
Directed Test Program Generation for JIT Compiler
Bug Localization

HeuiChan Lim
Department of Computer Science

The University of Arizona
Tucson, USA

hlim1@arizona.edu

Saumya Debray
Department of Computer Science

The University of Arizona
Tucson, USA

debray@cs.arizona.edu

Abstract—Bug localization techniques for Just-in-Time (JIT)
compilers are based on analyzing the execution behaviors of the
target JIT compiler on a set of test programs generated for
this purpose; characteristics of these test inputs can significantly
impact the accuracy of bug localization. However, current ap-
proaches for automatic test program generation do not work
well for bug localization in JIT compilers. This paper proposes
a novel technique for automatic test program generation for JIT
compiler bug localization that is based on two key insights: (1)
the generated test programs should contain both passing inputs
(which do not trigger the bug) and failing inputs (which trigger
the bug); and (2) the passing inputs should be as similar as
possible to the initial seed input, while the failing programs
should be as different as possible from it. We use a structural
analysis of the seed program to determine which parts of the
code should be mutated for each of the passing and failing cases.
Experiments using a prototype implementation indicate that
test inputs generated using our approach result in significantly
improved bug localization results than existing approaches.

I. INTRODUCTION

Just-in-Time (JIT) compilers are widely used in modern
software to improve the performance of interpreted systems.
Bugs in JIT compilers can result in the generation of incorrect
optimized code, which can then lead to exploitable security
vulnerabilities [1], [2]. The size and complexity of modern JIT
compilers, and the nontrivial manual effort needed to locate
and fix such bugs, makes it important to develop automated
techniques for rapid bug localization in JIT compilers.

Automated bug localization techniques typically rely on
analyzing the execution behavior of the JIT compiler on a
set of test inputs generated for the purpose. The idea is to
examine the set of “program entities” involved in the execution
of the various test inputs (e.g., functions, or source files, or
data structures manipulated) to zero in on a set of suspicious
program entities that are potential culprits for the bug. The
accuracy of this process depends in part on the size of the
set of suspicious entities identified (smaller is better), which
necessarily depends on the characteristics of the test inputs
used. This suggests that careful attention to the set of test
inputs used can help improve the accuracy of bug localization.
This paper proposes a novel approach to generating test inputs
that focuses on aspects of test generation that affect the set of
suspicious entities, and thus can achieve better bug localization
accuracy than existing approaches. Our approach is based on

two insights: (1) the generated test programs should contain
both passing inputs (that do not trigger the bug) and failing
inputs (that trigger the bug); and (2) the passing inputs should
be similar to the original seed input, while the failing inputs
should be as different as possible from the seed.

Existing approaches to test input generation for JIT compiler
bug localization do not use the considerations discussed above
to guide the input generation process. Lim and Debray’s work
on JIT compiler bug localization [3] uses random mutation of
the initial seed program, which is less effective in minimizing
the set of suspicious entities than that described here. A body
of work on bug localization in conventional compilers [4], [5],
[6] focuses on constructing multiple passing test inputs but
uses only a single failing input (the original seed program).
Other researchers use the same approach to generate both
failing and passing programs [7] and thus do not utilize the
fact that treating passing and failing inputs differently during
construction can improve the quality of bug localization.

In order to assess the effectiveness of our approach, we
developed a prototype tool called DPGen4JIT (Directed Pro-
gram Generator for JIT Compiler). Our approach follows a
series of steps to generate and select test programs. First, we
generate an initial set of test programs by mutating the seed
program in a non-directed manner, without specifying which
nodes to mutate. Next, we analyze the initial set of programs
to identify the nodes that should be mutated or avoided. We
mutate the seed programs using this information to generate
new test programs. Finally, we select the test programs by
analyzing their similarities to the seed program. These steps
enable our approach to generate and select effective test
programs for bug localization. We used the test programs
created by DPGen4JIT to perform bug localization on 72 bugs
in two widely used JIT compilers, Google TurboFan [8] and
Mozilla IonMonkey [9]. The results indicate that test programs
generated using our approach lead to significantly smaller
sets of suspicious entities and result in significantly higher
accuracy in bug localization than the existing approaches.

In summary, this paper makes the following contributions:
1) it describes a novel approach to generating test inputs

for bug localization in JIT compilers, with the aim
of reducing the set of suspicious program entities and
improving the accuracy of bug localization; and

2) it demonstrates the efficacy of our ideas using a prototype
implementation evaluated on 72 bugs for two widely used
JIT compilers. The results indicate that our approach
leads to significantly improved accuracy for JIT compiler
bug localization compared to existing approaches.

II. MOTIVATION

A

G
EC

H
D

F

B
I

E(pseed) = {A, C, E, G, H}

E(ppass) = {B, C, F, H, I}

E(pfail) = {C, D, E, G, H}

E(pseed)

E(ppass)

E(pfail)

suspicious

Fig. 1. Buggy entity isolation example.

When a buggy program P under consideration is executed
on a test input a, the resulting execution gives rise to a set of
program entities EP (a) that are involved with that execution
and are potentially relevant to the buggy behavior. Figure 1
shows a simplified example with three inputs: the initial seed
program pseed that triggers the buggy behavior, which gives
rise to the set of entities EP (pseed) = {A,C,E,G,H}; a
passing input ppass (which does not trigger the bug), with
EP (ppass) = {B,C, F,H, I}; and a failing test input pfail
(which triggers the bug), with EP (pfail) = {D,E,G, J,K}.
Suppose that the actual buggy entity is G. From a bug
localization perspective, the set of suspicious entities are those
that are common to all the buggy executions but not the non-
buggy ones. In Figure 1, this is given by

suspicious = (EP (pseed) ∩ EP (pfail))− EP (ppass) = {G,E}.

The ground truth buggy entity G is in this set, but it also con-
tains a (spurious) non-buggy entitiy E, which can potentially
impact the accuracy of the bug localization process. Ideally,
therefore, the test inputs should be such that the resulting set
of suspicious entities is as small as possible.

More generally, suppose that we have a set of passing test
inputs Ppass that do not trigger the bug and a set of failing
inputs Pfail that trigger the bug. Reasoning as above, the set
of suspicious entities is given by

suspicious = (
⋂

a∈Pfail

EP (a))− (
⋃

b∈Ppass

EP (b)).

To minimize the size of this set, we should minimize the size
of the intersection and maximize the size of the union. In other
words, we should (i) make the entities arising from inputs
in Pfail as dissimilar as possible; and (ii) make the entities
arising from inputs in Ppass as similar as possible to the initial
failing seed input. This is the basic idea guiding the approach
to test program generation described here.

One issue that arises here is that the set of program entities
arising from executing a program on a given input become
known only once it has been executed, while we have to
construct the test inputs prior to execution. To address this,
we use structural similarity between the input test programs
as a proxy for the similarity or difference between the entities
arising from their execution.

