Directed Test Program Generation for JIT Compiler Bug Localization

HeuiChan Lim
Department of Computer Science
The University of Arizona
Tucson, USA
hlim1@arizona.edu

Saumya Debray
Department of Computer Science
The University of Arizona
Tucson, USA
debray@cs.arizona.edu

Abstract—Bug localization techniques for Just-in-Time (JIT) compilers are based on analyzing the execution behaviors of the target JIT compiler on a set of test programs generated for this purpose; characteristics of these test inputs can significantly impact the accuracy of bug localization. However, current approaches for automatic test program generation do not work well for bug localization in JIT compilers. This paper proposes a novel technique for automatic test program generation for JIT compiler bug localization that is based on two key insights: (1) the generated test programs should contain both passing inputs (which do not trigger the bug) and failing inputs (which trigger the bug); and (2) the passing inputs should be as similar as possible to the initial seed input, while the failing programs should be as different as possible from it. We use a structural analysis of the seed program to determine which parts of the code should be mutated for each of the passing and failing cases. Experiments using a prototype implementation indicate that test programs generated using our approach result in significantly higher accuracy than existing approaches.

I. INTRODUCTION

Just-in-Time (JIT) compilers are widely used in modern software to improve the performance of interpreted systems. Bugs in JIT compilers can result in the generation of incorrect optimized code, which can then lead to exploitable security vulnerabilities [1], [2]. The size and complexity of modern JIT compilers, and the nontrivial manual effort needed to locate and fix such bugs, makes it important to develop automated techniques for rapid bug localization in JIT compilers.

Automated bug localization techniques typically rely on analyzing the execution behavior of the JIT compiler on a set of test inputs generated for the purpose. The idea is to examine the set of “program entities” involved in the execution of the various test inputs (e.g., functions, or source files, or data structures manipulated) to zero in on a set of suspicious program entities that are potential culprits for the bug. The accuracy of this process depends in part on the size of the set of suspicious entities identified (smaller is better), which necessarily depends on the characteristics of the test inputs used. This suggests that careful attention to the set of test inputs used can help improve the accuracy of bug localization. This paper proposes a novel approach to generating test inputs that focuses on aspects of test generation that affect the set of suspicious entities, and thus can achieve better bug localization accuracy than existing approaches. Our approach is based on two insights: (1) the generated test programs should contain both passing inputs (that do not trigger the bug) and failing inputs (that trigger the bug); and (2) the passing inputs should be similar to the original seed input, while the failing inputs should be as different as possible from the seed.

Existing approaches to test input generation for JIT compiler bug localization do not use the considerations discussed above to guide the input generation process. Lim and Debray’s work on JIT compiler bug localization [3] uses random mutation of the initial seed program, which is less effective in minimizing the set of suspicious entities than that described here. A body of work on bug localization in conventional compilers [4], [5], [6] focuses on constructing multiple passing test inputs but uses only a single failing input (the original seed program). Other researchers use the same approach to generate both failing and passing programs [7] and thus do not utilize the fact that treating passing and failing inputs differently during construction can improve the quality of bug localization.

In order to assess the effectiveness of our approach, we developed a prototype tool called DPGen4JIT (Directed Program Generator for JIT Compiler). Our approach follows a series of steps to generate and select test programs. First, we generate an initial set of test programs by mutating the seed program in a non-directed manner, without specifying which nodes to mutate. Next, we analyze the initial set of programs to identify the nodes that should be mutated or avoided. We mutate the seed programs using this information to generate new test programs. Finally, we select the test programs by analyzing their similarities to the seed program. These steps enable our approach to generate and select effective test programs for bug localization. We used the test programs created by DPGen4JIT to perform bug localization on 72 bugs in two widely used JIT compilers, Google TurboFan [8] and Mozilla IonMonkey [9]. The results indicate that test programs generated using our approach lead to significantly smaller sets of suspicious entities and result in significantly higher accuracy in bug localization than the existing approaches.

In summary, this paper makes the following contributions: 1) it describes a novel approach to generating test inputs for bug localization in JIT compilers, with the aim of reducing the set of suspicious program entities and improving the accuracy of bug localization; and
2) it demonstrates the efficacy of our ideas using a prototype implementation evaluated on 72 bugs for two widely used JIT compilers. The results indicate that our approach leads to significantly improved accuracy for JIT compiler bug localization compared to existing approaches.

II. MOTIVATION

$E(p_{seed}) = \{A, C, E, G, H\}$
$E(p_{pass}) = \{B, C, F, H, I\}$
$E(p_{fail}) = \{C, D, E, G, H\}$

Fig. 1. Buggy entity isolation example.

When a buggy program P under consideration is executed on a test input a, the resulting execution gives rise to a set of program entities $E_P(a)$ that are involved with that execution and are potentially relevant to the buggy behavior. Figure 1 shows a simplified example with three inputs: the initial seed program p_{seed} that triggers the buggy behavior, which gives rise to the set of entities $E_P(p_{seed}) = \{A, C, E, G, H\}$; a passing input p_{pass} (which does not trigger the bug), with $E_P(p_{pass}) = \{B, C, F, H, I\}$; and a failing test input p_{fail} (which triggers the bug), with $E_P(p_{fail}) = \{D, E, G, J, K\}$. Suppose that the actual buggy entity is E. From a bug localization perspective, the set of suspicious entities are those that are common to all the buggy executions but not the non-buggy ones. In Figure 1, this is given by

$suspicious = (E_P(p_{seed}) \cap E_P(p_{fail})) - E_P(p_{pass}) = \{G, E\}$

The ground truth buggy entity E is in this set, but it also contains a (spurious) non-buggy entity E, which can potentially impact the accuracy of the bug localization process. Ideally, therefore, the test inputs should be such that the resulting set of suspicious entities is as small as possible.

