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Abstract

This paper presents a Bayesian approach to learning flexible
safety constraints in a coordinated, multi-planner ensemble,
along with stochastic and active experimentation approaches
for assigning degrees of blame when these constraints are vi-
olated. The blame is subsequently translated and conveyed
to planners, for the purpose of improved overall system per-
formance. To illustrate the advantages of our framework, we
provide and discuss examples on a real test application for
Airspace Control Order (ACO) planning and deconfliction,
which is a benchmark application in the DARPA Integrated
Learning Program.

Introduction

There has been a growing recognition that sophisticated,
multi-planner systems are needed for full automation in real-
world applications involving complex, uncertain, and time-
sensitive situations. As an example, in the research de-
scribed herein we tackle the Airspace Planning and De-
confliction task that is crucial to many civilian and mili-
tary airspace applications, and is being used by DARPA as
a benchmark application. This task is normally performed
by a human expert, called the airspace manager. The task
involves positioning each airspace trajectory so that there
will be no spatio-temporal conflicts, and so that safety con-
straints such as maximum altitudes are not violated. The
term “deconfliction” means setting the trajectories of two
entities, such as aircraft, so that they do not intersect in space
and time, i.e., to prevent a crash.

Such real-world applications require a variety of capa-
bilities, e.g., planning under uncertainty and time, learning
knowledge for planning, reasoning about world dynamics,
and coordinating all of the above in an integrated Al sys-
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tem. One approach to addressing such a problem is to de-
velop a single, centralized system that provides all of these
capabilities. However, monolithic centralized systems tend
to be too brittle and complex, and are notoriously difficult
to debug. Therefore, we have adopted the approach of de-
veloping a distributed Al system that consists of loosely-
coupled learner/planner components. Although these com-
ponents learn to improve their planning, for succinctness
hereafter we simply call them “planners.” When executed
as an ensemble, these components possess the capabilities
mentioned above for finding solutions to challenging real-
world applications. Furthermore, the loosely-coupled en-
semble architecture leads to increasing robustness and the
potential for synergy between components.

The use of an ensemble solves the problems of robust-
ness and real-world capabilities, but it introduces a new
challenge. In particular, due to the typical paucity of do-
main planning knowledge in realistic scenarios, generating
a course of action (also called a “solution” or, equivalently,
a “plan”) via such a group of loosely-coupled, automated
planners is challenging. Fortunately, the use of constraints
can ameliorate this situation to a large extent. Therefore, the
bulk of our research has been focused on the learning and
application of constraints in the context of an ensemble of
planners.

The focus of this paper is on our approach, called the
Safety Constraint Learner/Checker (SCLC), for automated
learning and application of planning knowledge in the form
of safety constraints. Examples of such safety constraints
include the following: “The altitude of an aircraft over the
course of its trajectory should never exceed its maximum,’
and “An aircraft trajectory should never be moved so that it
intersects a no-fly zone.”

SCLC consists of a learner and a checker, as follows:

1. The SCLC’s Constraint Learner (CL) automatically in-

fers safety constraints from problem-solving demonstra-
tions in a scenario. A demonstration trace consists of a
sequence of actions and/or decisions taken by an expert
in solving a planning problem. By analyzing such traces
of expert behavior for evidence of certain features in the
scenarios, CL can help planners to more closely mimic
the expert’s behavior. In particular, CL uses a Bayesian
learning technique to generate safety constraints about
the scenario (i.e., it generates constraints on the accept-
able behaviors in the scenario that, if violated, are guar-



anteed to cause incorrect solutions to the input problems).
The planners use these safety constraints during planning.
These constraints are also used by the SC, described next.

2. The SCLC’s Safety Checker (SC) is responsible for veri-
fying the correctness of plans/solutions in terms of their
satisfaction or violation of the safety constraints. The
SC inputs solutions from component planners, along with
safety constraints output by the CL, and it outputs a de-
gree of constraint violation and an assignment of blame.
Both of these together may be used as diagnostic feedback
in a learning/planning system for the purpose of propos-
ing improved solutions.