III. BACKGROUND: JIT COMPILERS AND TEST ORACLES

JIT compilers are used to improve the performance of
interpreted systems by dynamically optimizing the interpreted
byte-code to more efficient native code. The JIT compiler
is tightly coupled with an interpreter that converts the input
program to a machine-independent byte-code representation,
which is then interpreted. The runtime system monitors the
execution of the byte-code as it is interpreted, and frequently
executed code fragments are passed to the JIT compiler to be
compiled to native code. The generated native code contains
checks to ensure that assumptions made during optimization,
e.g., about the types of variables, are not violated. If an
assumption is found to not hold, the corresponding code
fragment is “de-optimized” back to the original byte-code.

This system structure provides a convenient test oracle for
JIT compiler bugs. We define the execution of a JIT compiler
to be buggy if the observable behavior of the input program is
different when it is interpreted than when it is JIT-compiled.
For any given input p, therefore, we can determine whether
p triggers a JIT compiler bug by comparing its observable
execution behavior with JIT-compilation enabled with that
with JIT-compilation disabled.

IV. SYSTEM DESIGN

A. Terminology

We use the following terminology in the paper:
• Test Program is a piece of code, such as JavaScript, that

serves as input to another software, like a JIT compiler,
to analyze and observe the behavior of the software.

• Seed (Test) Program is an original test program known
to trigger a bug in the JIT compiler.

• Failing (Test) Program is a test program that replicates
the buggy behavior of the seed test program when exe-
cuting with the same target software being tested.

• Passing (Test) Program is a test program that no longer
triggers a bug in the target software being tested.

• Valid Program is a test program that does not fail due
to a non-bug-related issue (e.g., a syntax error). For
example, valid programs do not fail at the parser because
of the mutation we applied to the seed program.

B. Overview

We need a seed test program known to trigger a bug in the
JIT compiler to generate passing and failing test programs, as
these programs are mutations of the seed. We can obtain the
seed test programs from the bug reports. When developers find
a new bug, they submit a report with the “proof-of-concept”

Fig. 2. The architecture of DPGen4JIT.

(PoC) code.1 We also assume that the user specifies the number
of test inputs to generate.

Given a seed test program P0 and the number N of test
programs to generate, we take the following steps illustrated
in Figure 2 to generate and select the passing and failing
programs for the bug localization:

1) Undirected Test Program Generation (Section IV-D).
Generate test programs by traversing P0’s abstract syntax
tree (AST) and attempting to mutate each node. Each
node mutation results in a new program. Some of the
resulting mutated programs will continue to trigger the
JIT compiler bug while others will not.

2) Target Identification (Section IV-E). Use the programs
generated in Step 1 to identify: (i) which programs no
longer trigger the JIT compiler bug; and (ii) for each
such non-bug-triggering program P , which AST node in
P0 was mutated to obtain P .

3) Directed Mutation (Section IV-F). Using the information
from Step 2 about which AST nodes affect triggering the
JIT compiler bug, the tool targets the nodes to mutate in
order to generate test programs that either trigger (failing
inputs) or do not trigger the bug (passing inputs).

4) Test Program Selection (Section IV-G). Given the pass-
ing and failing inputs generated in Step 3, the tool selects
the input programs used for bug localization.

C. Mutation Policy

To produce a valid test program, we use the following rules
when mutating the abstract syntax tree (AST) of a program:

1) the mutated program must be syntactically correct; and
2) the mutation must not violate the semantics of the lan-

guage, and the mutated program should be semantically
similar to the seed program.

We use language specifications to ensure the validity of mu-
tations made to the program. E.g., for JavaScript we consulted
the ECMA [12] and Mozilla [13] language specifications.

The purpose of adhering to these guidelines is not only to
produce a valid program but also to generate test programs
that traverse a comparable execution path to the original seed
program. The rationale behind this is that by examining the
similarities and differences between the newly generated test
programs and the seed program, explained in Section II, which

1Vendors require bug reports to specify how the bug can be reproduced
(e.g., see [10], [11]). For JIT compiler bugs, this translates to providing a
PoC input that triggers the buggy behavior.

share comparable syntax and meaning, bug localization meth-
ods can accurately identify and isolate the buggy components
from the failing execution, i.e., the seed program’s execution.

TABLE I
CATEGORIZED RULES

Rules Description
Operators Operators are replaced with another operator within

the same group. For example, binary operators are
replaced with another binary operator, unary opera-
tors with another unary operator, etc.

Built-in Methods Built-in methods are substituted with another built-
in method from the same group with the same
parameters.

Values Values are replaced according to their types. For
instance, integer values are substituted with another
integer value, float values with another float value,
strings with another string, and so on.

1) Syntax Rule: We only make changes to the syntax tree
through replacement to generate test programs that do not
violate the syntax rules of the language. In particular, we do
not add or remove nodes from the tree.

The rules in our mutation policy are summarized in Table I,
where each category is further sub-categorized. For instance,
we have a separate category for built-in functions for string
operations and another for integer operations. Additionally,
different syntaxes must segment built-in functions to differen-
tiate between operations with the same number of parameters.
For example, the square root function receives one argument,
while the power function receives two arguments in the
JavaScript language.

2) Semantic Rule: To ensure that the newly generated
programs maintain semantic similarity with the seed program,
we ensure that any modifications to the AST preserve the
node’s type. This implies that we only substitute a literal with
another literal, a binary arithmetic operator with another binary
arithmetic operator, an integer constant with another integer
constant, and so on. In addition to the rules outlined in Table I,
we further categorized the operators and functions based on
the type of value they operate on and return. For instance, we
grouped unary operators like +, −, and ∼, which return a
number, separately from !, which returns a logical value.

Figure 3 shows examples of new programs generated from
mutating the seed program. The unary operator − is replaced
with the unary operator + at line 2 for program P1. The built-
in function max is replaced with the built-in function min at
line 3 for program P2. For program P3, multiple locations are
mutated. Arithmetic operator + is replaced with * operator

1 function foo(x) { function foo(x) { function foo(x) { function foo(x) {
2 let y = x + -0; let y = x + + 0; let y = x + -0; let y = x * -0;
3 let z = Math.max(x,y); let z = Math.max(x,y); let z = Math. min (x,y); let z = Math.max(x,y);
4 if (y == x && y == z) if (y == x && y == z) if (y == x && y == z) if (y != x && y == z)
5 return true; return true; return true; return false ;
6 return false; return false; return false; return false;

Seed P1 P2 P3

Fig. 3. Examples of generated programs from mutating the seed program.

(line 2), == operator is replaced with != (line 4), and the
boolean value true is replaced with the value false (line 5).

