).

Our ap-

proach

PinPlay angr Triton

Synth-
etic

Benchmark 1 Y N N N

Benchmark 2 Y N N N

Ex
pl
oi
t

an
al
ys
is

V8 OOB to JIT Y X X X

code pages

V8 Escape

analysis bug

Y X X X

LuaJIT exploit Y N N N

Bu
g
lo
ca
l-

iz
at
io
n

OOB Read Y X X X

JIT type

confusion

Y X X X

Scoping issue Y X X X

Key:
Y: Picks up dynamic code generator from backwards

slice of dynamic code.

N: Does not pick up dynamic code generator from

backwards slice of dynamic code.

X: Crashes or fails to load.

Table 1: Assessing Existing Dynamic Analysis Tools

We invoked these tools to incorporate support for self-modifying

code as follows: we set the flags smc_support and smc_strict flags
to true for PinPlay, and loaded our project with auto_load_libs
and support_selfmodifying_code set to true for angr.

To avoid potentially confounding factors such as code size or

complexity, we considered two small synthetic benchmarks of 15

and 55 x86 instructions respectively. Both programs are simple

in structure: one adds a constant to the target operand of a jump

instruction; the other adds a constant to the immediate operand of

an add instruction. The fixed and unconditional nature of these code
modifications means that there is nothing tricky, e.g., no data or

control dependencies, between the instructions being dynamically

modified and the instructions performing dynamic modification.

This allows us to focus entirely on questions of representation and

analysis of dynamic code: any problems in analyzing such simple

programs relate directly to shortcomings in the underlying program

representations and analysis algorithms when applied to dynamic

code.

We used the three tools mentioned above, along with our proto-

type implementation of slicing (Section 5.1) to carry out backward

dynamic slicing on our synthetic benchmarks. In each case, we

computed a backward dynamic slice with the slice criterion being

the value computed by the function whose code was dynamically

modified. The results of these experiments are summarized in Table

1. It can be seen that while all three tools successfully included all of

the relevant non-codegen-dependent instructions in the slices they

computed, none of them are able to pick up the code that performs

dynamic modification. Given that soundness for slicing algorithms

is defined as not excluding any statement that can influence the

slicing criterion, this indicates that the resulting slices were un-

sound. On further investigation, we found that the reason for this

is a fundamental limitation of the underlying CFGs constructed

by these tools, which do not represent the different versions of

code resulting from dynamic code modification. By contrast, we

found that our implementation, using DCFGs and codegen depen-

dencies, computed slices that correctly contained the instructions

that performed dynamic code modification.

7

ASE ’20, September 21–25, 2020, Virtual Event, Australia Jesse Bartels, John Stephens, Saumya Debray

Tracing DCFG Construction Slicing

Test program Ntrace Tread Ninstrs Nblocks Nedges Nphases TDCFG Nslice Tslice ∆slice

Ex
pl
oi
t

an
al
ys
is V8 OOB to JIT Code Pages 11,134,237 10.68 191,613 41,302 117,158 4 146.88 81,986 433.25 57 %

V8 Escape analysis bug 135,295,168 130.76 245,935 52,929 153,922 3 1,793.23 120,885 10,193.08 50 %

LuaJIT Exploit 464,743 0.60 18,248 4584 12,606 2 7.47 5,139 7.76 71 %

Bu
g
lo
ca
l-

iz
at
io
n

OOB Read 14,720,437 14.25 150,115 31,469 92,254 2 196.29 61,511 579.78 59 %

JIT Type Confusion 9,663,365 9.49 158,849 32,536 93,132 9 130.26 67,765 146.47 57 %

Scoping issue 7,882,295 7.56 99,378 22,394 62,204 4 102.31 47,023 970.95 52 %

Key:

Ntrace : No. of instructions in execution trace

Tread : Time to read trace (seconds)

Ninstrs : No. of instructions in DCFG

Nblocks : No. of basic blocks in DCFG

Nedges : No. of basic blocks in DCFG

Nphases : No. of phases

TDCFG : DCFG construction time (seconds)

Nslice : No. of instructions in slice

Tslice : Slice construction time (seconds)

∆slice : Fraction of DCFG removed from slice

= (Ninstrs − Nslice)/Ninstrs .

Table 2: Slicing: Performance

Additionally, to assess the applicability of these tools to real-

world software that makes use of dynamic code, we evaluated them

on six bug and exploit reports for the V8 JIT compiler. As shown

in Table 1, none of them were able to successfully analyze these

examples: they all crashed with internal errors when loading V8.

