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Abstract
This paper focusses on an automated learn-
ing/reasoning system for inferring mission safety in
airspace operations. We describe a simplified ver-
sion of a realistic airspace operations scenario that
inspired our work. Our domain knowledge about
airspace operations and mission safety is expressed
qualitatively. We define and describe a way to con-
struct explanations of missions that are translated
into a Neural Network representation which is fit
to the data and scored. We describe a pruning al-
gorithm to select a greedy-best explanation struc-
ture of mission safety. Our experimental evalua-
tion demonstrates the effectiveness of using domain
knowledge in learning compared to the standard
hidden-layered Artificial Neural Networks.

1 Problem and Significance
One of the most important factors in military decision-
making is safety, i.e., whether a high-valued asset participat-
ing in a mission is safe or not, given the enemy threats and
our capabilities in that mission. For example, consider the
following fictitious but very realistic scenario, simplified sub-
stantially here:

Intelligence confirms that the militant power in the
recently captured Area 6 have escaped to neighboring
countries such as Areas 1 and 7 with large numbers
of weapons, including SCUD missiles and hand held
surface-to-air missiles (SAMs). Despite this intelligence,
the exact location of these missiles is still unknown. The
Joint Force Air Component Commander (JFACC) directs
a large proportion of airpower from Areas 3, 5, and 6 to
be devoted to finding and eliminating the threat of SCUD
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Figure 1: An illustration of the military planning scenario
described in the text. The map is based on a screenshot of the
map of the well-known board game Risk [Wikipedia, 2009].

missiles. Assets involved in this mission include F-15E
Strike Eagles, F/A-18 Hornets, JSTARS, E-2C Hawkeye,
E-3A AWACS, and KC-135 tankers. The Rules of En-
gagement (ROE) require that (1) the coalition forces are
not authorized to engage or otherwise cross the border
into any neighboring country, and (2) a visual confirma-
tion of any SCUD launched is established before any ac-
tion – thus, a SCUD hunting mission will only occur dur-
ing daylight hours or under three-quarter or more moon
clear nights.

The air defenses of the potential host countries that
would interfere with any kind of SCUD hunting mission
include multiple shoulder launched surface-to-air mis-
siles, along with the TOR and Hawk (export variant) mis-
sile systems. Figure 1 shows some Hawk and TOR missile
ranges, and some suspected launcher sights depicted by
yellow stars. Hawk missile sights are shown in red, and
TOR in orange.

Intelligence indicates a SCUD missile will move out of
hiding to a position in Area 7 – to launch a chemical
armed weapon against a concentration of friendly coali-
tion forces in Areas 3, 5,, or 6. The SCUD hiding site is



approximately 15 miles inside Area 7 from its northern
border, with a paved road to the border crossing and nu-
merous unimproved roads that cross the border in to Area
6. The Joint Force Commander has directed the JFACC
to find and destroy the SCUD launcher once it crosses
the border.

This scenario demonstrates that typically there are a large
number of possible factors that affect the decisions and plans
for carrying out a military operation safely. For example, an
airspace planner (e.g., military commander) must take into
account many factors, such as the types of assets (i.e., air-
craft) in the friendly and enemy airspace forces, their possi-
ble configurations and orientations, the rules of engagement
for the mission, weather conditions, available logistic sup-
port, resource constraints, operational and tactical objectives,
mission priorities, and so on. The space of possible plans is
typically enormous, whereas the subset of plans leading to
safe missions is typically small.

2 Overview
This paper describes our novel AI tool for helping human mil-
itary planners to manage the complexity in developing safe
mission plans. The basis of our tool is to represent gen-
eral background knowledge regarding military operations as
a set of qualitative proportionalities (e.g., relationships that
describe whether increasing the value of one parameter in-
creases or decreases the value of another parameter). Such
knowledge is important for an AI system to even have a
chance of deployment because (1) it enables the system to
learn from a few examples; (2) it provides guidance to a
learner in an otherwise very complicated domain; and (3) per-
haps, most importantly, it ensures that anything learned by the
system conforms with the commanders’ decisions, military
practices and doctrines.