D. Undirected Test Program Generation

Given a seed test program, we generate a new set of pro-
grams by mutating the seed without any directions on which
nodes to target. This step aims to create various new programs
different from the seed; some continue to trigger a bug in the
JIT compiler, while others do not. This step can proceed in
two options: (1) generate variants using the existing random
test program generators (e.g., Lim and Debray’s fuzzer [3],
etc.); or (2) generate variants using our undirected test program
generator. However, our undirected test program generator has
an advantage over existing random test program generators.
This is because it systematically traverses all nodes in the AST
and attempts to mutate them, resulting in a wider range of
generated programs. In contrast, random AST mutation relies
on the random selection of AST nodes, which can limit the
diversity of the generated programs.

Our undirected test program generator strictly follows the
rules described in Section IV-C. Let mutate(A, i) denote
the mutated AST A at ith node. Given the seed program
P0, the tool first constructs the AST (AST0). Algorithm 1
shows the steps of generating random test programs from the
seed AST. First, the undirected function prepares an empty
UNDIRECTED set to hold the newly generated test program
ASTs (line 2). The tool iterates as the same number of nodes
in the seed AST aiming to mutate all the nodes to generate as
variety as possible new programs that differ from each other
(lines 4 - 8). Mutate the ith node of copied AST (lines 5 - 6),
then add it to the UNDIRECTED set (line 7). Finally, a set of
new test program ASTs, UNDIRECTED, is returned (line 9).

E. Target Identification

This step aims to identify the specific AST nodes cor-
responding to a section(s) of the seed test program that
triggers the bug in the JIT compiler. Given the seed test
program P0 and set of randomly generate test programs
UNDIRECTED = {U1, U2, ..., UH}, where Ui is a randomly
generated test program and H is the number of programs, we
take the following steps to identify the specific nodes of the
seed program AST:

1) Identify passing programs from UNDIRECTED .
2) Construct ASTs of seed program P0 and test programs.

Algorithm 1: Undirected test program generation
Result: UNDIRECTED: Set of initial test program

ASTs.
Input: AST0: AST of the seed test program.

1 function undirected(AST0):
2 UNDIRECTED ← ∅
3 i← 1
4 while i < size(AST0) + 1 do
5 ast copy ← copy(AST0)
6 ast copy ← mutate(ast copy, i)
7 UNDIRECTED ←

UNDIRECTED ∪ {ast copy}
8 i← i+ 1

9 return UNDIRECTED

3) Compute the differences between the seed program AST
and the ASTs of the passing test programs. The differ-
ences are the target nodes to mutate.

1) Identify Passing Programs with the Test Oracle: To
determine whether a JIT compiler’s execution is bug-free, we
check whether the behavior of the test program is consistent
with or without JIT compilation. If the behaviors of the
interpreted and JIT-compiled versions of the program differ,
then it is considered buggy. Otherwise, it is non-buggy.

2) Construct ASTs of Programs: This step constructs ab-
stract syntax trees for all passing programs and the seed
program.

Fig. 4. Finding different AST nodes.

3) Compute the Differences: To identify differences be-
tween the syntax tree of a seed program (AST 0) and those
of the passing programs, we utilize a process that involves
computing the AST difference. Figure 4 demonstrates this
process, which involves identifying different AST nodes. For
instance, if we consider the seed program AST AST 0 from
the JavaScript program let x = y+−0, and compare it to two
other ASTs (AST 1 and AST 2) from mutated programs, we
identify the AST nodes of AST 0 that differ from AST 1 and
AST 2. In this example, the 5th and 6th nodes are different,
so we add AST node IDs 5 and 6 to the TARGETS set.
To perform this comparison, we use the Needleman-Wunsch
sequence alignment algorithm [14] in our implementation.

F. Directed Mutation

Given the set of seed program’s AST node ids, which
we know are related to a bug in a JIT compiler, this step
aims to generate two sets of passing and failing programs.
Generating passing programs is based on the idea that the
difference between two very similar executions, one is buggy
and another is not, is the part that holds information on the
bug as discussed in Section II. Thus, we generate passing
programs highly similar to the seed test program by making
a minor mutation to the copy of the seed AST specifically
targeting the identified AST nodes in the earlier step. In
contrast, generating failing programs is based on the intuition
that analyzing the commonality between the two very different
execution while both are buggy allows us to identify the bug in
the JIT compiler. To generate the failing programs, we mutate
the nodes of the seed AST copy except the identified target
nodes.

1) Generating Passing Programs: Algorithm 2 generates
a set of passing program ASTs by mutating the seed test
program AST, AST 0. The function takes the number of pro-
grams to generate, N , and the set of AST node IDs to mutate,
TARGETS , as inputs. The set PASSINGS , initialized to ∅,
holds the generated ASTs, the variable cur ast keeps track
of the number of such ASTs, and next target refers to the
next target node to mutate.

While iterating the loop N times, the function makes a copy
of the original AST and mutates the target node identified by
the TARGETS set using the mutate function. If the mutated
AST is not in the PASSINGS set, it is added to the set and the
next target node is selected for mutation. If the mutated AST is
already present in the PASSINGS set, the function proceeds
to the next target node without adding the AST to the set. If
all target nodes have been mutated, the function starts again
from the first target node in the TARGETS set. The function
returns the PASSINGS set when the desired number of ASTs
have been generated.

2) Generating Failing Programs: Algorithm 3 generates
a set of failing program ASTs by mutating AST 0. It takes
the same inputs as the generate passings function. The set
FAILS , initialized to ∅, holds the generated ASTs, while the
variable cur ast keeps track of the number of such ASTs.

Algorithm 2: Generating passing program ASTs.
Input: AST 0: AST of the seed test program.
Input: N : User-specified number.
Input: TARGETS : Set of target AST node IDs.
Result: PASSINGS : Set of new ASTs.

1 function generate passings(N , AST 0, TARGETS):
2 PASSINGS ← ∅
3 cur ast ← 1
4 next target ← 1
5 while cur ast ≤ N do
6 ast copy ← copy(AST 0)
7 target id ←

get target(TARGETS ,next target)
8 ast copy ← mutate(ast copy , target id)
9 if ast copy /∈ PASSINGS then

10 add ast copy to PASSINGS
11 next target ← next target + 1

12 if next target > size(TARGETS) then
13 next target ← 1

14 cur ast ← cur ast + 1

15 return PASSINGS

For each iteration, the function makes a copy of the original
AST and mutates the nodes that are not related to the bug in
the JIT compiler, i.e., the node id is not in the TARGETS
set, using the mutate function. Unlike the generate passings
function, the generate fails function does not break out of the
loop after mutating the target nodes. It fully traverses the AST
to mutate all relevant nodes to generate new failing programs
that are different from the seed program. If the mutated AST
is not in the FAILS set, it is added to the set. If the mutated
AST is already present in the FAILS set, the function proceeds
to the next mutation without adding the AST to the set. The
function returns the FAILS set.

G. Test Program Selection

The final step of DPGen4JIT is to convert N number of
ASTs, which are selected from the PASSINGS and FAILS
sets, to source code (e.g., JavaScript code) that can be used
by the bug localizer as input to the JIT compiler. The AST
selection guarantees our idea further that the failing test
programs to use in the bug localization analysis should be
as different as possible from the seed. In contrast, the passing
test programs should be similar as possible. We use Jaccard
similarity to compute the similarity between the seed program
AST and mutated ASTs. Let Nodes(T) denote a set of nodes
in abstract syntax tree T .