All three tools were able to process the LuaJIT example without

crashing, but none of the slices they computed contained the JIT-

compiler or exploit code that created the dynamic code.

6.3 Analysis Efficacy on Real-World Examples
To evaluate our approach on real world software that uses dynamic

code, we consider three applications: (1) analysis of exploits involv-

ing JIT code; (2) bug localization in JIT compilers; and (3) detection

of trigger-based evasive behaviors that use dynamic code. Our goal

was to perform end-to-end analyses on these examples, i.e., start

from the problematic dynamic code and compute a backward dy-

namic slice that includes the culprit portions of the dynamic code

generator where the bug/security exploit originates. The results

are shown in Table 1.

6.3.1 Exploit Analysis. We consider three examples of exploits, two

of them involving dynamic code in Google’s V8 JavaScript engine:

(1) malicious shellcode originating from an out-of-bounds (OOB)

write to the JIT code pages in V8 [9];

(2) escape analysis bug in V8’s JIT compiler (CVE-2017-5121)

[38]; and

(3) malicious bytecode used to escape a LuaJIT sandbox [8].

For each of these exploits, we used the proof-of-concept code to

compute a DCFG/backward dynamic slice starting from the dynam-

ically generated exploit code. Separately, we used the write-up for

each exploit to determine the bugs responsible for each exploit, iden-

tifying the buggy code generator portions in the execution traces

recorded for each exploit. We then checked the slice to determine

whether the buggy generator code is present in the slice.

The first security exploit we consider entails an OOB write to

the JIT code pages within Google’s V8 JavaScript engine [9]. The

exploit is a result of array type ambiguity that allows the attacker to

write and execute arbitrary shellcode. We constructed a DCFG from

an execution trace of the buggy V8 code and computed a backward

dynamic slice from the first nop shellcode instruction in the nop

sled in the attack code. Our backward slice correctly included both

the buggy code within V8 that led to the array type ambiguity along

with the exploit code that generated the shellcode at runtime.

The second exploit we examined is discussed in detail by Rabet

[38]. It arises out of a bug in V8’s escape analysis and causes some

variable initializations in the JIT-optimized code to be incorrectly

optimized away when performing load reduction. The proof-of-

concept code provided causes V8 to crash while executing the

optimized dynamic code due to an OOB read. The write up provided

by Rabet proceeds to use this OOB read as a stepping stone towards

demonstrating arbitrary code execution. For our analysis of this

example, we built our DCFG from the execution trace recorded

by Pin and then we computed a backward dynamic slice from the

dynamic instruction prior to the exception that is thrown due to

the OOB read. We found that the resulting slice correctly included

the buggy portions of the load reducer in the escape analysis phase

of V8’s JIT compiler, whose optimizations cause the OOB read.

Our final example in this category was with malicious Lua byte-

code being used to escape a sandbox in LuaJIT [8]. The proof of

concept malicious program corrupts bytecode with the goal of writ-

ing shellcode which prints a message. We followed an approach

similar to the one we used to slice the V8 OOB write, starting our

slice at the beginning of the NOP sled used in the attack. We found

that the backward slice computed by our tool correctly picks up

the Lua code that generates the shellcode.

The role of codegen dependencies. For each exploit example dis-

cussed, we computed slices starting at a NOP instruction in the NOP

sled generated as part of the shellcode. To assess the role of codegen

dependencies, we recomputed these slices ignoring codegen depen-

dencies. We found that, in each case, the resulting slice consisted of

just the NOP instruction and nothing else. By contrast, when code-

gen dependencies were considered, the relevant JIT-compiler code

was included in the slice. This demonstrates that codegen dependen-

cies are fundamental to reasoning about the relationship between

dynamically generated code and the dynamic code generator that

created that code.

8

Representing and Reasoning about Dynamic Code ASE ’20, September 21–25, 2020, Virtual Event, Australia

Original Dicing Improvement (%)