More generally, suppose that we have a set of passing test inputs P_{pass} that do not trigger the bug and a set of failing inputs P_{fail} that trigger the bug. Reasoning as above, the set of suspicious entities is given by

$suspicious = \left(\bigcap_{a \in P_{fail}} E_P(a) \right) - \left(\bigcup_{b \in P_{pass}} E_P(b) \right)$.

To minimize the size of this set, we should minimize the size of the intersection and maximize the size of the union. In other words, we should (i) make the entities arising from inputs in P_{fail} as dissimilar as possible; and (ii) make the entities arising from inputs in P_{pass} as similar as possible to the initial failing seed input. This is the basic idea guiding the approach to test program generation described here.

One issue that arises here is that the set of program entities arising from executing a program on a given input become known only once it has been executed, while we have to construct the test inputs prior to execution. To address this, we use structural similarity between the input test programs as a proxy for the similarity or difference between the entities arising from their execution.

III. BACKGROUND: JIT COMPILERS AND TEST ORACLES

JIT compilers are used to improve the performance of interpreted systems by dynamically optimizing the interpreted byte-code to more efficient native code. The JIT compiler is tightly coupled with an interpreter that converts the input program to a machine-independent byte-code representation, which is then interpreted. The runtime system monitors the execution of the byte-code as it is interpreted, and frequently executed code fragments are passed to the JIT compiler to be compiled to native code. The generated native code contains checks to ensure that assumptions made during optimization, e.g., about the types of variables, are not violated. If an assumption is found to not hold, the corresponding code fragment is “de-optimized” back to the original byte-code.

This system structure provides a convenient test oracle for JIT compiler bugs. We define the execution of a JIT compiler to be buggy if the observable behavior of the input program is different when it is interpreted than when it is JIT-compiled. For any given input p, therefore, we can determine whether p triggers a JIT compiler bug by comparing its observable execution behavior with JIT-compilation enabled with that with JIT-compilation disabled.

IV. SYSTEM DESIGN

A. Terminology

We use the following terminology in the paper:

- **Test Program** is a piece of code, such as JavaScript, that serves as input to another software, like a JIT compiler, to analyze and observe the behavior of the software.
- **Seed (Test) Program** is an original test program known to trigger a bug in the JIT compiler.
- **Failing (Test) Program** is a test program that replicates the buggy behavior of the seed test program when executing with the same target software being tested.
- **Passing (Test) Program** is a test program that no longer triggers a bug in the target software being tested.
- **Valid Program** is a test program that does not fail due to a non-bug-related issue (e.g., a syntax error). For example, valid programs do not fail at the parser because of the mutation we applied to the seed program.

B. Overview

We need a seed test program known to trigger a bug in the JIT compiler to generate passing and failing test programs, as these programs are mutations of the seed. We can obtain the seed test programs from the bug reports. When developers find a new bug, they submit a report with the "proof-of-concept"
We also assume that the user specifies the number of test inputs to generate.

Given a seed test program \(P_0\) and the number \(N\) of test programs to generate, we take the following steps illustrated in Figure 2 to generate and select the passing and failing programs for the bug localization:

1. **Undirected Test Program Generation** (Section IV-D).
 Generate test programs by traversing \(P_0\)’s abstract syntax tree (AST) and attempting to mutate each node. Each node mutation results in a new program. Some of the resulting mutated programs will continue to trigger the JIT compiler bug while others will not.

2. **Target Identification** (Section IV-E).
 Use the programs generated in Step 1 to identify: (i) which programs no longer trigger the JIT compiler bug; and (ii) for each such non-bug-triggering program \(P\), which AST node in \(P\) was mutated to obtain \(P\).

3. **Directed Mutation** (Section IV-F).
 Using the information from Step 2 about which AST nodes affect triggering the JIT compiler bug, the tool targets the nodes to mutate in order to generate test programs that either trigger (failing inputs) or do not trigger the bug (passing inputs).

4. **Test Program Selection** (Section IV-G).
 Given the passing and failing inputs generated in Step 3, the tool selects the input programs used for bug localization.

C. Mutation Policy

To produce a valid test program, we use the following rules when mutating the abstract syntax tree (AST) of a program:

1) the mutated program must be syntactically correct; and
2) the mutation must not violate the semantics of the language, and the mutated program should be semantically similar to the seed program.

We use language specifications to ensure the validity of mutations made to the program. E.g., for JavaScript we consulted the ECMA [12] and Mozilla [13] language specifications.

The purpose of adhering to these guidelines is not only to produce a valid program but also to generate test programs that traverse a comparable execution path to the original seed program. The rationale behind this is that by examining the similarities and differences between the newly generated test programs and the seed program, explained in Section IV, which share comparable syntax and meaning, bug localization methods can accurately identify and isolate the buggy components from the failing execution, i.e., the seed program’s execution.

