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Abstract. This paper introduces a novel framework for designing multi-
agent systems, called “Distributed Agent Evolution with Dynamic Adap-
tation to Local Unexpected Scenarios” (DAEDALUS). Traditional ap-
proaches to designing multi-agent systems are offline (in simulation),
and assume the presence of a global observer. In the online (real world),
there may be no global observer, performance feedback may be delayed or
perturbed by noise, agents may only interact with their local neighbors,
and only a subset of agents may experience any form of performance
feedback. Under these circumstances, it is much more difficult to design
multi-agent systems. DAEDALUS is designed to address these issues,
by mimicking more closely the actual dynamics of populations of agents
moving and interacting in a task environment. We use two case studies
to illustrate the feasibility of this approach.

1 Introduction

Engineering multi-agent systems is difficult due to numerous constraints, such
as noise, limited range of interaction with other agents, delayed feedback, and
the distributed autonomy of the agents. One potential solution is to automate
the design of multi-agent systems in simulation, using evolutionary algorithms
(EAs) [2, 9]. In this paradigm, the EA evolves the behaviors of the agents (and
their local interactions), such that the global task behavior emerges. A global
observer monitors the collective, and provides a measure of performance to the
individual agents. Agent behaviors that lead to desirable global behavior are
hence rewarded, and the collective system is gradually evolved to provide optimal
global performance.

There are several difficulties with this approach. First, a global observer may
not exist. Second, some (but not all) agents may experience some form of reward
for achieving task behavior, while others do not. Third, this reward may be
delayed, or may be noisy. Fourth, the above paradigm works well in simulation
(offline), but is not feasible for real-world online applications where unexpected
events occur. Finally, the above paradigm may have difficulty evolving different
individual behaviors for different agents (heterogeneity vs homogeneity).

In this paper we propose a novel framework, called “Distributed Agent Evolu-
tion with Dynamic Adaptation to Local Unexpected Scenarios” (DAEDALUS),
for engineering multi-agent systems that can be used either offline or online. We
will explore how DAEDALUS can be used to achieve global aggregate behavior,
by examining two case studies.



2 Distributed Agent Evolution with Dynamic Adaptation
to Local Unexpected Scenarios

With the DAEDALUS paradigm, we assume that agents (whether software or
hardware) move throughout some environment. As they move, they interact with
other agents. These agents may be of the same species or of some other species
[6]. Agents of different species have different roles in the environment. The goal
is to evolve agent behaviors and interactions between agents, in a distributed
fashion, such that the desired global behavior occurs.!

Let us further assume that each agent has some procedure to control its own
actions, in response to environmental conditions and interactions with other
agents. The precise implementation of these procedures is not relevant, thus
they may be programs, rule sets, finite state machines, real-valued vectors, force
laws, or any other procedural representation. Agents have a sense of self-worth,
or “fitness”. Agents that experience direct performance rewards have higher
fitness. Other agents may not experience any direct reward, but may in fact have
contributed to the agents that did receive direct reward. This “credit assignment”
problem can be addressed in numerous ways, including the “bucket brigade”
algorithm or the “profit sharing” algorithm [3]. Assuming that a set A of agents
has received some direct reward, both algorithms provide reward to the set B of
agents that have interacted (and helped) those in A. Further trickle-back rewards
are also given to those agents in set C that helped those in B, and so on. Agents
that receive no rewards lose fitness. If fitness is low enough, agents stop moving
or die.

Evolution occurs when individuals of the same species interact. Those agents
with high fitness give their procedures to agents with lower fitness. Evolutionary
recombination and mutation provide necessary perturbations to these proce-
dures, providing increasing performance and the ability to respond to environ-
mental changes. Different species may evolve different procedures, reflecting the
different niches they fill in the environment.

3 Transition of Offline Applications to DAEDALUS

Our prior applications of EAs to design multi-agent systems have used the offline
approach — a global observer assigns fitness to agents based on their collective
behavior. In the next section, we show how DAEDALUS could be applied to
two different applications, namely, obstacle avoidance and the self assembly of
machines, in an online environment. For both applications, recombination and
mutation operators provide the ability to respond to environmental changes
(which can include the addition and/or removal of agents).