Test program DCFGorig sliceorig DCFGmk slicemk ∆DCFG ∆slice ∆mk

Ex
pl
oi
t

an
al
ys
is V8 OOB to JIT Code Pages 191,613 81,986 90,736 42,317 52.6 48.4 53.4

V8 Escape analysis bug 245,935 120,885 157,847 89,307 35.8 26.1 43.4

LuaJIT Exploit 18,248 5,139 10,354 1,808 43.2 64.8 82.5
Bu

g
lo
ca
l-

iz
at
io
n

OOB Read 150,115 61,511 35,261 10,460 59.0 83.0 70.3

JIT Type Confusion 158,849 67,765 188 103 99.9 99.8 45.2

Scoping issue 99,378 47,023 14,896 7,721 85.0 83.6 48.2

Key:
DCFGorig : No. of instructions in original DCFG ∆DCFG : Improvement in DCFG size due to dicing

sliceorig : No. of DCFG instructions in original slice = (DCFGorig − DCFGmk)/DCFGorig
DCFGmk : No. of instructions in DCFG with marker ∆slice : Improvement in slice size due to dicing

slicemk : No. of DCFG instructions in slice with marker = (sliceorig − slicemk)/sliceorig
∆mk : Fraction of DCFGmk removed due to dicing

= (DCFGmk − slicemk)/DCFGmk
Table 3: Dicing: Performance

6.3.2 Bug Localization. We consider three JIT compiler bugs from

Google’s V8 JavaScript engine thatwere posted to bugs.chromium.org
and classified as “Type: Bug-Security.”

(1) Empty jump tables generated by the bytecode generator

leading to out-of-bound reads that crash the generated JIT-

compiled code [17].

(2) A type confusion bug that leads to a crash after the dynamic

code has been generated [18].

(3) Arrow function scope fixing bug, where certain constructs

involving a single line arrow function cause a crash [19].

For each of these bugs we proceeded as follows. To identify the

problematic code in the JIT compiler, we examined the correspond-

ing GitHub commits, together with any relevant information in the

bug report, to determine the code that was changed to fix the bug.

We delineated the problem code so identified using small “marker

code snippets”—i.e., small easily identifiable code snippets that do

not affect the operation of the JIT compiler—and confirmed that

the behavior of the buggy JIT compiler was unaffected. We then

used the example code submitted with the bug report to obtain

an execution trace demonstrating the bug, and used this trace, to-

gether with the DCFG constructed from it, to compute a backward

dynamic slice starting from the instruction that crashed. Finally, we

analyzed the resulting slice to determine whether the problematic

code, as identified above, was included in the slice.

The results of our experiments are summarized in Table 1. Our

end-to-end analysis was able to successfully pick up the buggy code

for each of the bugs mentioned above in the slice, allowing one to

narrow down the functions involved in V8 that lead to the crash.

6.3.3 Performance. Table 2 shows the performance of our proto-

type DCFG-based slicing implementation on our real-world test

inputs (the environmental trigger example is omitted because it

does not use backward slicing). These input programs all involve

computations of substantial size: the smallest, LuaJIT exploit, has

a trace of 464K instructions, while the remaining execution traces

range from almost 7.9M instructions (V8 scoping issue bug) to 135M

instructions (V8 escape analysis bug). The time taken to read the

traces (and do nothing else) is roughly 1M instructions/sec.
2

The DCFGs constructed typically range in size from about 22K

basic blocks and 62K edges (V8 scoping issue bug) to about 41K

blocks and 117K edges (V8 OOB exploit), with a low of 4.6K blocks

and 12K edges for the LuaJIT exploit and a high of about 53K blocks

and 154K edges for the V8 escape analysis bug. Most of our test

programs have 2−4 phases, with the V8 JIT type confusion example

an outlier with 9 phases. DCFG construction incurs an overhead of

roughly 15× over simply reading a trace: most of the test inputs take

roughly 2−3 minutes, with the lowest time being 7.5 seconds for the

LuaJIT exploit and the highest being about 30 minutes for the V8

escape analysis bug. Since DCFG construction involves processing

each instruction in the execution trace, the time taken depends on

the sizes of both the instruction trace and the DCFG.

The overhead incurred by slicing relative to the time taken for

DCFG construction ranges from 1.04× for the LuaJIT exploit to

9.5× for the V8 scoping issue bug, with most of the test programs

ranging from 3× to 6×. In absolute terms, most of the programs

take about 2 − 10 minutes for slicing, with a low of about 8 secs for

the LuaJIT example and a high of about about 2.8 hours for the V8

escape analysis bug. Slicing is able to remove about 50%–60% of the

instructions in the DCFG, with a high of 71% of the instructions

removed for the LuaJIT exploit. These results indicate that our ap-

proach is both practical (in terms of time) and useful (in terms of

the amount of code removed from the DCFG). Since our approach

does not fundamentally alter the slicing algorithm, but rather aug-

ments it to work over DCFGs and use codegen dependencies, it is

not difficult to adapt our approach to other slicing algorithms with

different cost-precision characteristics.