TABLE I

<table>
<thead>
<tr>
<th>Rules</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operators</td>
<td>Operators are replaced with another operator within the same group. For example, binary operators are replaced with another binary operator, unary operators with another unary operator, etc.</td>
</tr>
<tr>
<td>Built-in Methods</td>
<td>Built-in methods are substituted with another built-in method from the same group with the same parameters.</td>
</tr>
<tr>
<td>Values</td>
<td>Values are replaced according to their types. For instance, integer values are substituted with another integer value, float values with another float value, strings with another string, and so on.</td>
</tr>
</tbody>
</table>

1) **Syntax Rule**: We only make changes to the syntax tree through replacement to generate test programs that do not violate the syntax rules of the language. In particular, we do not add or remove nodes from the tree.

The rules in our mutation policy are summarized in Table I where each category is further sub-categorized. For instance, we have a separate category for built-in functions for string operations and another for integer operations. Additionally, different syntaxes must segment built-in functions to differentiate between operations with the same number of parameters. For example, the square root function receives one argument, while the power function receives two arguments in the JavaScript language.

2) **Semantic Rule**: To ensure that the newly generated programs maintain semantic similarity with the seed program, we ensure that any modifications to the AST preserve the node’s type. This implies that we only substitute a literal with another literal, a binary arithmetic operator with another binary arithmetic operator, an integer constant with another integer constant, and so on. In addition to the rules outlined in Table I, we further categorized the operators and functions based on the type of value they operate on and return. For instance, we grouped unary operators like `+`, `-`, and `~`, which return a number, separately from `!`, which returns a logical value.

Figure 3 shows examples of new programs generated from mutating the seed program. The unary operator `−` is replaced with the unary operator `+` at line 2 for program \(P_1\). The built-in function `max` is replaced with the built-in function `min` at line 3 for program \(P_2\). For program \(P_3\), multiple locations are mutated. Arithmetic operator `+` is replaced with `*` operator.
function foo(x) {
 let y = x + +0;
 let z = Math.max(x,y);
 if (y == x && y == z) return true;
 return false;
}

function foo(x) {
 let y = x + -0;
 let z = Math.min(x,y);
 if (y != x && y == z) return false;
 return false;
}

function foo(x) {
 let y = x + 0;
 let z = Math.max(x,y);
 if (y == x && y == z) return true;
 return false;
}

function foo(x) {
 let y = x [-0];
 let z = Math.max(x,y);
 if (y != x && y == z) return false;
 return false;
}

Seed

P₀

P₁

P₂

P₃

Fig. 3. Examples of generated programs from mutating the seed program.

(line 2), == operator is replaced with != (line 4), and the boolean value true is replaced with the value false (line 5).

D. Undirected Test Program Generation

Given a seed test program, we generate a new set of programs by mutating the seed without any directions on which nodes to target. This step aims to create various new programs different from the seed; some continue to trigger a bug in the JIT compiler, while others do not. This step can proceed in two options: (1) generate variants using the existing random test program generators (e.g., Lim and Debray’s fuzzer [3], etc.); or (2) generate variants using our undirected test program generator. However, our undirected test program generator has an advantage over existing random test program generators. This is because it systematically traverses all nodes in the AST and attempts to mutate them, resulting in a wider range of generated programs. In contrast, random AST mutation relies on the random selection of AST nodes, which can limit the diversity of the generated programs.

Our undirected test program generator strictly follows the rules described in Section IV-C. Let \(\text{mutate}(A, i) \) denote the mutated AST \(A \) at \(i \)'th node. Given the seed program \(P₀ \), the tool first constructs the AST \((A\text{ST}_0) \). Algorithm 1 shows the steps of generating random test programs from the seed AST. First, the undirected function prepares an empty UNDIRECTED set to hold the newly generated test program ASTs (line 2). The tool iterates as the same number of nodes in the seed AST aiming to mutate all the nodes to generate as variety as possible new programs that differ from each other (lines 4 - 8). Mutate the \(i \)'th node of copied AST (lines 5 - 6), then add it to the UNDIRECTED set (line 7). Finally, a set of new test program ASTs, UNDIRECTED, is returned (line 9).

E. Target Identification

This step aims to identify the specific AST nodes corresponding to a section(s) of the seed test program that triggers the bug in the JIT compiler. Given the seed test program \(P₀ \) and set of randomly generate test programs \(\text{UNDIRECTED} = \{U₁, U₂, ..., U_H\} \), where \(U_i \) is a randomly generated test program and \(H \) is the number of programs, we take the following steps to identify the specific nodes of the seed program AST:

1) Identify passing programs from UNDIRECTED.
2) Construct ASTs of seed program \(P₀ \) and test programs.
3) Compute the differences between the seed program AST and the ASTs of the passing test programs. The differences are the target nodes to mutate.

1) Identify Passing Programs with the Test Oracle: To determine whether a JIT compiler’s execution is bug-free, we check whether the behavior of the test program is consistent with or without JIT compilation. If the behaviors of the interpreted and JIT-compiled versions of the program differ, then it is considered buggy. Otherwise, it is non-buggy.

2) Construct ASTs of Programs: This step constructs abstract syntax trees for all passing programs and the seed program.

Algorithm 1: Undirected test program generation

Result: UNDIRECTED: Set of initial test program ASTs.