3.1 Obstacle Avoidance

In prior work we have shown how our artificial physics framework can be used
to self-organize swarms of mobile robots into hexagonal lattices (networks) that

! The work by [8] is conceptually similar and was developed independently.



move towards a goal (see Figure 1). We extended the framework to include mo-
tion towards a goal through an obstacle field. An offline EA evolved an agent-level
force law, such that robots maintained network cohesion, avoided the obstacles,
and reached the goal. The emergent behavior was that the collective moved as
a viscous fluid [4].

Fig. 1. Seven robots form a hexagon, and move towards a light source.

The Artificial Physics Framework: In our artificial physics (AP) framework
[7], virtual physics forces drive a swarm robotics system to a desired configuration
or state. The desired configuration is one that minimizes overall system potential
energy, and the system acts as a molecular dynamics (F = ma) simulation.

Each robot has position p and velocity v. We use a discrete-time approxima-
tion of the continuous behavior of the robots, with time step At. At each time
step, the position of each robot undergoes a perturbation Ap. The perturbation
depends on the current velocity, i.e., Ap = vAt. The velocity of each robot at
each time step also changes by Av. The change in velocity is controlled by the
force on the robot, i.e., Av = FAt/m, where m is the mass of that robot and F
is the force on that robot. F' and v denote the magnitude of vectors F and v. A
frictional force is included, for self-stabilization.

From the start, we wished to have our framework map easily to physical
hardware, and our model reflects this design philosophy. Having a mass m asso-
ciated with each robot allows our simulated robots to have momentum. Robots
need not have the same mass. The frictional force allows us to model actual
friction, whether it is unavoidable or deliberate, in the real robotic system. With
full friction, the robots come to a complete stop between sensor readings and
with no friction the robots continue to move as they sense. The time step At
reflects the amount of time the robots need to perform their sensor readings. If
At is small, the robots get readings very often, whereas if the time step is large,
readings are obtained infrequently. We have also included a parameter Fi, ..,
which provides a necessary restriction on the acceleration a robot can achieve.
Also, a parameter V,,q, restricts the maximum velocity of the robots (and can
always be scaled appropriately with At to ensure smooth path trajectories).

In this paper we are investigating the utility of a generalized Lennard-Jones
(LJ) force law (which models forces between molecules and atoms).



(1)

F < Fpqz is the magnitude of the force between two robots ¢ and j, and
r is the distance between the two robots. R is the desired separation between
robot ¢ and all other neighboring robots. The variable € affects the strength of
the force, while ¢ and d control the relative balance between the attractive and
repulsive components. In order to achieve optimal behavior, the values of e, c,
d, and Fy,q,; must be determined. Our motivation for using the LJ force law is
that (depending on the parameter settings) it can easily model crystalline solid
formations, liquids, and even gases.
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Optimizing Parameters Using Genetic Algorithms (Offline Approach):
Given the generalized force law, such as LJ, it is necessary to optimize the pa-
rameters to achieve the best performance. We achieve this task using a genetic
algorithm (GA). Genetic algorithms are optimization algorithms inspired by nat-
ural evolution. We mutate and recombine a population of candidate solutions
(individuals) based on their performance (fitness) in our environment. The indi-
viduals that have higher fitness than the average fitness of the population will
reproduce and contribute their genetic makeup to future generations. One of
the major reasons for using this population-based stochastic algorithm is that it
quickly generates individuals that have robust performance. Every individual in
the population represents one instantiation of a force law.
Further discussion of the genetic algorithm needs clear definitions of the
parameter sets used for the GA individuals. The evolving parameters of the LJ
force law are:

€ : strength of the robot-robot interactions.

— ¢ : non-negative attractive robot-robot parameter.
— d : non-negative repulsive robot-robot parameter.
— Fihaz : maximum force of robot-robot interactions.

and similar 4-tuples for obstacle-robot and goal-robot interactions.

Offspring are generated using one-point crossover with a crossover rate of
60%. Mutation adds/subtracts an amount drawn from a N(0, §) Gaussian dis-
tribution. Each parameter has a 1/L probability of being mutated, where L is
the number of parameters. Mutation ensures that parameter values stay within
accepted ranges. Since we are using an EA that minimizes, the performance of
an individual is measured as a weighted sum of penalties.

Fitness = Wy % CollPen + Wy * CohPen + W3 * Goal Not ReachedPen  (2)

The weighted fitness function consists of three components, a penalty for
collisions, a penalty for lack of cohesion, and a penalty for robots not reaching
the goal. Since there is no safety zone around the obstacles [1], a penalty is added



to the score if the robots collide with obstacles. The cohesion penalty is derived
from the fact that in a good hexagonal lattice, interior robots should have six
local neighbors. A penalty occurs if a robot has more or less neighbors. If no
robot reaches the goal within the time limit, a further penalty occurs.