6.3.4 Focusing the analysis: markers and dicing. Given our objec-

tive of localizing problems in the JIT-compiler code, it is useful to

examine the extent to which our approach is able to reduce the

amount of actual JIT-compiler code that has to be considered. To

2
Our implementation uses Pin to collect an instruction trace that is written to a file on

disk. The numbers reported here refer to the time required to read such instruction

trace files; the time taken to record the traces and write the trace files, which depends

on the tracing tool used and is independent of the ideas described here, is not included.

9

ASE ’20, September 21–25, 2020, Virtual Event, Australia Jesse Bartels, John Stephens, Saumya Debray

No. of Instructions No. of Basic Blocks No. of Edges

Test program Orig Opt ∆(%) Orig Opt ∆(%) Orig Opt ∆(%)

Pe
rf
or
m
an

ce
be
nc
hm

ar
ks

base64 781,404 308,748 60.5 167,925 64,095 61.8 308,748 197,042 36.2

crypto-sha1 1,158,366 319,098 72.5 245,758 65,634 73.3 719,114 202,096 71.9
date-format 453,177 324,279 28.4 94,417 67,611 28.4 278,666 101,902 63.4

nbody 394,264 284,973 27.7 81,617 58,054 28.9 239,080 174,498 27.0

poker 595,329 366,571 38.4 125,709 78,485 37.6 365,978 236,562 35.4

str-unpack 372,862 251,121 32.7 75,164 50,899 32.3 215,716 151,980 29.5

Se
cu
ri
ty

be
nc
hm

ar
ks

V8 OOB to JIT Code Pages 193,339 152,723 21.0 41,302 32,205 22.0 117,158 94,568 19.3

V8 Escape analysis bug 247,264 212,800 13.9 52,929 46,201 12.7 153,922 137,974 10.4

LuaJIT Exploit 21,389 19,436 9.1 4,584 4,153 9.4 12,606 11,624 7.8

OOB Read 151,773 133,134 12.3 31,469 27,268 13.3 92,254 82,046 11.1

JIT Type Confusion 160,526 128,188 20.1 32,536 25,441 21.8 93,132 76,110 18.3

Scoping issue 101,193 89,675 11.4 22,394 19,910 11.1 62,204 56,382 9.4

Key:
Orig : Value in original-representation DCFG

Opt : Value in optimized-representation DCFG

∆ : Improvement = (Orig − Opt)/Orig

Table 4: Impact of representation optimization on DCFG size

do this, we placed markers—i.e., small code snippets that are un-

ambiguously identifiable and semantically neutral—in the code as

close as we were able to the invocation of the JIT compiler. During

analysis, we excluded the portion of the execution trace before the

marker. This effectively computed a program dice that excluded

the front-end parser, byte-code generator, and interpreter.

Table 3 gives the results of these experiments. The two columns

labeled ‘Original’ refer to the size of the DCFG and the back-

ward slice computed without markers, i.e., as shown in Table 2; the

columns labeled ‘Dicing’ refer to the size of the DCFG and slice

when markers are used; the columns labeled ‘Improvement’ show

the percentage improvement due to dicing. The columns labeled

∆DCFG and ∆slice show, respectively, the reductions in the size of

the DCFG and the slice when irrelevant code is excluded. These are

in the range 35%–85% for DCFG size and 26%–84% for slice size. The

JIT Type Confusion bug sample is an outlier, with almost all of the

original DCFG and slice eliminated. The final column, labeled ∆mk ,

shows the effects of slicing focusing only on the DCFG resulting

from dicing: these range from about 43% to about 82%. Overall,

these results show that (1) our approach is effective in focusing on

the relevant portions of the JIT compiler; and (2) the use of code

markers to identify entry into the JIT compiler can be helpful in

zeroing in on the relevant portions of the code being analyzed.

6.4 Detecting Environmental Triggers
We use two test programs to evaluate the detection of environmen-

tal triggers based on dynamic code: one is shown in Figure 5, the

other is a variant of this program that uses implicit flows to further

disguise the influence of environmental values on the trigger code.

We built two detectors to demonstrate the utility of DCFGs and

codegen dependencies for this purpose. In the first case, we taint

the input source and propagate the taint forward in the execution

trace. If there is a codegen dependency from an instruction with

tainted operands to an instruction that is later executed, an input-

dependent value may be influencing the instruction bytes of some

dynamic instruction, and we report that there is dynamic input-

dependent program behavior. In the second case, we compute a

backward dynamic slice with the slicing criterion being the dynam-

ically modified code location at the point where it is executed.