Input: AST₀: AST of the seed test program.

function undirected (AST₀):

UNDIRECTED ← ∅
i ← 1
while \(i < \text{size}(\text{AST}_0) + 1 \) do
 ast_copy ← copy(\(\text{AST}_0 \))
 ast_copy ← \(\text{mutate}(\text{ast_copy}, i) \)
 UNDIRECTED ← UNDIRECTED ∪ \{ast_copy\}
i ← i + 1
return UNDIRECTED

3) Compute the differences between the seed program AST and the ASTs of the passing test programs. The differences are the target nodes to mutate.

1) Identify Passing Programs with the Test Oracle: To determine whether a JIT compiler’s execution is bug-free, we check whether the behavior of the test program is consistent with or without JIT compilation. If the behaviors of the interpreted and JIT-compiled versions of the program differ, then it is considered buggy. Otherwise, it is non-buggy.

2) Construct ASTs of Programs: This step constructs abstract syntax trees for all passing programs and the seed program.

Fig. 4. Finding different AST nodes.
3) Compute the Differences: To identify differences between the syntax tree of a seed program (AST_0) and those of the passing programs, we utilize a process that involves computing the AST difference. Figure [4] demonstrates this process, which involves identifying different AST nodes. For instance, if we consider the seed program AST AST_0 from the JavaScript program $let x = y + 0$, and compare it to two other ASTs (AST_1 and AST_2) from mutated programs, we identify the AST nodes of AST_0 that differ from AST_1 and AST_2. In this example, the 5^{th} and 6^{th} nodes are different, so we add AST node IDs 5 and 6 to the TARGETS set. To perform this comparison, we use the Needleman-Wunsch sequence alignment algorithm [14] in our implementation.

F. Directed Mutation

Given the set of seed program’s AST node ids, which we know are related to a bug in a JIT compiler, this step aims to generate two sets of passing and failing programs. Generating passing programs is based on the idea that the difference between two very similar executions, one is buggy and another is not, is the part that holds information on the bug as discussed in Section [3]. Thus, we generate passing programs highly similar to the seed test program by making a minor mutation to the copy of the seed AST specifically targeting the identified AST nodes in the earlier step. In contrast, generating failing programs is based on the intuition that analyzing the commonality between the two very different execution while both are buggy allows us to identify the bug in the JIT compiler. To generate the failing programs, we mutate the nodes of the seed AST copy except the identified target nodes.

1) Generating Passing Programs: Algorithm 2 generates a set of passing program ASTs by mutating the seed test program AST, AST_0. The function takes the number of programs to generate, N, and the set of AST node IDs to mutate, TARGETS, as inputs. The set PASSINGS, initialized to \emptyset, holds the generated ASTs, the variable cur_ast keeps track of the number of such ASTs, and $next_target$ refers to the next target node to mutate.

While iterating the loop N times, the function makes a copy of the original AST and mutates the target node identified by the TARGETS set using the mutate function. If the mutated AST is not in the PASSINGS set, it is added to the set and the next target node is selected for mutation. If the mutated AST is already present in the PASSINGS set, the function proceeds to the next target node without adding the AST to the set. If all target nodes have been mutated, the function starts again from the first target node in the TARGETS set. The function returns the PASSINGS set when the desired number of ASTs have been generated.

2) Generating Failing Programs: Algorithm 3 generates a set of failing program ASTs by mutating AST_0. It takes the same inputs as the generate_passings function. The set FAILS, initialized to \emptyset, holds the generated ASTs, while the variable cur_ast keeps track of the number of such ASTs.

For each iteration, the function makes a copy of the original AST and mutates the nodes that are not related to the bug in the JIT compiler, i.e., the node id is not in the TARGETS set, using the mutate function. Unlike the generate_passings function, the generate_fails function does not break out of the loop after mutating the target nodes. It fully traverses the AST to mutate all relevant nodes to generate new failing programs that are different from the seed program. If the mutated AST is not in the FAILS set, it is added to the set. If the mutated AST is already present in the FAILS set, the function proceeds to the next mutation without adding the AST to the set. The function returns the FAILS set.

G. Test Program Selection

The final step of DPGen4JIT is to convert N number of ASTs, which are selected from the PASSINGS and FAILS sets, to source code (e.g., JavaScript code) that can be used by the bug localizer as input to the JIT compiler. The AST selection guarantees our idea further that the failing test programs to use in the bug localization analysis should be as different as possible from the seed. In contrast, the passing test programs should be similar as possible. We use Jaccard similarity to compute the similarity between the seed program AST and mutated ASTs. Let $Nodes(T)$ denote a set of nodes in abstract syntax tree T.

$$Sim(T_0, T_i) = \frac{|Nodes(T_0) \cap Nodes(T_i)|}{|Nodes(T_0) \cup Nodes(T_i)|}$$

$Sim(T_0, T_i)$ denotes the similarity value between the set of nodes in T_0 and T_i, where T_0 denotes the seed test program.
Algorithm 3: Generating failing program ASTs.