Our contributions are as follows:
• We present a formalism based on qualitative represen-

tations [Kuipers, 1994; Forbus, 1997] to capture expert
background knowledge about a domain. We describe
this formalism in the context of airspace planning. We
describe how to map a qualitative representation of a do-
main into an explanation structure for a given concept in
the domain.
• We describe a way to translate the qualitative repre-

sentation of background knowledge and corresponding
explanation structures into Artificial Neural Networks
(ANNs) [Bishop, 2005]. Once an ANN-based model
has been initialized with the domain knowledge, it is
updated using training examples (scenarios labeled with
the degree to which they are “safe”). Since we built
ANNs via the given background knowledge, training
of them requires few examples only, much less than
the number of training examples required for a typical
ANN-based learning technique.
• Our learning system performs training (i.e., learning)

by using standard gradient-descent algorithms. Learn-
ing from the training examples converts the initially ab-
stract qualitative relationships to concrete quantitative
relationships.

• We present the results of an experimental evaluation of
our approach on a set of reconnaissance missions in the
military context provided above. To evaluate the system,
the model’s predictive accuracy is tested on an indepen-
dent (from the training examples), previously unseen set
of testing examples. We describe our experimental re-
sults and conclude with a summary and directions for
future research.

3 Qualitative Airspace Planning Knowledge
Compared to logical representations, qualitative representa-
tions [Kuipers, 1994; Forbus, 1997] can be more convenient
and natural to capture an expert’s domain knowledge. Our
qualitative assertions represent increasing ( +−→) and decreas-
ing ( −−→) relationships between entities; X +−→ Y means
that, other things being equal, the dependent variable Y
will increase (decrease) as the independent variable X in-
creases (decreases), while X −−→ Y denotes the reverse:
that Y will generally decrease (increase) in response to X
increasing (decreasing). We call X above the antecedent
of the assertion and Y the conclusion. As an example,
the assertion SafetyFromAircraft +−→ MissionSafety
states that greater safety from enemy aircraft threats gen-
erally results in a safer mission; here, the antecedent is
SafetyFromAircraft, while MissionSafety is the con-
clusion.

The domain knowledge introduces unobservable or latent
variables that the expert finds useful to capture underlying
regularities. Our componential domain knowledge allows
larger structures to be composed by inference (i.e., chaining
through domain knowledge statements). An inferred struc-
ture is well formed if latent variables occur only internally,
with the structure’s antecedents all observable, and with the
structure’s conclusion a class label to be assigned.

Any well-formed inferential structure that is consistent
with some observed quantitative behavior is an explanation
for that observed behavior. Just as the same outward behav-
ior can be manifested by quite different internal mechanisms,
incompatible explanations can be constructed from the same
observations.

Although our system is initialized with qualitative knowl-
edge, learning from the training examples leads to quantita-
tive instantiation and refinement of the initial abstract knowl-
edge. This methodology of asking the domain expert to
provide qualitative rules, along with labeled examples, from
which quantitative rules are inferred, is novel and we have
found it to be highly effective. In addition, our domain expert
found it to be a considerably more straightforward process
than one in which he would have had to provide quantitative
rules at the outset.

4 The Domain Theory for Airspace
Operations

Our domain knowledge has been simplified for the sake of
tractability. Notably, it omits the Rules of Engagement and
weather. Our subject matter expert, coauthor Kevin Van



Figure 2: An illustration of an airspace protection mission.
Above, all airspace assets and threats are shown as bars.
Above, the Green is a high-value asset, Orange is an enemy
air threat, Red are enemy missile launchers and their ranges,
and Blue is protecting Green from Orange.

Sloten who is an expert airspace manager, provided realistic
but manageable scenarios to test our proof of concept system.
We do not believe these omissions would require further con-
ceptual advances.

Here we discuss a few domain knowledge expressions to
give the reader an idea of the type of knowledge employed.
The knowledge includes a list of features, qualitative do-
main proportionalities (relationships) between the features,
facts from a particular scenario such as distances and angles
between entities (e.g., aircraft or missiles), mission-related
knowledge, and levels for threats, priorities, and so on.

Consider the mission scenario described earlier:
Intelligence indicates a SCUD missile will move out of
hiding to a position in Area 7 – to launch a chemical
armed weapon against a concentration of friendly coali-
tion forces in Areas 3, 5,, or 6. The SCUD hiding site is
approximately 15 miles inside Area 7 from its northern
border, with a paved road to the border crossing and nu-
merous unimproved roads that cross the border in to Area
6. The Joint Force Commander has directed the JFACC
to find and destroy the SCUD launcher once it crosses
the border.