Our implementations correctly detect that environmental values

influence dynamic program behavior for our benchmarks. To assess

the state of the art, we tested these programs using two widely used

analysis tools: S2E, a widely used symbolic execution engine [10],

and angr. In each case, we found that the input values used to patch

the function hide() in Figure 5 are silently concretized and only the
false path is explored. As a result, these tools are unable to identify

the environment-dependent aspect of the program’s behavior.

6.5 Space Optimization: The Impact of Merging
To evaluate the effect of the space optimization discussed in Section

4, we used a collection of benchmarks from the Jetstream 2 suite

of Javascript workloads [5]: base64 [37], crypto-sha1 [26], date-
format [49], nbody [16], poker [1], and str-unpack [25]. The results
are shown in Table 4. These benchmarks have significantly larger

DCFGs than the security benchmarks described earlier. This is not

surprising, since the security benchmarks were submitted as demo

code for bug reports and thus aimed to quickly manifest the bug and

crash or exit the program. The performance benchmarks yielded

significantly higher performance improvements than the security

benchmarks, with improvements ranging from 27% to 72%.

We also found that the amount of improvement increases with

the size of the unoptimized DCFG. This is shown in Figure 6. This

indicates that there is a significant amount of overlap in the code

executed by different phases (e.g., library code, the interpreter and

JIT compiler), and also that our merged DCFG representation is

effective in optimizing away the resulting redundancies.

We did not see a significant difference in execution speed be-

tween the DCFG implementations with and without this optimiza-

tion. The version using space-optimization was slightly faster on

average, possibly due to fewer calls to allocate/free routines and

improved memory locality.

10

Representing and Reasoning about Dynamic Code ASE ’20, September 21–25, 2020, Virtual Event, Australia

0 500 1000 1500

DCFG size: no. of instructions (x 1000)

0

20

40

60

80

Im
p

ro
v
e

m
e

n
t

(%
)

Key:
+ : basic blocks
x : instructions

| | | | | || | | | |

0 50 100 150 200 250

DCFG size: no. of basic blocks (x1000)

Figure 6: Space optimization improvements vs. DCFG size

7 SUMMARY AND DISCUSSION
Our design goals, in Section 3.1, were to devise a program rep-

resentation that naturally and scalably generalizes existing rep-

resentations; allows existing analyses to be extended to dynamic

code in a simple and natural way; and is precise enough to distin-

guish between conceptually distinct dynamic code modifications.

DCFGs provide a natural generalization of the well-known notion

of control flow graphs to dynamic code and thus satisfy the first

goal. Section 5.1 shows how we extend slicing to dynamic code

in a straightforward way, thereby satisfying the second goal. For

the third goal, DCFGs allow us to distinguish the code structure of

individual JIT-compiled functions by separating out the different

code modifications in different DCFG phases, with the space opti-

mizations of Section 4 ensuring scalability; codegen dependencies

then make it possible to identify and reason about the code compo-

nents and value flows in the dynamic code generator relevant to

the code modifications in each such phase. As far as we know, no

other existing system can do this.

8 RELATEDWORK
Anckaert et al. describe a program representation for dynamic code

that is capable of representing multiple versions of the code as it is

modified during execution [4]. However, this work does not have a

notion of codegen dependencies and as a result is of limited utility

for applications that involve reasoning about causal relationships

between the dynamic code generator and the dynamic code.

Debray and Yadegari discuss reasoning about control dependen-

cies in interpreted and JIT-compiled code [52]. While the goals of

this work are similar to ours, its technical details are quite different.

In particular, it does not aim to provide a program representation ca-

pable of supporting arbitrary dynamic code, but instead is narrowly

focused on control dependency analysis in interpretive systems. It

also makes assumptions, such as the ability to map each dynam-

ically generated instruction to a unique byte-code instruction it

originated from, that render it inapplicable to contexts not involv-

ing interpreters, such as the dynamic-code-based environmental

triggers discussed in Sections 5.2 and 6.4.

Korczynski and Yin discuss identifying code reuse/injections

using whole-system dynamic taint analysis [29]. While this work

captures codegen dependencies, it does not propose a program

representation that can capture the code structure for the different

phases that arise during execution. As a result, this approach is

not suitable for analyses, such as program slicing, that require

information about the control flow structure of the code. Dalla Preda

et al. describe a notion of phases to characterize the semantics of self-

modifying code [12], however this work was never implemented

and the technical details are very different from ours.