Input: AST_0: AST of the seed test program.
Input: TARGETS: Set of target AST node IDs.
Result: PASSINGS: Set of new ASTs.

function generate_fails (N, AST_0, TARGETS):

 FAILS $\leftarrow \emptyset$

 cur_ast $\leftarrow 1$

 while cur_ast $\leq N$

 ast_copy \leftarrow copy(AST_0)

 for node \in ast_copy do

 if ID(node) \notin TARGETS then

 ast_copy \leftarrow mutate(ast_copy, ID(node))

 if ast_copy \notin FAILS then

 add ast_copy to FAILS

 cur_ast \leftarrow cur_ast + 1

 return FAILS

Algorithm 4: Overall algorithm

Input: P_0: The seed test program.

begin

 AST_0 \leftarrow get_ast(P_0)

 UNDIRECTED \leftarrow undirected(AST_0)

 TARGETS \leftarrow

 target_identification(UNDIRECTED, P_0)

 PASSINGS \leftarrow

 generate_passings(N, AST_0, TARGETS)

 FAILS \leftarrow generate_fails(N, AST_0, TARGETS)

 SELECTED \leftarrow select(PASSINGS, FAILS, N)

 PROGRAMS \leftarrow convert(SELECTED) \cup {P_0}

end

V. Evaluation

We conducted experiments using our proposed approach, which we implemented in a prototype tool called $DPGen4JIT$. The experiments were performed on a machine with 32 cores (@ 3.30 GHz) and 1TB of RAM, running Ubuntu 20.04.1 LTS. We used the esprima-python library [15] to generate ASTs for JavaScript code and escodegen [16] to converting mutated ASTs to JavaScript code. Source code for $DPGen4JIT$ can be found at https://anonymous.4open.science/r/ASE2023-7C7F/DPGen4JIT/ and the data can be found at https://anonymous.4open.science/r/ASE2023-7C7F/Data/

A. Research Questions

Our experimental evaluation considered the following research questions:

1) How effective in $DPGen4JIT$ in reducing the number of suspicious entities considered for bug localization?

2) How does $DPGen4JIT$ compare with existing approaches for test input generation with regard to reducing the number of non-suspicious entities?

3) How does the use of programs generated by $DPGen4JIT$ impact the accuracy of bug localization compared to existing input generation techniques?

B. Benchmarks and Target Systems

We evaluated the efficacy of $DPGen4JIT$ on 72 optimization bugs from two of the most widely used JIT compilers: TurboFan (V8; Google) and IonMonkey (SpiderMonkey; Mozilla). Out of these bugs, 21 were reported on the vendors’ websites, while 51 were synthetic bugs that had similar characteristics to the reported bugs and were plausible in real-world situations. The criteria used to select the bug reports were: (1) the bug had to be in the JIT compiler’s optimizer; (2) the buggy behavior had to be replicable, with the same behavior observable in the provided PoC code and options; (3) it had to be possible to identify an incorrectly optimized IR node from the JIT compiler source code, with the buggy function accessing the IR node to either manipulate the property or create a new node; and (4) the bug had to be marked as “fixed.” The last criterion

H. Summary

Our approach is summarized in Algorithm 4, which provides an outline of the entire process. We begin with a seed test program P_0 and the user-specified value N, which determines the number of test programs to be generated. Initially, we create the abstract syntax tree of P_0. Next, we randomly mutate the AST of P_0 to generate test programs in an undirected manner. We then examine these test programs to determine which AST nodes to mutate in order to produce passing or failing test programs. Using this information, we generate ASTs for both passing and failing test programs. We then select the most appropriate ASTs: failing test programs that are substantially different from the seed, and passing test programs that are similar to it. Finally, we convert these selected ASTs into actual programs and return them.
enabled us to use the fixed code, together with developer comments, to obtain ground truth information about the buggy code and thereby evaluate the accuracy of our analysis. Due to space limitations, we omit a detailed description of the bugs here, but it is available in the data submitted with the paper.

We generated binary executables for two widely-used JavaScript engines, namely V8 (Google) and SpiderMonkey (Mozilla), using the debugging settings commonly employed by developers. Subsequently, we executed the input JavaScript code for each bug with the relevant executable options. For instance, we used the --fast-warmup option to expedite the warm-up phase of the SpiderMonkey JIT compiler.

C. Bug Localization

To perform bug localization, we followed the approach proposed by Lim and Debray [3]. This approach analyzes the execution trace of a JIT compiler and extracts information on the intermediate representation (IR) that the JIT compiler constructs and optimizes. Based on this information, the approach constructs its own abstract model that corresponds to the concrete IR. First, we generate a set of programs using our prototype tool DPGen4JIT from a proof-of-concept (PoC) code (i.e., seed program). We construct abstract models for each program, including the seed program. Then, we use the Ochiai formula [17], which is one of the most well-known Spectrum-Based Fault Localization (SBFL) formulas [18], to calculate the suspicious values for each executed JIT compiler instruction on the IR during optimization.

\[\text{Sus}(I) = \frac{I_{ef}}{\sqrt{(I_{ef} + I_{nf})(I_{ef} + I_{ep})}} \]

The suspicious value of an executed instruction \(I \) is denoted as \(\text{Sus}(I) \). \(I_{ef} \) and \(I_{nf} \) represent the number of failing programs that executed and did not execute the instruction \(I \), respectively. \(I_{ep} \) represents the number of passing programs that executed the instruction \(I \). Subsequently, the executed instructions are sorted in descending order based on their suspicious values and then aggregated at a function level (i.e., the final output from the bug localization analysis is a file holding the ranking of suspicious functions). In addition, we ran the experiment (i.e., from generating new sets of test programs to bug localization) three times for each bug. We identified a ground truth function and found its rank position in each of the three rankings. Then we calculated the median of the three rank positions to obtain the final rank position of the ground truth item. [4], [5], [6].