Figure 2 illustrates a potential mission that JFACC could un-
dertake in this scenario. In the presentation that follows, the
colors and shapes refer to entities in Figure 2. A blue bar rep-
resents an airspace region for the combat air patrol (CAP) of
protective friendly fighters, a green bar represents the region
of the high-valued asset (HVA) which is to be protected, a red
circle depicts the range (based on intelligence) of a surface-
to-air missile, and an orange bar is the best estimate (also
based on intelligence) of the location of one or more enemy
aircraft patrols.

• The mission objective is to perform reconnaissance in the
context of SCUD missile hunting under five distinct ex-

ternal Threat Levels: low, low-med, medium, med-high,
and high.

• As the general level of threat increases, the mission safety
decreases:
ThreatLevel

−−→MissionSafety.
• There are three different levels of mission Priority (low,

medium, high); the same safety value is less acceptable
the higher the mission priority:
Priority

−−→MissionSafety

• Every high-valued asset (HVA) must have a Combat Air
Patrol (CAP) assigned to protect it. For example, in Fig-
ure 2, Blue’s mission is to protect Green from the infiltrator
Orange (which is protected by the Red missile ranges).

• Aircraft always fly within a bar region in an orbit, i.e., they
fly back and forth. The length and angle of the rectangu-
lar bar indicates the direction and distance of movement.
Their orientation is important for sensing.

• The angle from a Blue bar’s axis to a threat is measured
as the cosine of its nose-off angle to the threat computed
as a dot product of unit vectors. Increasing this measure,
increases the positional protection ability. For example, for
each surface-to-air missile site:
AngleCAPtoMissileThreat

+−→ PositionSafetyfromMissile

• Fighters fly in pairs: the head and the wingman. Thus,
there are either two or four fighters are in a blue bar. Sim-
ilarly, either two or four enemy aircraft are in an orange
bar.

• Each fighter comes as a well-defined package: i.e., its ca-
pabilities (i.e., its maneuverability, the amount and kinds of
weapons it can carry) depends on the aircraft type. Enemy
aircraft are always of type Mig-29, but blue (friendly) air-
craft can be of type FA16 (Fighting Falcon), F15, or FA18
(Hornet). These are ordered by increasing capability so
that the adequacy of an aircraft’s weapons is positively in-
fluenced by its type:
CAPAircraftType

+−→ AircraftWeaponAdquacy

The most complete explanation possible for Figure 2 using
our domain knowledge is shown in Figure 3. As we shall see,
this is not necessarily the best explanation for the training ob-
servations, but it demonstrates the structure of an explanation.
Observable features compose the leaves or antecedents of the
structure. The conclusion is MissionSafety which is to be
assigned by the classifier. Internal nodes are latent variables
introduced by the expert to capture domain distinctions.

5 Learning How to Predict Mission Safety
From Qualitative Proportionalities

This section describes a novel Artificial Intelligence tool to
represent and learn how to make predictions about the safety
of airspace missions, given a qualitative domain theory and a
number of past experiences on such missions. We give by our
definitions and formalism, briefly, and afterwards, discuss our
approach in detail.



Figure 3: An example of an explanation structure for the
airspace-protection mission depicted in Figure 2.

5.1 Preliminaries
Let F be a set of features that describes airspace operations.
We described some of the possible features for our scenarios
in the previous section; depending on the particular class of
missions, F may contain other features that were not listed
above. Each feature f ∈ F has a set of values that f can take
from.

We define a mission scenario as a set of feature-value pairs
over a fixed subset of F , known as the native features of the
domain.

Let D be the qualitative domain theory given for a class
of airspace operations. We formalize an explanation as a di-
rected acyclic network DAG X = (V,R). V , a subset of F ,
is a set of features that appear in the explanation.

Each edge in R of the DAG describe a qualitative rela-
tionship from D between two features in V : i.e., R is a set
of qualitative relationships of either of the following forms:
f

+−→ f ′ or f −−→ f ′).
We deem an explanationX = (V,R) valid if all non-native

features in V are the conclusion in at least one qualitative
assertion in D, and the output node (safety in our case) is
reachable from all features in V . In other words, every node
in an explanation graph is relevant to the output node, safety.
Figure 3 shows an example of an explanation structure.