There is a large body of literature on program slicing (e.g., see

[30, 39, 46, 50, 55]), but all of this work focuses on static code. There

is a lot of work on dependence and information flow analyses

(e.g., see [20, 27, 35]), but these typically do not consider end-to-

end analysis of dynamic code. Several authors have discussed taint

propagation in JIT-compiled code, but focusing on taint propagation

in just the application code rather than on end-to-end analyses [13,

28, 41]. Whole-system analyses [11, 13, 21, 53, 54] focus on issues

relating to dynamic taint propagation through the entire computer

system. Such systems provide end-to-end analyses but typically

consider only explicit information flows (≃ data dependencies), not

implicit flows (≃ control dependencies); they are thus of limited use

for reasoning about behaviors, such as conditional dynamic code

modification (i.e., where the dynamic code generated may depend

conditionally on input and/or environmental values), which are

common in applications such as JIT compilers.

There are a number of systems that reason about program behav-

ior using dynamic analysis, and therefore are able to perform some

kinds of analysis on dynamic code [36, 42, 44, 47]. Our experiments

indicate that these systems do not keep track of multiple versions

of code resulting from dynamic code modification, and so cannot

fully capture the dependencies arising from runtime code changes.

Cai et al. [7] and Myreen [33] discuss reasoning about dynamic

code for the purposes of program verification using Hoare logic.

We have not seen any implementations to apply their work towards

modern software that utilizes dynamic code (i.e. a javascript engine).

Furthermore, our work is more specific in that we seek to provide

a program representation capable of representing dynamic code.

9 CONCLUSIONS
Dynamic code is ubiquitous in today’s world. Unfortuntely, existing

approaches to program analysis are not adequate for reasoning

about the behavior of dynamic code. This paper discusses how this

problem can be addressed via a program representation suitable

for dynamic code as well as a new notion of dependencies that

can capture dependencies between the dynamic code and the code

that generated it. Experiments with a prototype implementation of

backwards dynamic slicing based on these ideas show, on a number

of real-world examples, that these ideas make it possible to work

back from the faulty code to the JIT compiler logic that led to the

generation of the faulty code.

ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-

dation under grant no. 1908313.

11

ASE ’20, September 21–25, 2020, Virtual Event, Australia Jesse Bartels, John Stephens, Saumya Debray

REFERENCES
[1] [n.d.]. Uni-poker Javascript source code. https://browserbench.org/JetStream/

RexBench/UniPoker/poker.js

[2] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. In ACM
SIGPlan Notices, Vol. 25. ACM, 246–256.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. 1985. Compilers – Principles, Techniques,
and Tools. Addison-Wesley, Reading, Mass.

[4] B. Anckaert, M. Madou, and K. De Bosschere. 2006. A Model for Self-Modifying

Code. LNCS 4437, 232–248.
[5] Saam Barati. 2019. Introducing the JetStream 2 Benchmark Suite. https://webkit.

org/blog/8685/introducing-the-jetstream-2-benchmark-suite/

[6] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and

Heng Yin. 2008. Automatically identifying trigger-based behavior in malware.

In Botnet Detection. Springer, 65–88.
[7] Hongxu Cai, Zhong Shao, andAlexander Vaynberg. 2007. Certified self-modifying

code. In ACM SIGPLAN Notices, Vol. 42. ACM, 66–77.

[8] Peter Cawley. 2015. Malicious LuaJIT bytecode. https://www.corsix.org/content/

malicious-luajit-bytecode

[9] Oliver Chang. 2017. Exploiting a V8 OOB write. https://halbecaf.com/2017/05/24/

exploiting-a-v8-oob-write/

[10] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

platform for in-vivo multi-path analysis of software systems. In ACM SIGARCH
Computer Architecture News, Vol. 39. ACM, 265–278.

[11] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.

2004. Understanding data lifetime via whole system simulation. In USENIX
Security Symposium. 321–336.

[12] M. Dalla Preda, R. Giacobazzi, and S. Debray. 2015. Unveiling metamorphism

by abstract interpretation of code properties. Theoretical Computer Science 577
(April 2015), 74–97.

[13] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. 2014.

TaintDroid: an information-flow tracking system for realtime privacy monitoring

on smartphones. ACM TOCS 32, 2 (2014).
[14] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.

2017. JITGuard: Hardening Just-in-time Compilers with SGX. In Proc. 2017 ACM
Conference on Computer and Communications Security. 2405–2419.