We apply the Top-\(n \) metric, where \(n = 1, 5, 10, 20 \), to measure the accuracy of bug localization result. This metric counts the number of bugs where the ground truth bug is localized to within the top \(n \) positions in the ranking determined by the localization algorithm; smaller values of \(n \) correspond to greater accuracy. For example, if the ground truth bug location is ranked third in the ranking produced by the localization algorithm, we consider the bug to be localized within the Top-5. Kochhar et al. use this metric to assess developer preferences for bug localization tools [19]: a ranking within the Top-5 is regarded as “accurate,” while a ranking within the Top-10 is deemed “acceptable.”

D. Impact on the Number of Suspicious Functions

The intuition discussed in Section II suggests that increasing the number of passing and failing inputs can reduce the number of suspicious entities considered during bug localization. Figure 5 shows the results of an experiment to evaluate this (Research Question 1). We selected 5 bugs out of 72 bugs at random and, for each bug, computed the number of suspicious functions obtained using \(m \) passing and \(n \) failing test programs, with \(m \in \{5, 10, 15\} \) and \(1 \leq n \leq 15 \). The results demonstrate the improvement of the number of suspicious functions as additional failing test programs are introduced in the analysis. The \(x \)-axis shows the number of failing inputs, while the red, yellow, and blue lines in Figure 5 correspond to 5, 10, and 15 passing inputs respectively. The \(y \)-axis shows, on a log scale, the (normalized) number of suspicious functions as additional failing test programs are introduced in the analysis. The \(y \)-axis shows, on a log scale, the (normalized) number of suspicious functions as additional failing test programs are introduced in the analysis. The \(x \)-axis shows, on a log scale, the (normalized) number of suspicious functions as additional failing test programs are introduced in the analysis. The \(y \)-axis shows, on a log scale, the (normalized) number of suspicious functions as additional failing test programs are introduced in the analysis.

Figure 5 shows that the number of suspicious functions declines sharply as additional failing test programs are introduced, and then tends to plateau after the third to fifth test program. This observation suggests that having multiple failing test inputs in addition to the seed test program can be highly effective in narrowing down the set of suspicious functions.
Fig. 6. The effectiveness of different approaches to test input generation on proportion of non-suspicious functions eliminated

We next considered how the reduction in suspicious functions obtained using *DPGen4JIT* compares with existing approaches (*Research Question 2*). We compared *DPGen4JIT* with three existing approaches: Random [3]; Single Failing Program, which uses a single failing input together with multiple passing inputs; and Same Mutation Strategy, which uses the same mutation strategy for both passing and failing inputs. The following steps were taken to achieve this. (1) we computed the suspicious set of functions using the formula outlined in Section II. (2) we calculated the number of eliminated functions by subtracting the remaining functions from the total number of functions in the seed execution. (3) we determined the proportion of the number of functions eliminated to the number of seed functions. We used this proportion as a standardized measure to compare the effectiveness of different approaches across different bugs, irrespective of the total number of functions in each seed execution.

In Figure 6, the proportion of eliminated functions compared to the initial number of functions is shown for different approaches. The boxes represent the median and interquartile range, while the whiskers indicate the minimum and maximum percentage of eliminated functions. The results demonstrate that our approach outperforms the other approaches regarding the proportion of eliminated non-suspicious functions. Our approach eliminated a median of 91.2% of functions, while the random test program generation approach only removed 17.1%, the single failing program approach eliminated 79.5%, and the same mutation strategy approach eliminated 76.8%.

E. Impact on Bug Localization Accuracy

Table II displays the outcomes of localizing the ground truth functions of the bugs in Top-n. The results show that the bug localization result using the test programs generated from *DPGen4JIT* performs effectively on both systems studied.

In the case of V8, the ground truth buggy functions are ranked at the top (i.e., Top-1) in 4 out of 37 bugs (10.8%), and for 9 out of 37 bugs (24.3%), the ground truth is ranked in the top 5. In the case of SpiderMonkey, the ground truth buggy functions are ranked at the top (i.e., Top-1) in 14 out of 35 bugs (40%), and for 22 out of 35 bugs (62.9%), the ground truth is ranked in the top 5.

Overall, 25%, 43.1%, 54.2%, and 69.4% of ground truth functions are ranked within Top-1, Top-5, Top-10, and Top-20, respectively, using the test programs produced with our approach. Particularly, more than 44.44% of the bugs can be localized within the Top-5, which is the most preferred ranking that developers expect from the bug localization approach to isolate the bug if they are unable to localize it to Top-1.

To assess the efficacy of the test programs produced using our approach, we assessed the same 72 bugs with the current state-of-the-art techniques (*Research Question 3*), focusing on the following: (1) random generation of test programs by mutating the seed program randomly, similar to [3]; (2) retaining a single failing input (the original seed program) and only generating passing test programs, similar to [4], [5], [6]; and (3) generating both failing and passing test programs in the same way, similar to [7].

1) Directed Generation vs. Random Generation: Using the random test program generation, we located the bugs in the same manner as our approach using the Ochiai formula. We performed 3 runs for each bug and then selected the median outcome, consistent with how we selected the results obtained from our tool. Figure 7 shows the bug localization result comparison between the procedure performed with the test programs from *DPGen4JIT* and the random program generator [3]. The result shows that using the test programs generated from our tool significantly outperforms the result using the randomly generated programs. Our results demonstrate that bug localization using test programs generated by our approach outperformed the use of randomly generated test programs. Specifically, our approach was able to localize 18 bugs to Top-1 and 31 bugs to Top-5, while the randomly generated test programs localized only 5 bugs to Top-1 and 15 bugs to Top-5. Similar trends were observed for Top-10 and Top-20, with our approach showing higher performance.