5.2 From Explanations to Neural Networks
Given an explanation X based on qualitative domain theory
D, we define an Artificial Neural Network (ANN) [Bishop,
2005] representation of X , denoted as ν(X), as follows. A
neural network unit is constructed for each feature in V . Then
for each qualitative assertion f

+−→ f ′ or f
−−→ f ′ in X ,

we add a weighted directed edge in the neural network struc-
ture from f to f’. Let w(f, f ′) be the weight associated with
this edge. Assuming X is valid, our derived neural network
structure is a feed forward network, in which all non-native
features have one or more incoming edges.

Mathematically, ν(X) operates as follows. Given a sce-
nario, m, all native feature nodes are set to the value of the
corresponding feature in m. Non-native features are defined

using a sigmoid function:

f =
(
1 + e−o(f)−

∑
f′∈pred(f) w(f ′,f)

)−1

,

where pred(f) is defined as the set of features, f ′, for which
there is an edge f ′ → f in X . o(f) is a feature specific offset
weight.

We use the ANN representation of explanations in order
to learn the definition of “mission safety” as a function of
the other features that appear/affect in a mission scenario.
For this, an important definition is that of the error function,
which is a measure of how far away we are from an optimal
solution to the problem that we want to solve.

As the error function C in our ANNs, we use the standard
expected squared-error defined as follows:

C = E[(safety(m)− y)2],

where safety denotes the neural network “mission safety”
output, m is a mission example, and y is true safety of that
mission. Above, E denotes the expectation over the squared
error. Practically, let M be the set of training sample mission
that are given. Then we approximate the above formula as

C =
1
|M |

∑
m∈|M |

(safety(m)− y)2,

where |M | denotes the number of missions in M .
The parameters of ν(X) are the feature offset weights,

o(f), and the edge weights, w(f, f ′). The learning procedure
initializes the ANN representation of X using the following
weight function. For each edge in X: if an edge from f to
f ′ in X was created due to a qualitative assertion f +−→ f ′

then w(f, f ′) = 1; otherwise, if it created due to an asser-
tion f −−→ f ′ then w(f, f ′) = −1. These weight settings
ensure that the initialized neural network adheres to the qual-
itative assertions. Offset weights are initialized such that the
expected output of each sigmoid unit is .5.

Given a set of training scenarios, the learning procedure
uses the standard back-propagation technique based on gradi-
ent descent [Bishop, 2005] to update edge and offset weights.
In summary, a gradient-descent algorithm iterates through the
training examples, propagating the errors backwards from the
objective (i.e., the Mission Safety in our case) nodes to the
inner nodes. This back-propagation is used to compute the
gradient of the error, which is then used to guide an update to
the parameters. Back-propagation usually allows quick con-
vergence on satisfactory local minima for error in the kind of
networks to which it is suited [Bishop, 2005]. In addition, the
technique of “early stopping” [Sarle, 1995] is used to avoid
overfitting the data. Details appear in the evaluation section.

5.3 Selecting the Explanation
We have already described how to derive and train a neural
network from a valid explanation based on qualitative domain
theory. However, given a set of qualitative assertions, many
valid explanations (based on different subsets of the knowl-
edge) may be possible. Simply using all qualitative assertions
in the background knowledge may lead to an overly complex



neural network and poor generalization to test examples. In
this section we describe an iterative greedy procedure to se-
lect a single valid explanation, corresponding to a subset of
the available qualitative background knowledge.

Assuming that our complete set of qualitative assertions is
valid, we can construct a valid maximal explanation based on
directed acyclic graph corresponding to all qualitative asser-
tions. This assumption holds in our case, leading to the max-
imal explanation shown in Figure 3. The approach proceeds
by iteratively training a neural net, pruning off the “weakest”
assertions in the explanation structure, and repeating until all
qualitative assertions have been eliminated. Finally, the ex-
planation structure that performed best on a set of withheld
validation data is output.

1. X ←maximal explanation

2. While X contains one or more edges:

(a) Construct and initialize neural network ν(X)

(b) Train ν(X) using back-propagation with training
set M

(c) error(ν(X))← the error of ν(X) on validation
data

(d) For each edge f → f ′ ∈ ν(X): effect(f →
f ′)← ( 1

|M|
∑
m∈M

∂safety
∂f ′ )w(f, f ′)σ(f)

(e) Remove edge arg minf→f ′∈ν(X) effect(f →
f ′) and subsequent edges and features required
to make X valid.