[15] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin,

Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason

Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,

Mason Chang, and Michael Franz. 2009. Trace-based Just-in-time Type Special-

ization for Dynamic Languages. In Proc. PLDI 2009. 465–478.
[16] Isaac Gouy. [n.d.]. nbody Javascript source code. https://browserbench.org/

JetStream/SunSpider/n-body.js

[17] Loki Hardt. 2015. Issue 794825: Security: V8: Empty BytecodeJumpTable may lead
to OOB read. https://bugs.chromium.org/p/chromium/issues/detail?id=794825

[18] Loki Hardt. 2017. Issue 794822: Security: V8: JIT: Type confusion in GetSpecializa-
tionContext. https://bugs.chromium.org/p/chromium/issues/detail?id=794822

[19] Loki Hardt. 2018. Issue 807096: Security: Arrow function scope fixing bug. https:

//bugs.chromium.org/p/chromium/issues/detail?id=807096

[20] Christophe Hauser, Frederic Tronel, Ludovic Mé, and Colin J. Fidge. 2013. Intru-

sion detection in distributed systems, an approach based on taint marking. In

Proc. 2013 IEEE International Conference on Communications (ICC). 1962–1967.
[21] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen

Wang, Rundong Zhou, and Heng Yin. 2014. Make it work, make it right, make

it fast: building a platform-neutral whole-system dynamic binary analysis plat-

form. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis. 248–258.

[22] David Van Horn and Harry G. Mairson. 2007. Relating complexity and precision

in control flow analysis. In Proc. 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP). 85–96.

[23] Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. 2012.

Adaptive Multi-level Compilation in a Trace-based Java JIT Compiler. In Proc
OOPSLA 2012. 179–194.

[24] Intel Corp. [n.d.]. Intel XED. https://intelxed.github.io.
[25] Bob Ippolito. [n.d.]. str-unpack Javascript source code. https://browserbench.org/

JetStream/SunSpider/string-unpack-code.js

[26] Paul Johnston. [n.d.]. crypto-sha1 Javascript source code. https://browserbench.

org/JetStream/SunSpider/crypto-sha1.js

[27] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.

2011. DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation.

In NDSS.
[28] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and

Michael Franz. 2013. Information flow tracking meets just-in-time compilation.

ACM Transactions on Architecture and Code Optimization (TACO) 10, 4 (2013), 38.
[29] David Korczynski and Heng Yin. 2017. Capturing malware propagations with

code injections and code-reuse attacks. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1691–1708.

[30] Bogdan Korel. 1997. Computation of dynamic program slices for unstructured

programs. IEEE Transactions on Software Engineering 23, 1 (1997), 17–34.

[31] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. 2005. Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation. In Proc. ACM Conference on Programming
Language Design and Implementation (PLDI). Chicago, IL, 190–200.

[32] Florian Martin. 1999. Experimental comparison of call string and functional

approaches to interprocedural analysis. In International Conference on Compiler
Construction. Springer, 63–75.

[33] Magnus O Myreen. 2010. Verified just-in-time compiler on x86. In ACM Sigplan
Notices, Vol. 45. ACM, 107–118.

[34] N. Nethercote and J. Seward. 2007. Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation. In Proc. ACM Conference on Programming
Language Design and Implementation (PLDI). 89–100.

[35] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis for Automatic

Detection, Analysis, and Signature Generation of Exploits on Commodity Soft-

ware. In NDSS.
[36] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.

2010. PinPlay: a framework for deterministic replay and reproducible analysis

of parallel programs. In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, 2–11.

[37] Martijn Pieters and Samuel Sieb. [n.d.]. base64 Javascript source code. https:

//browserbench.org/JetStream/SunSpider/base64.js

[38] Jordan Rabet. 2017. Browser security beyond sandboxing. Microsoft Windows

Defender Research. https:cloudblogs.microsoft.com/microsoftsecure/
2017/10/18/browser-security-beyond-sandboxing.

[39] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff,

and Matthew B Dwyer. 2007. A new foundation for control dependence and

slicing for modern program structures. ACM Transactions on Programming
Languages and Systems (TOPLAS) 29, 5 (2007), 27.

[40] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural

dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, 49–61.

[41] Tiark Rompf, Arvind K Sujeeth, Kevin J Brown, HyoukJoong Lee, Hassan Chafi,

and Kunle Olukotun. 2014. Surgical precision JIT compilers. In Acm Sigplan
Notices, Vol. 49. ACM, 41–52.