Sim(T0, Ti) =
| Nodes(T0) ∩Nodes(Ti) |
| Nodes(T0) ∪Nodes(Ti) |

Sim(T0, Ti) denotes the similarity value between the set of
nodes in T0 and Ti, where T0 denotes the seed test program

Algorithm 3: Generating failing program ASTs.
Input: AST 0: AST of the seed test program.
Input: N : User-specified number.
Input: TARGETS : Set of target AST node IDs.
Result: PASSINGS : Set of new ASTs.

1 function generate fails(N , AST 0, TARGETS):
2 FAILS ← ∅
3 cur ast ← 1
4 while cur ast ≤ N do
5 ast copy ← copy(AST 0)
6 for node ∈ ast copy do
7 if ID(node) /∈ TARGETS then
8 ast copy ←

mutate(ast copy , ID(node))

9 if ast copy /∈ FAILS then
10 add ast copy to FAILS

11 cur ast ← cur ast + 1

12 return FAILS

AST and Ti denotes the AST of a new test program to compare
the similarity with the seed.

Given a (user-specified) value N of the number of test
programs to generate, our current implementation constructs
N/2 passing and N/2 failing programs for bug localization.
To construct the set of passing test inputs, we calculate the
similarity between each AST in the PASSINGS set, and the
seed AST, T0, sort the results in descending order and select
the top N/2 ASTs; these are the passing programs most similar
to the initial seed input. To construct the set of failing inputs,
we calculate the similarity between each AST in the FAILS
set, and the seed AST, T0, sort the results in ascending order
and select the top N/2 ASTs; these are the failing programs
most dissimilar to the initial seed input. The resulting ASTs
are then written out as source programs that can be provided
as input to the JIT compiler.

H. Summary

Our approach is summarized in Algorithm 4, which provides
an outline of the entire process. We begin with a seed test pro-
gram P0 and the user-specified value N , which determines the
number of test programs to be generated. Initially, we create
the abstract syntax tree of P0. Next, we randomly mutate the
AST of P0 to generate test programs in an undirected manner.
We then examine these test programs to determine which AST
nodes to mutate in order to produce passing or failing test
programs. Using this information, we generate ASTs for both
passing and failing test programs. We then select the most
appropriate ASTs: failing test programs that are substantially
different from the seed, and passing test programs that are
similar to it. Finally, we convert these selected ASTs into
actual programs and return them.

Algorithm 4: Overall algorithm
Input: P0: The seed test program.
Input: N : User-specified number.

1 begin
2 AST 0 ← get ast(P0)
3 UNDIRECTED ← undirected(AST 0)
4 TARGETS ←

target identification(UNDIRECTED , P0)
5 PASSINGS ←

generate passings(N,AST0,TARGETS)
6 FAILS ← generate fails(N,AST0, TARGETS)
7 SELECTED ← select(PASSINGS ,FAILS , N)
8 PROGRAMS ← convert(SELECTED) ∪ {P0}
9 return PROGRAMS

V. EVALUATION

We conducted experiments using our proposed approach,
which we implemented in a prototype tool called DPGen4JIT.
The experiments were performed on a machine with 32
cores (@ 3.30 GHz) and 1TB of RAM, running Ubuntu
20.04.1 LTS. We used the esprima-python library [15] to
generate ASTs for JavaScript code and escodegen [16] to
converting mutated ASTs to JavaScript code. Source code for
DPGen4JIT can be found at https://anonymous.4open.science/
r/ASE2023-7C7F/DPGen4JIT/, and the data can be found at
https://anonymous.4open.science/r/ASE2023-7C7F/Data/.

A. Research Questions

Our experimental evaluation considered the following re-
search questions:

1) How effective in DPGen4JIT in reducing the number of
suspicious entities considered for bug localization?

2) How does DPGen4JIT compare with existing approaches
for test input generation with regard to reducing the
number of non-suspicious entities?

3) How does the use of programs generated by DPGen4JIT
impact the accuracy of bug localization compared to
existing input generation techniques?

B. Benchmarks and Target Systems

We evaluated the efficacy of DPGen4JIT on 72 optimization
bugs from two of the most widely used JIT compilers: Turbo-
Fan (V8; Google) and IonMonkey (SpiderMonkey; Mozilla).
Out of these bugs, 21 were reported on the vendors’ websites,
while 51 were synthetic bugs that had similar characteristics to
the reported bugs and were plausible in real-world situations.
The criteria used to select the bug reports were: (1) the bug had
to be in the JIT compiler’s optimizer; (2) the buggy behavior
had to be replicable, with the same behavior observable in
the provided PoC code and options; (3) it had to be possible
to identify an incorrectly optimized IR node from the JIT
compiler source code, with the buggy function accessing the
IR node to either manipulate the property or create a new node;
and (4) the bug had to be marked as “fixed.” The last criterion

https://anonymous.4open.science/r/ASE2023-7C7F/DPGen4JIT/
https://anonymous.4open.science/r/ASE2023-7C7F/DPGen4JIT/
https://anonymous.4open.science/r/ASE2023-7C7F/Data/

enabled us to use the fixed code, together with developer
comments, to obtain ground truth information about the buggy
code and thereby evaluate the accuracy of our analysis. Due to
space limitations, we omit a detailed description of the bugs
here, but it is available in the data submitted with the paper.

We generated binary executables for two widely-used
JavaScript engines, namely V8 (Google) and SpiderMonkey
(Mozilla), using the debugging settings commonly employed
by developers. Subsequently, we executed the input JavaScript
code for each bug with the relevant executable options. For
instance, we used the --fast-warmup option to expedite
the warm-up phase of the SpiderMonkey JIT compiler.

C. Bug Localization

To perform bug localization, we followed the approach
proposed by Lim and Debray [3]. This approach analyzes the
execution trace of a JIT compiler and extracts information
on the intermediate representation (IR) that the JIT compiler
constructs and optimizes. Based on this information, the
approach constructs its own abstract model that corresponds
to the concrete IR. First, we generate a set of programs using
our prototype tool DPGen4JIT from a proof-of-concept (PoC)
code (i.e., seed program). We construct abstract models for
each program, including the seed program. Then, we use the
Ochiai formula [17], which is one of the most well-known
Spectrum-Based Fault Localization (SBFL) formulas [18], to
calculate the suspicious values for each executed JIT compiler
instruction on the IR during optimization.