Experimental Methodology of Offline Learning Module: Our 2D simu-
lation is 900 x 700, and contains a goal, obstacles and robots. Up to a maximum
of 100 robots and 100 static obstacles with one static goal are placed in the envi-
ronment. The goal is always placed at a random position in the right side of the
world, while the robots are initialized in the bottom left area. The obstacles are
randomly distributed throughout the environment, but are kept 50 units away
from the initial location of the robots, to give the robots the opportunity to first
get into formation. Each circular obstacle has radius Ry of 10, and the square
shaped goal is 20 x 20.

When 100 obstacles are placed in the environment, roughly 5% of the environ-
ment is covered by the obstacles (similar to [1]). The desired separation between
robots R is 16, and the maximum velocity V4. is 20. Figure 2 shows 40 robots
navigating through randomly positioned obstacles. The larger circles are obsta-
cles and the square to the right is the goal. Robots can sense other robots within
the distance of 1.5R, and can sense the obstacles within the distance of Ry+1
(minimum sensing distance). The goal can be sensed at any distance.
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Fig. 2. 40 robots moving to the goal. The larger circle represent obstacles, while the
square in the upper right represents the goal.

An LJ force law was evolved using the offline learning module of our simula-
tion tool. The population size was 100 and the EA was run for 100 generations.



We trained over scenarios with 40 robots and 90 obstacles. Each individual (an
instance of the force law) was evaluated for 1500 time steps, and averaged over
50 random instantiations of the environment.

Constraints with Offline Approach: The offline approach produces success-
ful results [4], assuming that there is a global observer that assigns the fitness
to individuals, the robots face scenarios in their current environment similar to
the environment in which they were trained, and there are no communication
delays or disruptions. In real world online applications, an offline approach can
be problematic due to unexpected environment changes. We need an approach
that allows the robots to rapidly adapt to the changing environment. We propose
DAEDALUS, a fully distributed online approach that allows robots to adapt to
the environment changes.

Online Approach with DAEDALUS: Each robot of the swarm is an indi-
vidual in a population that interacts with its neighbors. Each robot contains a
slightly mutated copy of the optimized force law rule set found with offline learn-
ing. This ensures that our robots are not completely homogeneous. We allowed
this slight heterogeneity because when the environment changes, some mutations
perform better than others. The robots that perform well in the environment
will have higher fitness than the robots that perform poorly. When low fitness
robots encounter high fitness robots, the low fitness robots ask for the high fit-
ness robot’s rules. Hence, better performing robots share their knowledge with
their poorer performing neighbors.

When we apply DAEDALUS to obstacle avoidance, we focus on two aspects
of our swarm: reducing obstacle-robot collisions and maintaining the cohesion
of the swarm. Robots are penalized if they collide with obstacles and/or if they
leave their neighbors behind. The second scenario arises when the robots are left
behind in cul-de-sacs. This causes the cohesion of the formation to be reduced.

Experimental Methodology of Online Adaptation: FEach robot of the
swarm contains a slightly mutated copy of the optimized LJ force law rule set
found with offline learning and all robots have the same fitness at the start. There
are five goals to achieve in a long corridor, and between each randomly positioned
goal is a different obstacle course with 90 randomly positioned obstacles. The
online 2D world is 1650 x 950, which is larger than the offline world. In our
changed environment, each obstacle has a radius of 30 compared to the offline
obstacle radius of 10. So more than 16% of the online environment is covered
with the obstacles. Compared to the offline environment, the online environment
triples the obstacle coverage. We also increase the maximum velocity of the
robots to 30 units/sec, making the robots moves 1.5 times faster than in the
offline environment. The LJ force law learned in offline mode is not sufficient for
this more difficult environment, producing collisions with obstacles (due to the
higher velocity), and robots that never reach the goal (due to the high percentage
of obstacles).



Robots that are left behind (due to obstacle cul-de-sacs) do not proceed to
the next goal, but the robots that had collisions and made it to the goal are
allowed to proceed to the next goal. We assume that damaged robots can be
repaired once they reach a goal.