[42] Florent Saudel and Jonathan Salwan. 2015. Triton: ADynamic Symbolic Execution

Framework. In Symposium sur la sécurité des technologies de l’information et des
communications, SSTIC, France, Rennes, June 3-5 2015. SSTIC, 31–54.

[43] M. Sharir and A. Pnueli. 1981. Two Approaches to Interprocedural Data Flow

Analysis. In Program Flow Analysis: Theory and Applications, S. S. Muchnick and

N. D. Jones (Eds.). Prentice-Hall, 189–233.

[44] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. (2016).

[45] Jim Smith and Ravi Nair. 2005. Virtual machines: versatile platforms for systems
and processes. Elsevier.

[46] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In

Proc. ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation. 112–122.

[47] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. (2016).

[48] F. Tip. 1995. A survey of program slicing techniques. Journal of Programming
Languages 3 (1995), 121–189.

[49] Svend Tofte. [n.d.]. date-format Javascript source code. https://browserbench.

org/JetStream/SunSpider/date-format-tofte.js

[50] Mark Weiser. 1984. Program slicing. IEEE Transactions on Software Engineering
10, 4 (July 1984), 352âĂŞ–357.

[51] Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive Pointer

Analysis for C Programs. In Proc. SIGPLAN 1995 Conference on Programming
Language Design and Implementation (PLDI ’95). 1–12.

[52] Babak Yadegari and Saumya Debray. 2017. Control Dependencies in Interpretive

Systems. In International Conference on Runtime Verification. Springer, 312–329.
[53] Heng Yin and Dawn Song. 2010. Temu: Binary code analysis via whole-system

layered annotative execution. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2010-3 (2010).

[54] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

2007. Panorama: capturing system-wide information flow for malware detec-

tion and analysis. In Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 116–127.

[55] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2004. Efficient Forward Com-

putation of Dynamic Slices Using Reduced Ordered Binary Decision Diagrams.

In Proc. 26th International Conference on Software Engineering. 502–511.

12

https://browserbench.org/JetStream/RexBench/UniPoker/poker.js
https://browserbench.org/JetStream/RexBench/UniPoker/poker.js
https://webkit.org/blog/8685/introducing-the-jetstream-2-benchmark-suite/
https://webkit.org/blog/8685/introducing-the-jetstream-2-benchmark-suite/
https://www.corsix.org/content/malicious-luajit-bytecode
https://www.corsix.org/content/malicious-luajit-bytecode
https://halbecaf.com/2017/05/24/exploiting-a-v8-oob-write/
https://halbecaf.com/2017/05/24/exploiting-a-v8-oob-write/
https://browserbench.org/JetStream/SunSpider/n-body.js
https://browserbench.org/JetStream/SunSpider/n-body.js
https://bugs.chromium.org/p/chromium/issues/detail?id=794825
https://bugs.chromium.org/p/chromium/issues/detail?id=794822
https://bugs.chromium.org/p/chromium/issues/detail?id=807096
https://bugs.chromium.org/p/chromium/issues/detail?id=807096
https://browserbench.org/JetStream/SunSpider/string-unpack-code.js
https://browserbench.org/JetStream/SunSpider/string-unpack-code.js
https://browserbench.org/JetStream/SunSpider/crypto-sha1.js
https://browserbench.org/JetStream/SunSpider/crypto-sha1.js
https://browserbench.org/JetStream/SunSpider/base64.js
https://browserbench.org/JetStream/SunSpider/base64.js
https://browserbench.org/JetStream/SunSpider/date-format-tofte.js
https://browserbench.org/JetStream/SunSpider/date-format-tofte.js

	Abstract
	1 Introduction
	2 Background
	2.1 Interpreters and JIT Compilers
	2.2 Control Flow Graphs

	3 Reasoning about Dynamic Code
	3.1 Design Goals
	3.2 Dynamic Code Modification
	3.3 Concepts and Definitions
	3.4 DCFG Construction

	4 Space Optimization of DCFGs
	5 Applications
	5.1 Program Slicing for Bug Localization and Exploit Analysis in JIT Compilers
	5.2 Detecting Environmental Triggers in Malware

	6 Evaluation
	6.1 Overview
	6.2 Assessing the Capabilities of Existing Tools
	6.3 Analysis Efficacy on Real-World Examples
	6.4 Detecting Environmental Triggers
	6.5 Space Optimization: The Impact of Merging

	7 Summary and Discussion
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