The primary factors contributing to the outperforming bug localization results achieved by employing the test programs
from DPGen4JIT compared to those generated randomly are twofold. Firstly, the randomly generated test programs lack sufficient diversity. We observed that the random generator produced several new programs by mutating the same code fragment with different values. While these new programs are not duplicates since the mutated values are distinct, the mutated code segment is not relevant to the bug in the JIT compiler, rendering them less useful for bug localization. Secondly, the generator fails to produce passing programs for certain bugs, i.e., all test programs used in the bug localization are failing programs. As a result, no comparison points are available to localize the bugs accurately.

2) Single vs. Multiple Failing Programs: Several studies on generating test programs for bug localization focus on generating passing programs while having a single failing program, i.e., the seed program. However, we propose that additional failing programs, generated with guidance, can further increase the precision of bug localization. To assess the effectiveness of our approach, we conducted an experiment involving a single failing seed program and a set of N passing programs. These passing programs were derived from the seed program by mutating the values of the AST nodes while maintaining the structure consistent. Furthermore, we ensured that the generated programs were distinct, meaning there were no duplicates among the new set of N programs.

Figure 7 shows the result of the “Single Failing Program” experiment compared to others. The results show that incorporating multiple well-generated failing programs alongside the seed failing program during bug localization can substantially enhance accuracy. Specifically, the single failing program approach was able to localize 7 bugs to Top-1 and 13 bugs to Top-5, which is significantly lower than our approach. This trend was consistent across Top-10 and Top-20, with our approach consistently outperforming.

The reason the single failing program approach performs worse is its inability to eliminate non-suspicious functions from the seed execution as discussed in Section VI.

3) Similarity of Passing/Failing Programs to the Seed: While some approaches suggest generating both failing and passing programs in the same manner, such as identifying bug-related parts of the seed program and mutating them, our method differs by generating passing and failing test programs in different ways. Specifically, we aim to make passing programs as similar as possible to the seed program while making failing programs as dissimilar as possible. To measure the performance of our idea to this opposing idea, we conducted an experiment with our altered tool to generate test programs by only mutating the identified AST nodes for both passing and failing programs.

Table II shows the result of the “Same Mutation Strategy” experiment compared to others. The results show that using a distinct approach to generate different types of test programs resulted in a higher bug localization performance. significantly improved indicate that our approach is more effective than the same way mutation approach in localizing JIT compiler bugs. The same mutation strategy was able to localize 5 bugs to Top-1 and 12 bugs to Top-5, which is significantly lower than our approach. This trend was consistent across Top-10 and Top-20, with our approach consistently outperforming.

According to our experiment, there were two main factors that contributed to the shortfall. Firstly, when we mutated the code fragments related to a bug to generate additional failing programs, we sometimes ended up with passing programs instead, which led to generating only a minimal number of failing programs. Secondly, due to the limited variety in the failing programs, the bug localization analysis failed to assign appropriate suspicious values to the executed instructions accurately. To address the aforementioned shortcomings, one possible solution is to generate a large number of test programs. For instance, statistical debugging methods typically produce hundreds or even thousands of test programs. Nonetheless, this approach often suffers from efficiency issues.

F. Efficiency of DPGen4JIT

We evaluated the efficiency of DPGen4JIT by measuring the time it takes to generate a new set of test programs from a single seed test program in minutes. We used a user-specified value of N = 30. The value 30 was selected arbitrarily and is further discussed in Section VI-B. On average, our tool took 2 minutes and 51 seconds to generate test programs, while the longest and shortest times were 4 minutes and 28 seconds and 1 minute and 42 seconds, respectively.

VI. Discussion

A. Enhanced Target Identification

Our target identification method is able to successfully identify input code fragments related to a bug in the JIT compiler. However, we believe there is still room for improvement. Currently, the target identification process identifies code fragments related to a bug in isolation, even though the bug may be caused by a combination of multiple factors. For example, the JavaScript code snippet ‘let y = x + -0’ triggers a bug in the JIT compiler optimization. The bug occurs only when the unary subtractor operator is used with zero (i.e., ‘-0′). The bug will not be triggered if the code is modified by replacing ‘-’ with another unary operator or

<table>
<thead>
<tr>
<th>System</th>
<th>Total bugs</th>
<th>Top-1</th>
<th>Top-5</th>
<th>Top-10</th>
<th>Top-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>V8</td>
<td>37</td>
<td>4 (10%)</td>
<td>9 (24.3%)</td>
<td>15 (40.5%)</td>
<td>22 (59.5%)</td>
</tr>
<tr>
<td>SpiderMonkey</td>
<td>35</td>
<td>14 (40%)</td>
<td>22 (62.9%)</td>
<td>24 (68.6%)</td>
<td>28 (80%)</td>
</tr>
<tr>
<td>All</td>
<td>72</td>
<td>18 (25%)</td>
<td>31 (43.1%)</td>
<td>39 (54.2%)</td>
<td>50 (69.4%)</td>
</tr>
</tbody>
</table>

% shows the percentage of bugs localized within the Top-n.
zero with another number. While our tool can identify ‘-‘ and ‘0’ as the targets, it is not able to recognize that the bug is actually caused by the combination of these two code fragments. We believe that by enabling the tool to analyze input code and establish dependencies between the identified targets, considering the information about their combination, we can produce more sophisticated test programs that further increase the accuracy of bug localization.