Sus(I) =
Ief√

(Ief + Inf)(Ief + Iep)

The suspicious value of an executed instruction I is denoted
as Sus(I). Ief and Inf represent the number of failing
programs that executed and did not execute the instruction I ,
respectively. Iep represents the number of passing programs
that executed the instruction I . Subsequently, the executed
instructions are sorted in descending order based on their
suspicious values and then aggregated at a function level (i.e.,
the final output from the bug localization analysis is a file
holding the ranking of suspicious functions). In addition, we
ran the experiment (i.e., from generating new sets of test
programs to bug localization) three times for each bug. We
identified a ground truth function and found its rank position
in each of the three rankings. Then we calculated the median
of the three rank positions to obtain the final rank position of
the ground truth item. [4], [5], [6].

We apply the Top-n metric, where n = 1, 5, 10, 20, to mea-
sure the accuracy of bug localization result. This metric counts
the number of bugs where the ground truth bug is localized
to within the top n positions in the ranking determined by
the localization algorithm; smaller values of n correspond to
greater accuracy. For example, if the ground truth bug location
is ranked third in the ranking produced by the localization
algorithm,, we consider the bug to be localized within the
Top-5. Kochhar et al. use this metric to assess developer
preferences for bug localization tools [19]: a ranking within

Fig. 5. Normalized impact of different numbers of passing and failing
input programs on the number of suspicious functions considered for bug
localization (smaller is better). The line colors indicate different numbers of
passing programs used, i.e., blue is 5, red is 10, and yellow is 15.

the Top-5 is regarded as “accurate,” while a ranking within
the Top-10 is deemed “acceptable.”

D. Impact on the Number of Suspicious Functions

The intuition discussed in Section II suggests that increasing
the number of passing and failing inputs can reduce the
number of suspicious entities considered during bug localiza-
tion. Figure 5 shows the results of an experiment to evaluate
this (Research Question 1). We selected 5 bugs out of 72
bugs at random and, for each bug, computed the number of
suspicious functions obtained using m passing and n failing
test programs, with m ∈ {5, 10, 15} and 1 ≤ n ≤ 15.
The results demonstrate the improvement of the number of
suspicious functions as additional failing test programs are
introduced in the analysis. The x-axis shows the number of
failing inputs, while the red, yellow, and blue lines in Figure 5
correspond to 5, 10, and 15 passing inputs respectively. The
y-axis shows, on a log scale, the (normalized) number of
functions that are not eliminated as non-suspicious for the
purposes of bug localization and which are therefore candi-
dates for consideration in bug localization. Since the number of
functions executed for the different bugs are very different, we
normalize the data with respect to the number of functions in
the original seed input for each bug, so as to make it easier to
see what fraction of those functions is being eliminated using
the test generation algorithm of DPGen4JIT. A normalized
value closer to 1 on the y-axis indicates that the number of
remaining functions is close to the total number of functions in
the seed program, while a value closer to 0 indicates a better
outcome with fewer remaining functions. A logarithmic scale
is used for the y-axis to produce a clearer visualization of the
data for small values of y, i.e., when only a relatively few
suspicious functions remain.

Figure 5 shows that the number of suspicious functions
declines sharply as additional failing test programs are intro-
duced, and then tends to plateau after the third to fifth test
program. This observation suggests that having multiple failing
test inputs in addition to the seed test program can be highly
effective in narrowing down the set of suspicious functions.

Fig. 6. The effectiveness of different approaches to test input generation on
proportion of non-suspicious functions eliminated

We next considered how the reduction in suspicious func-
tions obtained using DPGen4JIT compares with existing ap-
proaches (Research Question 2). We compared DPGen4JIT
with three existing approaches: Random [3]; Single Failing
Program, which uses a single failing input together with
multiple passing inputs; and Same Mutation Strategy, which
uses the same mutation strategy for both passing and failing
inputs. The following steps were taken to achieve this. (1) we
computed the suspicious set of functions using the formula
outlined in Section II. (2) we calculated the number of
eliminated functions by subtracting the remaining functions
from the total number of functions in the seed execution.
(3) we determined the proportion of the number of functions
eliminated to the number of seed functions. We used this pro-
portion as a standardized measure to compare the effectiveness
of different approaches across different bugs, irrespective of
the total number of functions in each seed execution.

In Figure 6, the proportion of eliminated functions compared
to the initial number of functions is shown for different
approaches. The boxes represent the median and interquartile
range, while the whiskers indicate the minimum and maximum
percentage of eliminated functions. The results demonstrate
that our approach outperforms the other approaches regarding
the proportion of eliminated non-suspicious functions. Our
approach eliminated a median of 91.2% of functions, while
the random test program generation approach only removed
17.1%, the single failing program approach eliminated 79.5%,
and the same mutation strategy approach eliminated 76.8%.

E. Impact on Bug Localization Accuracy

Table II displays the outcomes of localizing the ground
truth functions of the bugs in Top-n. The results show that the
bug localization result using the test programs generated from
DPGen4JIT performs effectively on both systems studied.

In the case of V8, the ground truth buggy functions are
ranked at the top (i.e., Top-1) in 4 out of 37 bugs (10.8%),
and for 9 out of 37 bugs (24.3%), the ground truth is ranked
in the top 5. In the case of SpiderMonkey, the ground truth

Fig. 7. Bug localization result comparisons

buggy functions are ranked at the top (i.e., Top-1) in 14 out of
35 bugs (40%), and for 22 out of 35 bugs (62.9%), the ground
truth is ranked in the top 5.

Overall, 25%, 43.1%, 54.2%, and 69.4% of ground truth
functions are ranked within Top-1, Top-5, Top-10, and Top-
20, respectively, using the test programs produced with our
approach. Particularly, more than 44.44% of the bugs can be
localized within the Top-5, which is the most preferred ranking
that developers expect from the bug localization approach to
isolate the bug if they are unable to localize it to Top-1.

To assess the efficacy of the test programs produced using
our approach, we assessed the same 72 bugs with the current
state-of-the-art techniques (Research Question 3), focusing
on the following: (1) random generation of test programs
by mutating the seed program randomly, similar to [3]; (2)
retaining a single failing input (the original seed program) and
only generating passing test programs, similar to [4], [5], [6];
and (3) generating both failing and passing test programs in
the same way, similar to [7].

1) Directed Generation vs. Random Generation: Using the
random test program generation, we located the bugs in the
same manner as our approach using the Ochiai formula.
We performed 3 runs for each bug and then selected the
median outcome, consistent with how we selected the results
obtained from our tool. Figure 7 shows the bug localization
result comparison between the procedure performed with the
test programs from DPGen4JIT and the random program
generator [3]. The result shows that using the test programs
generated from our tool significantly outperforms the result
using the randomly generated programs. Our results demon-
strate that bug localization using test programs generated by
our approach outperformed the use of randomly generated
test programs. Specifically, our approach was able to localize
18 bugs to Top-1 and 31 bugs to Top-5, while the randomly
generated test programs localized only 5 bugs to Top-1 and 15
bugs to Top-5. Similar trends were observed for Top-10 and
Top-20, with our approach showing higher performance.