Results: To measure the performance of the DAEDALUS approach, an ex-
periment was carried out with 60 robots, 5 goals in the long corridor, and 90
obstacles in between each goal. The experiment was averaged over 50 runs of
different robot, goal, and obstacle placements. Each robot is given equal initial
fitness and “seeded” with a mutated copy of the optimized LJ force law learned
in offline mode. If a robot collides with an obstacle, it’s fitness is reduced. When-
ever a robot encounters another robot with higher fitness, it takes the relevant
parameters pertaining to the obstacle-robot interaction of the better performing
robot.
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Fig. 3. The ratio of colliding robots versus the number of surviving robots, for 60
robots moving through 5 goals with 90 obstacles in between each goal.

Figure 3 shows the ratio of the number of robots that collided with obstacles
versus the number of robots that survived to reach the goals. The graph indicates
that after only 2 goals, the percentage of robots that collide with obstacles has
dropped from about 36% to well under 5%. Inspection of the obstacle-robot
parameters indicates that the repulsive component increased through the online
process of mutation and the copying of superior force laws (this was confirmed
via inspection of the mutated force laws).



This first experiment did not attempt to alleviate the situation where robots
are left behind; in fact, only roughly 43% of the original 60 robots reach the final
goal (see Figure 4, lower line). This is caused by the large number of cul-de-sacs
produced by the large obstacle density. Our second experiment attempts to alle-
viate this problem by focusing on the robot-robot interactions. Our assumption
was that the LJ force law needs to provide stronger cohesion, so that robots
aren’t left behind.

If robots are stuck behind in cul-de-sacs (i.e. they make no progress towards
the goal) and they sense neighbors, they slightly mutate the robot-robot inter-
action parameters of their force laws. In a situation in which they do not sense
the presence of neighbors and do not progress towards the goal, they rapidly
mutate their robot-goal interaction causing a “panic behavior”. These relatively
large perturbations of the force law allow the robots to escape their motionless
state.

Number of Robots that Survived at Each Stage

60 e . . ; .
50 k- ;‘ Survival in offine 4
40 | Survival is Important (online)
B N
=
c ~
3 NS
@ 30t ]
12} T
E e
g Collisions are Important (online)
20 E
10 1
0 ) ) ) )
0 1 2 3 4 5

Goal Number

Fig. 4. A comparison of (a) the number of robots that survive when rules are learned
using offline learning, (b) the number of robots that survive when using online learning
(where the focus is on reducing collisions), and (c) the number of robots that survive
when using online learning (and the focus in on survivability).

Figure 4 shows the results of this second experiment. In comparison with the
first experiment (with survival rates of 43%), the survival rates have increased to
68%. As a control experiment, we ran our offline approach on this more difficult
task. After five goals, the survival rate is about 78%. Recall that the offline
results are obtained by running an EA with a population size of 100 for 100
generations, with each individual averaged over 50 random instantiations of the
environment. As can be seen, the DAEDALUS approach provides results only



somewhat inferior to the offline approach, in real time, while the robots are in
the environment.

Although not shown in the graph, it is important to point out that the
collision rates were not affected in the second experiment. Hence, we believe that
it is quite feasible to combine both aspects in the future. Collision avoidance can
be improved via mutation of the obstacle-robot interaction, while survival can be
improved via mutation of the robot-robot interaction and robot-goal interaction.

3.2 Evolution of Self Assembling Agents

For our second application we examine the self-assembly of robotic machines.
These machines must determine their physical structures in order to consume
some resource and output some product. A self-assembling machine may need
to compete for resources and rapidly adapt in a changing environment. In this
dynamic simulated environment, machines without an explicitly defined fitness
function compete for survival. Each machine is slightly different from the oth-
ers. Those machines that perform better send their “blue-prints” to those that
perform worse. The poorer performing machines rebuild themselves according
to the new blue-print. This study uses DAEDALUS to examine the issues in
adapting L-Systems [5] to represent the different stages of development of these
machines. We present our preliminary results of this on-going study.

In this simulation, a number of machines are placed within a virtual envi-
ronment, where they must compete for three distinct resources. Acquisition of
a sufficient quantity of the available resources determines survival. Two of these
resources will be referred to as light and heat, and the third resource is simply
space; machines are not allowed to overlap. Machines use the acquired resources
as energy for survival and growth.