B. Number of Test Programs

It is possible that adding more failing and passing test programs beyond a certain number does not provide additional information that can further distinguish between the suspicious and non-suspicious functions. This is because the added test programs may not reveal new behavior of the program, but rather confirm what was already discovered by the previous set of test programs. This is because there could be redundant or similar test cases in the added test programs, which may not contribute to revealing new information about the program. Therefore, our future work is to find a way to automatically make the tool decide when to stop generating more failing test programs and passing programs.

C. Generalizability of the Approach

While our approach was specifically designed for JIT compilers, we believe it can be extended to other software applications. The key requirements for inputs are: syntactic structure that can be specified using a context-free grammar (and therefore a parser to read inputs into ASTs and a writer to write ASTs out to syntactically correct inputs); and semantic constraints, such as type rules, on legal programs. The key requirement for the program to be debugged is a test oracle that can be used to distinguish buggy executions from non-buggy ones. We are currently investigating ways to expand our approach to other applications beyond JIT compilers.

D. Threats to Validity

1) Internal Threats: To ensure ranking accuracy, we conducted a comparison between our results and the ground truths. For real-world bugs, we carefully analyzed the bug reports, paying special attention to the ground truths, which we identified by studying the code changes and the developers’ associated comments and discussions. When introducing bugs, we focused on the functions affected by the bug. Furthermore, we introduced the bugs by referring to bug reports to ensure that they had similar or identical characteristics to the reported bugs. Nevertheless, we intend to expand our experiments to include more real-world dynamic code generation bugs.

Another internal threat is the selection bias of existing approaches used for comparison. To address this, we reviewed related works with similar objectives, which involved generating test programs for bug localization. We selected three different approaches to evaluate the same bugs as in our experiment. Additionally, we plan to test our approach on different bugs and explore different comparison methods to reduce the impact of selection bias.

2) External Threats: To strengthen the external validity of our study, we acknowledge the potential difficulty in applying our approach to various JIT compilers, which is a primary risk from an external standpoint. To mitigate this risk, we conducted thorough testing of our findings using bugs found in two popular JIT compilers: Google’s V8/Turbofan and Mozilla’s SpiderMonkey/IonMonkey. However, we recognize that there may be variations in JIT compilers that could affect the applicability of our approach. To further address this risk, we plan to conduct further experiments with a wider range of bugs on other JIT compilers, such as Apple’s JavaScriptCore/DFGJIT, to ensure that our approach can be generalized to different JIT compilers.

VII. RELATED WORK

While the test program generation proposed by Lim and Debray [3] shares the goal of generating test programs for localizing bugs in the JIT compilers, it has several limitations. In their approach, AST nodes are randomly selected and mutated for a user-specified number of times. This does not guarantee the generation of quality test programs that can effectively eliminate unnecessary program entities.

The approaches [4], [5], [6] for generating test programs for traditional compilers, such as GCC and LLVM, typically focus on generating only the passing test programs. As discussed in Section V, it is more advantageous to create additional failing test programs to eliminate less suspicious program entities, which could potentially lead to a more accurate bug localization. A recent study [22] that employs machine learning techniques to generate test programs is designed to detect new bugs, similar to fuzzers.

Blazytko et al. employed AFL fuzzer [23] with a specialized configuration (i.e., crash exploration mode) to produce test programs. Nevertheless, utilizing fuzzers [23], [24], [25], [26], whose primary goal is to identify new bugs by examining the execution coverage, may not be the best option for bug localization. This is because the newly generated test programs may vastly differ from the seed and not link to the bug of interest we want to locate. Additionally, solely considering buggy behavior as a crash can result in the misclassification of test programs. For instance, if a program produces incorrect output but terminates without crashing, it may be mislabeled as a passing program because it did not crash.

The approaches [27], [28], [29], [30], [7] used for ordinary programs limits scaling to JIT compilers. This is because the input to the JIT compiler is another program, while these approaches target generating test cases, such as input values, or directly mutating the target system.

Mutation-based fault localization (MBFL) [31], [28], [32], [33], [34], [35], [36] involve mutating the program containing the bug in order to identify the program entities that are likely to be responsible. However, these approaches are challenging to scale for JIT compilers. Especially, JIT compilers are part of larger systems, e.g., JavaScript engines or Virtual Machines, that the approach attempting to mutate specifically targeting the JIT compiler alone is a non-trial task.
VIII. CONCLUSION

Bug localization for JIT compilers relies on analyzing the execution behaviors of test programs. However, current automatic test program generation approaches are not effective for JIT compiler bug localization. To address this, we developed a novel approach that generates effective test programs for JIT compiler bug localization. We evaluated through experiments on widely-used JIT compilers, demonstrating its effectiveness.

ACKNOWLEDGEMENTS

REFERENCES

[34] M. Papadakis and Y. L. Traon, “Using mutants to locate "unknown" faults,” in Fifth IEEE International Conference on Software Testing, Verification and Validation, ICST 2012, Montreal, QC, Canada.