The primary factors contributing to the outperforming bug
localization results achieved by employing the test programs

TABLE II
SUSPICIOUS FUNCTION RANKINGS RESULT

System Total bugs Top-1 Top-5 Top-10 Top-20
V8 37 4 (10%) 9 (24.3%) 15 (40.5%) 22 (59.5%)

SpiderMonkey 35 14 (40%) 22 (62.9%) 24 (68.6%) 28 (80%)
All 72 18 (25%) 31 (43.1%) 39 (54.2%) 50 (69.4%)

% shows the percentage of bugs localized within the Top-n

from DPGen4JIT compared to those generated randomly are
twofold. Firstly, the randomly generated test programs lack
sufficient diversity. We observed that the random generator
produced several new programs by mutating the same code
fragment with different values. While these new programs
are not duplicates since the mutated values are distinct, the
mutated code segment is not relevant to the bug in the JIT
compiler, rendering them less useful for bug localization.
Secondly, the generator fails to produce passing programs for
certain bugs, i.e., all test programs used in the bug localization
are failing programs. As a result, no comparison points are
available to localize the bugs accurately.

2) Single vs. Multiple Failing Programs: Several studies
on generating test programs for bug localization focus on
generating passing programs while having a single failing
program, i.e., the seed program. [4], [5], [6] However, we
propose that additional failing programs, generated with guid-
ance, can further increase the precision of bug localization.
To assess the effectiveness of our approach, we conducted an
experiment involving a single failing seed program and a set
of N passing programs. These passing programs were derived
from the seed program by mutating the values of the AST
nodes while maintaining the structure consistent. Furthermore,
we ensured that the generated programs were distinct, meaning
there were no duplicates among the new set of N programs.

Figure 7 shows the result of the “Single Failing Program”
experiment compared to others. The results show that incorpo-
rating multiple well-generated failing programs alongside the
seed failing program during bug localization can substantially
enhance accuracy. Specifically, the single failing program
approach was able to localize 7 bugs to Top-1 and 13 bugs
to Top-5, which is significantly lower than our approach.
This trend was consistent across Top-10 and Top-20, with our
approach consistently outperforming.

The reason the single failing program approach performs
worse is its inability to eliminate non-suspicious functions
from the seed execution as discussed in Section II.

3) Similarity of Passing/Failing Programs to the Seed:
While some approaches suggest generating both failing and
passing programs in the same manner, such as identifying
bug-related parts of the seed program and mutating them [7],
our method differs by generating passing and failing test
programs in different ways. Specifically, we aim to make
passing programs as similar as possible to the seed program
while making failing programs as dissimilar as possible. To
measure the performance of our idea to this opposing idea,
we conducted an experiment with our altered tool to generate
test programs by only mutating the identified AST nodes for

both passing and failing programs.
Figure 7 shows the result of the “Same Mutation Strategy”

experiment compared to others. The results show that using a
distinct approach to generate different types of test programs
resulted in a higher bug localization performance. significantly
improved indicate that our approach is more effective than the
same way mutation approach in localizing JIT compiler bugs.
The same mutation strategy was able to localize 5 bugs to
Top-1 and 12 bugs to Top-5, which is significantly lower than
our approach. This trend was consistent across Top-10 and
Top-20, with our approach consistently outperforming.

According to our experiment, there were two main factors
that contributed to the shortfall. Firstly, when we mutated the
code fragments related to a bug to generate additional failing
programs, we sometimes ended up with passing programs
instead, which led to generating only a minimal number
of failing programs. Secondly, due to the limited variety in
the failing programs, the bug localization analysis failed to
assign appropriate suspicious values to the executed instruc-
tions accurately. To address the aforementioned shortcomings,
one possible solution is to generate a large number of test
programs. For instance, statistical debugging methods typi-
cally produce hundreds or even thousands of test programs.
Nonetheless, this approach often suffers from efficiency issues.

F. Efficiency of DPGen4JIT

We evaluated the efficiency of DPGen4JIT by measuring
the time it takes to generate a new set of test programs from a
single seed test program in minutes. We used a user-specified
value of N = 30. The value 30 was selected arbitrarily and is
further discussed in Section VI-B. On average, our tool took
2 minutes and 51 seconds to generate test programs, while the
longest and shortest times were 4 minutes and 28 seconds and
1 minute and 42 seconds, respectively.

VI. DISCUSSION

A. Enhanced Target Identification

Our target identification method is able to successfully
identify input code fragments related to a bug in the JIT
compiler. However, we believe there is still room for improve-
ment. Currently, the target identification process identifies code
fragments related to a bug in isolation, even though the bug
may be caused by a combination of multiple factors. For
example, the JavaScript code snippet ‘let y = x + -0’
triggers a bug in the JIT compiler optimization[20], [21]. The
bug occurs only when the unary subtract operator is used with
zero (i.e., ‘-0’). The bug will not be triggered if the code
is modified by replacing ‘-’ with another unary operator or

zero with another number. While our tool can identify ‘-’
and ‘0’ as the targets, it is not able to recognize that the
bug is actually caused by the combination of these two code
fragments. We believe that by enabling the tool to analyze
input code and establish dependencies between the identified
targets, considering the information about their combination,
we can produce more sophisticated test programs that further
increase the accuracy of bug localization.

B. Number of Test Programs

It is possible that adding more failing and passing test
programs beyond a certain number does not provide additional
information that can further distinguish between the suspicious
and non-suspicious functions. This is because the added test
programs may not reveal new behavior of the program, but
rather confirm what was already discovered by the previous
set of test programs. This is because there could be redundant
or similar test cases in the added test programs, which may
not contribute to revealing new information about the program.
Therefore, our future work is to find a way to automatically
make the tool decide when to stop generating more failing test
programs and passing programs.

C. Generalizability of the Approach

While our approach was specifically designed for JIT
compilers, we believe it can be extended to other software
applications. The key requirements for inputs are: syntactic
structure that can be specified using a context-free grammar
(and therefore a parser to read inputs into ASTs and a writer to
write ASTs out to syntactically correct inputs); and semantic
constraints, such as type rules, on legal programs. The key
requirement for the program to be debugged is a test oracle
that can be used to distinguish buggy executions from non-
buggy ones. We are currently investigating ways to expand
our approach to other applications beyond JIT compilers.

D. Threats to Validity

1) Internal Threats: To ensure ranking accuracy, we con-
ducted a comparison between our results and the ground
truths. For real-world bugs, we carefully analyzed the bug
reports, paying special attention to the ground truths, which we
identified by studying the code changes and the developers’
associated comments and discussions. When introducing bugs,
we focused on the functions affected by the bug. Furthermore,
we introduced the bugs by referring to bug reports to ensure
that they had similar or identical characteristics to the reported
bugs. Nevertheless, we intend to expand our experiments to
include more real-world dynamic code generation bugs.