(f) For any features f with one incoming edge f ′ →
f remove f and replace all edges f → f ′′ with
f ′ → f ′′

3. Return ν(X)∗ = arg minν(X) error(N)

where σ(f) represents the standard deviation of f across
all training examples. At step (d), we identify the edge in the
neural network that has the least effect on the output value.
We eliminate this edge (equivalent to eliminative the corre-
sponding qualitative assertion from our working set of back-
ground knowledge), prune additional structure if the result-
ing explanation is invalid (if non-native features are left un-
defined, or if nodes are left unattached to the output value),
collapse redundant features, and repeat. Details of the cross
validation procedure appear in the evaluation section.

6 Evaluation
Dataset. We utilized a set of 100 mission scenario based on
military air operations context referenced at the beginning of
the paper. All scenarios are set at the Iran/Iraq border, with
6 fixed unfriendly missile locations (Red). A random auto-
mated procedure is used to place the relevant airspaces (Blue:
Combat Air Patrol (Protector), Green: High Value Asset (Pro-
tectee), Orange: Unfriendly Threat) within the region of in-
terest. An example placement was shown in Figure 2. These
placements are subject to plausibility constraints designed by
our domain expert. Additional features such as threat level,
priority level, aircraft types, and number of aircraft are cho-
sen randomly from the available options.

These scenarios were presented for scoring to our domain
expert. Scenarios were scored on an integer scale, 1 (very
unsafe) to 5 (very safe). To be compatible with our neural

Table 1: Average squared error for our approach
(Explanation-Based NN) and the Hidden-Layer NN over test
examples.

Training Examples 20 40 60
Explanation-Based NN .0534 .0386 .0321
Hidden-Layer NN .0601 .0481 .0409

network implementation, these scores were rescaled between
0 and 1. The 31 native features described in our domain the-
ory are computed and normalized to have mean zero and vari-
ance one across all examples, before being presented to our
learning algorithms.
Setup. We compare our approach to a standard hidden
layer neural network (HLNN) technique [Bishop, 2005]. In
HLNNs, a neural network is constructed consisting of three
layers: an input layer with one node per native feature, a hid-
den layer with some number of nodes (2 to 15 in our exper-
iments), and an output layer with one node corresponding to
safety value. Each node in the input layer has an edge to each
node in the hidden layer, and each edge in the hidden layer
has an edge to output layer. These hidden layer neural nets
are trained using the same back propagation procedure as is
used in our approach.

For training, we use cross validation to resolve the neural
network/explanation structure. In our approach, the full ex-
planation structure is iteratively pruned yielding a number of
competing neural network structures from which one must be
chosen. In the HLNN approach, the number of hidden units
must be chosen. Cross validation is also used to avoid overfit-
ting via the technique of early stopping [Sarle, 1995]. In this
approach, during training, the neural network is continuously
evaluated against a validation set of data, and the neural net-
work weights that yielded the best score on the validation set
are applied to the test data.

We accomplish both of these goals at once as follows. The
training data is split into 5 separate training/validation sets.
Each candidate network structure is initialized (according to
the qualitative background for our approach, with random
weights from [-1,1] for the hidden layer approach), trained
separately on each split, and evaluated at each training itera-
tion against the validation data. Across all structures/training
iterations, the network with the best average performance
across all five validation data sets is selected for application to
the test data. For the chosen network structure, each test ex-
ample is labeled with the average network output across each
of the five trained network weight sets.
Results. We test the two approaches for 20, 40 and 60 train-
ing examples. The remaining examples are used for evalua-
tion. Data is randomly split between training/testing sets and
10 trials are performed for each size. The average squared
error of each approach appears in Table 1. Across all training
set sizes, the explanation-based neural network approach out-
performs the hidden-layer approach by 16.3%. For each of
40 and 60 training examples, a paired t-test suggests that the
explanation-based approach outperforms the hidden-layer ap-
proach with probability greater than .975. The performance
of the explanation-based network at 40 examples exceeds that



Figure 4: The most commonly selected sub-explanation for
“Position Safety from Aircraft.”

of the hidden-layer neural network at 60 examples, suggest-
ing that the “value” of the qualitative domain theory is greater
than that of 20 additional training examples, a substantial
(50%) increase in the size of the training set.