L-Systems Approach and Experimental Methodology: A machine’s final
structure is determined by a stochastic context-free bracketed L-system. An L-
system is a system of string re-write rules similar to a Chomsky grammar [5]. The
L-system is defined as an ordered triplet G = <V, w, P> where V is the alphabet,
w is the axiom (or start symbol) and P is the set of production rules. As in any
grammar, the start symbol is transformed through derivation steps involving the
production rules, resulting in a new word at each step. In the stochastic L-system
one or more production rules may have the same start symbol. A probability is
attached to each start symbol and the probabilities for a set of production rules
with equal start symbols sum to 1. During a derivation step, when a symbol
with several rules is encountered a random value is generated to decide which
rule to use.

A graphical interpretation of the word is presented at each step. The graph-
ical representation is accomplished through turtle-graphics. Each letter in the
alphabet is mapped to a turtle operation. We show an example L-system with
the corresponding turtle interpretation of the alphabet used below.
V={FB,+-[]}



w=F

P = {F (50%)— FB, F (50%)— F|+FBJF}

derivation example:

step 0: F

step 1: FB (at random the first F-rule was chosen)

step 2: F[+FB]FB (at random the second F-rule was chosen)

Turtle interpretation for the alphabet:
F = forward
B = blueprint
+ = turn right
- = turn left
[ = push the turtle’s current state onto a stack
] = pop the top of the stack into the current turtle

Initially, a set of machines is generated with minor random variations. At
each time step machines may collect resources. The world is divided into columns
representing the first resource, light. Any machine that is taller than all others
in a column collects the light from that column for that time step. The second
resource is distributed evenly by mass. Competition for space occurs naturally
since machines may not overlap. At the end of each time step all machines are
allowed to perform a growth step (L-System derivation), or to switch to an
adult stage. The switch to adult stage occurs upon acquisition of a threshold
amount of resource. The change arrests the L-System derivations and begins a
propagation phase. Adult machines create copies of their genomes (blueprints)
and distribute them in the environment. A machine constructor is assumed to
exist. The constructor takes blueprints in pairs, recombines them, and builds the
resulting machine with the current state of its L-System equal to its axiom.

A series of snapshots from an example run of the simulation is shown in Fig-
ure 5. In the first row we see a population of machines shortly after initialization.
In the second row the right hand side of the environment is entirely controlled by
a dense cluster of tall machines. The left hand side is relatively empty with only
one small cluster of machines controlling any resources. The final two rows show
the small population being overrun by the much taller machines as they react to
the free resource area on the left. Throughout all frames we see the population
adjusting its average height and structure for maximal energy absorption.

As mentioned above, the switch to adult stage occurs when the amount of
resource acquired exceeds some threshold. We also used DAEDALUS to deter-
mine this threshold, as the environment changed. We assume that the machines
must expend energy to acquire the resource. In some environments acquiring
resources is inexpensive, while in others it is expensive.

Figure 6 illustrates the results. At first, the energy to operate per unit time
is 0.1 (the units are arbitrary). Via mutation of the reproduction threshold pa-
rameter, machines evolve such that they reproduce when the threshold is ap-
proximately 15. There are a also a large number of machines (not shown in the
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Fig. 6. The reproduction threshold depends on the difficulty in acquiring the resource.

graph). After 500 time units the operation energy is 0.5 (it is harder to acquire

resources). Note that

the threshold increases to roughly 27. There are fewer ma-

chines also. The operation energy decreases back to 0.1 and then increases to
0.9. In this case the threshold is very high, at approximately 39. There are also
very few machines. Finally, the operation energy decreases back to 0.1.

The results are intuitively pleasing. First, in “easy” areas there are lots of



machines that reproduce often. In “hard” areas there are fewer machines that
reproduce less often. Second, the results are reproducible in the sense that when
the operation energy is 0.1, roughly the same threshold is evolved.

4 Conclusion

Traditional approaches to designing multi-agent systems are offline, and assume
the presence of a global observer. However, this approach will not work in real-
time online systems. This paper presents a novel approach to solving this prob-
lem, called DAEDALUS, where we show how concepts from population genetics
can be used with swarms of agents to provide fast online adaptive learning in
changing environments. Two case studies are used in this paper to illustrate the
feasibility of this approach.

Future work will focus more on the issue of credit assignment. Current work
in classifier systems uses mechanisms such as “bucket-brigade” or “profit shar-
ing” to allocate rewards to individual “agents” appropriately [3] . However, these
techniques rely on global blackboards and assume that all agents can potentially
act with all others, through a bidding process. We intend to modify these ap-
proaches so that they are fully distributed, and appropriate for online systems.
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