Another internal threat is the selection bias of existing
approaches used for comparison. To address this, we reviewed
related works with similar objectives, which involved gener-
ating test programs for bug localization. We selected three
different approaches to evaluate the same bugs as in our
experiment. Additionally, we plan to test our approach on
different bugs and explore different comparison methods to
reduce the impact of selection bias.

2) External Threats: To strengthen the external validity of
our study, we acknowledge the potential difficulty in applying
our approach to various JIT compilers, which is a primary
risk from an external standpoint. To mitigate this risk, we
conducted thorough testing of our findings using bugs found
in two popular JIT compilers: Google’s V8/Turbofan and
Mozilla’s SpiderMonkey/IonMonkey. However, we recognize
that there may be variations in JIT compilers that could
affect the applicability of our approach. To further address
this risk, we plan to conduct further experiments with a
wider range of bugs on other JIT compilers, such as Apple’s
JavaScriptCore/DFGJIT, to ensure that our approach can be
generalized to different JIT compilers.

VII. RELATED WORK

While the test program generation proposed by Lim and
Debray [3] shares the goal of generating test programs for
localizing bugs in the JIT compilers, it has several limitations.
In their approach, AST nodes are randomly selected and
mutated for a user-specified number of times. This does not
guarantee the generation of quality test programs that can
effectively eliminate unnecessary program entities.

The approaches [4], [5], [6] for generating test programs for
traditional compilers, such as GCC and LLVM, typically focus
on generating only the passing test programs. As discussed
in Section V, it is more advantageous to create additional
failing test programs to eliminate less suspicious program
entities, which could potentially lead to a more accurate
bug localization. A recent study [22] that employs machine
learning techniques to generate test programs is designed to
detect new bugs, similar to fuzzers.

Blazytko et al. employed AFL fuzzer [23] with a specialized
configuration (i.e., crash exploration mode) to produce test
programs. Nevertheless, utilizing fuzzers [23], [24], [25], [26],
whose primary goal is to identify new bugs by examining
the execution coverage, may not be the best option for bug
localization. This is because the newly generated test programs
may vastly differ from the seed and not link to the bug of
interest we want to locate. Additionally, solely considering
buggy behavior as a crash can result in the misclassification
of test programs. For instance, if a program produces incorrect
output but terminates without crashing, it may be mislabeled
as a passing program because it did not crash.

The approaches [27], [28], [29], [30], [7] used for ordinary
programs limits scaling to JIT compilers. This is because the
input to the JIT compiler is another program, while these
approaches target generating test cases, such as input values,
or directly mutating the target system.

Mutation-based fault localization (MBFL) [31], [28], [32],
[33], [34], [35], [36] involve mutating the program containing
the bug in order to identify the program entities that are likely
to be responsible. However, these approaches are challenging
to scale for JIT compilers. Especially, JIT compilers are part
of larger systems, e.g., JavaScript engines or Virtual Machines,
that the approach attempting to mutate specifically targeting
the JIT compiler alone is a non-trial task.

VIII. CONCLUSION

Bug localization for JIT compilers relies on analyzing the
execution behaviors of test programs. However, current auto-
matic test program generation approaches are not effective for
JIT compiler bug localization. To address this, we developed
a novel approach that generates effective test programs for JIT
compiler bug localization. We evaluated through experiments
on widely-used JIT compilers, demonstrating its effectiveness.

ACKNOWLEDGEMENTS

REFERENCES

[1] M. Van Amerongen, “Exploiting CVE-2019-17026—a Firefox JIT
bug,” urlhttps://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-
firefox-jit-bug/, Aug. 2020, F-Secure Labs.

[2] S. Glazunov, “In-the-wild series: Chrome exploits,” https:
//googleprojectzero.blogspot.com/2021\/01/introducing-in-wild-series.
html, Jan. 2021, Google Project Zero.

[3] H. Lim and S. Debray, “Automated bug localization in JIT compilers,”
in VEE ’21: 17th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, Virtual USA, April 16, 2021, B. L.
Titzer, H. Xu, and I. Zhang, Eds. ACM, 2021, pp. 153–164. [Online].
Available: https://doi.org/10.1145/3453933.3454021

[4] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang,
“Compiler bug isolation via effective witness test program generation,”
in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, M. Dumas, D. Pfahl, S. Apel, and A. Russo, Eds. ACM, 2019, pp.
223–234. [Online]. Available: https://doi.org/10.1145/3338906.3338957

[5] J. Chen, H. Ma, and L. Zhang, “Enhanced compiler bug isolation
via memoized search,” in 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 2020, pp. 78–89. [Online]. Available:
https://doi.org/10.1145/3324884.3416570

[6] Z. Zhou, H. Jiang, Z. Ren, Y. Chen, and L. Qiao, “Locseq: Automated
localization for compiler optimization sequence bugs of LLVM,” IEEE
Trans. Reliab., vol. 71, no. 2, pp. 896–910, 2022. [Online]. Available:
https://doi.org/10.1109/TR.2022.3165378

[7] J. Rößler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure causes
through test case generation,” in International Symposium on Software
Testing and Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20,
2012, M. P. E. Heimdahl and Z. Su, Eds. ACM, 2012, pp. 309–319.
[Online]. Available: https://doi.org/10.1145/2338965.2336790

[8] V. Developers, “Turbofan,” https://v8.dev/docs/turbofan, n.d.
[9] M. Developers, “Ionmonkey,” https://wiki.mozilla.org/IonMonkey, 2021.

[10] bugzilla.mozilla.org, “Bug writing guidelines,” n.d. [Online]. Available:
https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html

[11] chromium.org, “Reporting security bugs,” n.d. [On-
line]. Available: https://www.chromium.org/Home/chromium-security/
reporting-security-bugs/

[12] E. International, “Ecma-262: Ecmascript® 2021 language specification,”
Jun. 2021. [Online]. Available: https://www.ecma-international.org/
publications-and-standards/standards/ecma-262/

[13] M. Contributers, “Javascript reference,” Jul. 2021. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

[14] V. Naidu and A. Narayanan, “Needleman-wunsch and smith-waterman
algorithms for identifying viral polymorphic malware variants,” in 2016
IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing,
14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl
Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress, DASC/PiCom/DataCom/CyberSciTech 2016,
Auckland, New Zealand, August 8-12, 2016. IEEE Computer
Society, 2016, pp. 326–333. [Online]. Available: https://doi.org/10.
1109/DASC-PICom-DataCom-CyberSciTec.2016.73

[15] J. Foundation, “esprima-python.” [Online]. Available: https://github.
com/Kronuz/esprima-python

[16] Y. Suzuki, “Edcodegen.” [Online]. Available: https://github.com/estools/
escodegen

[17] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Testing: Academic and In-
dustrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), 2007, pp. 89–98.