Interesting is the most commonly selected explanation
structure. In this explanation, all qualitative assertions remain
as depicted in Figure 3 except for those beneath the definition
of “Position Safety from Aircraft”. The original qualitative
knowledge accounts for the fact that when only 2 aircraft are
assigned to the CAP, they fly together, and thus must be in
position to defend against a threat no matter where they are
located in the airspace. However when 4 aircraft are present,
they split up into two sets, and thus some aircraft is usually
well positioned within the airspace to defend against a threat.
The learning procedure prunes away much of this knowledge,
settling on the sub-explanation that is appropriatly complex
given the training examples. This sub-explanation is depicted
in Figure 4. In this definition, only the worst case distances
are used, although aircraft number still positively effects “Po-
sition Safety from Aircraft,” as it should. This is still a coher-
ent knowledge structure, and the reduced complexity of the
resulting neural network structure likely leads to better gen-
eralization.

7 Related Work
Previous work on developing prediction/learning systems for
airspace operations includes the Causal Analysis Tool (CAT)
from the Air-Force Research Laboratories (AFRL) for use in
creating, modifying and analyzing causal models of airspace
operations. CAT’s basic function is to propagate local esti-
mates of uncertainty throughout large models, estimating the
probability, as a function of time, that particular events will
be true. For details see [Lemmer, 1996].

Another system for airspace operations that has been under
development recently is the Generalized Integrated Learning
Architecture (GILA) [Oblinger, 2005]. This system is an en-
semble planning and learning system developed as part of a
large team effort, and funded by DARPA. The emphasis in
GILA is to develop an AI system that consists of loosely- cou-
pled learner/planner components. The present system grew
from GILA’s learning and model-checking system for safety
constraints in airspace operations. See [Rebguns et al., 2008]
for details.

Our learning approach described in this paper has its roots

in the KBANN formalism of [Towell and Shavlik, 1994].
Like KBANN, our learning procedure is based on a tech-
nique to translate a set of domain-theory rules into ANNs and
train those ANNs in order to learn a prediction on an objec-
tive feature of the targeted domain. One important difference
between KBANN and our approach here is the kind of the
domain theory translated into ANNs: KBANN uses propo-
sitional Horn clauses to describe relationships between the
facts of a problem, whereas we use representations from qual-
itative process theory. Additionally, KBANN hypothesizes
a fully connected ANN while our structure is more sparese,
constrained by the explanation.

Another relevant work is on Explanation-Based Neural
Networks (EBNN) described in [Thrun and Mitchell, 1993].
In the EBNN framework the domain theory is described in
terms of neural networks, rather than qualitative inferential
rules. Furthermore, the EBNN structure is directly employed
rather than serving as a safety filter for other systems. We
also found it convenient to generate the maximal explanation
of a goal concept and then apply a pruning procedure to find
the greedy best subset that simultaneously best respects both
the training examples and the domain theory.

Finally, our approach meshes well with the “Deep Learn-
ing Architectures” promoted in [Bengio and LeCun, 2007].
In Deep Learning, Lecun argues that function-approximation
learning methods can be substantially improved by the judi-
cious use of many hidden layers, provided they possess cer-
tain invariance properties. Our work can be seen as a type
of “deep learning” approach since we are generating multi-
layered ANN models, and the domain theory achieves the de-
sired conceptual invariance.

8 Conclusions
In this paper, we have described our automated learn-
ing/reasoning AI system for producing greedy-best explana-
tions for a target concept in a problem domain, given a do-
main theory and only a few training examples. The system
assumes the domain theory is represented in a sub-language
of the well-known QP Theory. Given this form of domain
theory and some examples in that domain, the system first
generates the maximal explanation of the target concept and
then exploits a pruning approach to extract a greedy-best ex-
planation out of the space of explanations.

Although our approach is general, i.e., it can be applied in
any problem domain, we focussed in this paper on airspace
operations and mission safety (our target concept) in those
operations. Our experimental evaluation demonstrates the ef-
fectiveness of our approach to standard hidden-layered neural
network based learning techniques.

As a future work, we intend to perform an extensive the-
oretical and experimental evaluation of the system. We also
plan to investigate bottom-up techniques for building expla-
nation structures. This would make our approach amenable
to domains where huge amounts of background knowledge
are available.
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