[18] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based
software fault localization: A survey of techniques, advances, and
challenges,” CoRR, vol. abs/1607.04347, 2016. [Online]. Available:
http://arxiv.org/abs/1607.04347

[19] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[20] V. Developers, “Issue 913296: Security: V8: Incorrect type information
on speculativesafeintegersubtract,” https://bugs.chromium.org/p/
chromium/issues/detail?id=913296&q=component%3ABlink%
3EJavaScript%3ECompiler%20status%3DFixed&can=1&sort=
-opened&start=100, 2018.

[21] ——, “Issue 1199345: missing the -0 case in visitspeculativeinte-
geradditiveop,” https://bugs.chromium.org/p/chromium/issues/detail?
id=1199345&q=component%3ABlink%3EJavaScript%3ECompiler%
20status%3DFixed&can=1, 2021.

[22] J. Chen, C. Suo, J. Jiang, P. Chen, and X. Li, “Compiler test-program
generation via memoized configuration search,” in Proc. 45th Interna-
tional Conference on Software Engineering, May 2023.

[23] M. Zalewski, “american fuzzy loop,” https://lcamtuf.coredump.cx/afl/,
2013.

[24] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “Fuzzjit: Oracle-
enhanced fuzzing for javascript engine jit compiler.”

[25] J. Ruderman, “Introducing jsfunfuzz,” https://www.squarefree.com/
2007/08/02/introducing-jsfunfuzz/, 2007.

[26] Michal Zalewski and contributors, “Honggfuzz,” https://honggfuzz.dev/,
2021, accessed: May 4, 2023.

[27] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation
for effective fault localization,” in Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis, ISSTA
2010, Trento, Italy, July 12-16, 2010, P. Tonella and A. Orso, Eds.
ACM, 2010, pp. 49–60. [Online]. Available: https://doi.org/10.1145/
1831708.1831715

[28] B. Baudry, F. Fleurey, and Y. L. Traon, “Improving test suites
for efficient fault localization,” in 28th International Conference on
Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006,
L. J. Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp.
82–91. [Online]. Available: https://doi.org/10.1145/1134285.1134299

[29] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-based test
generation for improved fault localization,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2013, Silicon Valley, CA, USA, November 11-15, 2013, E. Denney,
T. Bultan, and A. Zeller, Eds. IEEE, 2013, pp. 257–267. [Online].
Available: https://doi.org/10.1109/ASE.2013.6693085

[30] B. Liu, Lucia, S. Nejati, and L. C. Briand, “Improving fault
localization for simulink models using search-based testing and
prediction models,” in IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt,
Austria, February 20-24, 2017, M. Pinzger, G. Bavota, and A. Marcus,
Eds. IEEE Computer Society, 2017, pp. 359–370. [Online]. Available:
https://doi.org/10.1109/SANER.2017.7884636

[31] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual programs
(T),” in 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November
9-13, 2015, M. B. Cohen, L. Grunske, and M. Whalen, Eds.
IEEE Computer Society, 2015, pp. 464–475. [Online]. Available:
https://doi.org/10.1109/ASE.2015.14

[32] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp.
92:1–92:30, 2017. [Online]. Available: https://doi.org/10.1145/3133916

[33] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST
2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA.
IEEE Computer Society, 2014, pp. 153–162. [Online]. Available:
https://doi.org/10.1109/ICST.2014.28

[34] M. Papadakis and Y. L. Traon, “Using mutants to locate ”unknown”
faults,” in Fifth IEEE International Conference on Software Testing,
Verification and Validation, ICST 2012, Montreal, QC, Canada,

https://googleprojectzero.blogspot.com/2021\/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2021\/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2021\/01/introducing-in-wild-series.html
https://doi.org/10.1145/3453933.3454021
https://doi.org/10.1145/3338906.3338957
https://doi.org/10.1145/3324884.3416570
https://doi.org/10.1109/TR.2022.3165378
https://doi.org/10.1145/2338965.2336790
https://v8.dev/docs/turbofan
https://wiki.mozilla.org/IonMonkey
https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.73
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.73
https://github.com/Kronuz/esprima-python
https://github.com/Kronuz/esprima-python
https://github.com/estools/escodegen
https://github.com/estools/escodegen
http://arxiv.org/abs/1607.04347
https://bugs.chromium.org/p/chromium/issues/detail?id=913296&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1&sort=-opened&start=100
https://bugs.chromium.org/p/chromium/issues/detail?id=913296&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1&sort=-opened&start=100
https://bugs.chromium.org/p/chromium/issues/detail?id=913296&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1&sort=-opened&start=100
https://bugs.chromium.org/p/chromium/issues/detail?id=913296&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1&sort=-opened&start=100
https://bugs.chromium.org/p/chromium/issues/detail?id=1199345&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1
https://bugs.chromium.org/p/chromium/issues/detail?id=1199345&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1
https://bugs.chromium.org/p/chromium/issues/detail?id=1199345&q=component%3ABlink%3EJavaScript%3ECompiler%20status%3DFixed&can=1
https://lcamtuf.coredump.cx/afl/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://honggfuzz.dev/
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1145/1134285.1134299
https://doi.org/10.1109/ASE.2013.6693085
https://doi.org/10.1109/SANER.2017.7884636
https://doi.org/10.1109/ASE.2015.14
https://doi.org/10.1145/3133916
https://doi.org/10.1109/ICST.2014.28

April 17-21, 2012, G. Antoniol, A. Bertolino, and Y. Labiche, Eds.
IEEE Computer Society, 2012, pp. 691–700. [Online]. Available:
https://doi.org/10.1109/ICST.2012.159

[35] ——, “Metallaxis-fl: mutation-based fault localization,” Softw. Test.
Verification Reliab., vol. 25, no. 5-7, pp. 605–628, 2015. [Online].
Available: https://doi.org/10.1002/stvr.1509

[36] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults
to localize developer faults for evolving software,” in Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part
of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, A. L.
Hosking, P. T. Eugster, and C. V. Lopes, Eds. ACM, 2013, pp.
765–784. [Online]. Available: https://doi.org/10.1145/2509136.2509551

https://doi.org/10.1109/ICST.2012.159
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1145/2509136.2509551

	Introduction
	Motivation
	Background: JIT Compilers and Test Oracles
	System Design
	Terminology
	Overview
	Mutation Policy
	Syntax Rule
	Semantic Rule

	Undirected Test Program Generation
	Target Identification
	Identify Passing Programs with the Test Oracle
	Construct ASTs of Programs
	Compute the Differences

	Directed Mutation
	Generating Passing Programs
	Generating Failing Programs

	Test Program Selection
	Summary

	Evaluation
	Research Questions
	Benchmarks and Target Systems
	Bug Localization
	Impact on the Number of Suspicious Functions
	Impact on Bug Localization Accuracy
	Directed Generation vs. Random Generation
	Single vs. Multiple Failing Programs
	Similarity of Passing/Failing Programs to the Seed

	Efficiency of DPGen4JIT

	Discussion
	Enhanced Target Identification
	Number of Test Programs
	Generalizability of the Approach
	Threats to Validity
	Internal Threats
	External Threats

	Related Work
	Conclusion
	References