At this point, the reader may be confused as to why the SC is
needed if the planners already use the safety constraints dur-
ing planning. The reason is that the planners might only out-
put partial solutions/plans. These partial solutions are then
composed (by an executive module) into one solution/plan,
and that is what needs to be checked by the SC.

We have implemented the SCLC as a component in
the Generalized Integrated Learning Architecture (GILA),
which is an ensemble planning system being developed as
part of a large team effort, and funded by DARPA. GILA
consists of an ensemble of three planners, the SCLC, and an
executive module; these components of GILA are loosely
coupled in an overall integrated system architecture. A
highly simplified version of the GILA algorithm relevant to
this paper is:

1. GILA takes as input an expert-generated demonstration
trace, which is a training example of expert behavior. It
also inputs a deconfliction scenario for learning.

2. The CL learns safety constraints from the trace.

3. Each of the three planners infers a solution fragment, us-
ing the demonstration trace, safety constraints, and learn-
ing scenario.

4. The executive module composes the solution fragments
into one general proposed/candidate solution, which is
applied to a new deconfliction scenario.

5. For the new scenario, the SC checks whether the proposed
solution violates any of the constraints. If yes, then re-
peat starting at Step 3 using information output by the SC
to guide the search for an acceptable solution to the new
problem.

Although the SCLC approach is applied in the GILA
project to an airspace planning and deconfliction task, it is
not specific to this one task. It is sufficiently general to be
applicable to a wide variety of planning tasks, and future
work will focus on other tasks. The constraints are problem-
specific, but the methodologies for learning and checking
them are general. Nevertheless, this paper focuses on the
airspace task, in both its illustrative examples and its exper-
imental results. We now describe the task.

Implementation in a Real-World Airspace
Deconfliction Task

The Airspace Planning and Deconfliction Task is normally
executed by a human expert — the airspace manager. The

airspace manager works with an Airspace Control Order
(ACO), which specifies all the locations and trajectories of
airspace objects, and a set of Airspace Control Measure
Requests (ACMRegs), which specify the locations and tra-
jectories of new airspace objects that need to be added to
the original ACO. An example ACO is in Figure 1. The
airspace manager starts with the initial ACO, and then ap-
plies the ACMReqs to the ACO in a way that does not cause
any 4D spatio-temporal conflicts or constraint violations.
This involves positioning each Airspace Control Measure
(ACM) so that these goals are satisfied. An ACM is a trajec-
tory for an aircraft, tanker, missile, or other military entity.
Rephrased in terms of ACMs, an ACMReq is a request to
include another ACM in the ACO.

The overall task objective is to derive a solution/plan to
include the ACMReqgs in the ACO, while deconflicting all
entities and satisfying the safety constraints. In other words,
there are three subtasks: planning, deconfliction, and con-
straint satisfaction.

DARPA’s GILA project aims to develop an ensemble of
integrated Al systems in order to automate the airspace man-
ager’s task. GILA and a human airspace manager get iden-
tical inputs; this includes an example problem with a corre-
sponding demonstration trace, but only one. This is a small
hint without which the automation would not be possible.
The objective of the SCLC within GILA is to automate the
constraint satisfaction subtask. The planners, on the other
hand, derive partial solutions to the planning and deconflic-
tion problems, subject to the safety constraints. An airspace
manager’s task is extremely complex and challenging. In
fact, discussions with the DARPA BlueForce experts at this
task reveal that it takes many years to become an expert.
They say that in some respects it is analogous to solving a
huge jigsaw puzzle. Nevertheless, with a puzzle each piece
has one correct location. With airspaces, on the other hand,
there are multiple good (or even optimal) solutions. This
complicates the problem, thereby making it exceptionally
difficult to automate. Although this is a considerable chal-
lenge, most recently (after two years of research) GILA has
become competitive with (and even slightly exceeded) hu-
man novice trainee performance, which is a considerable ac-
complishment. The SCLC appears to have played a notable
role in this success, as described in the experimental results
section below.

Preliminaries

In the sections below, we will describe the SCLC architec-
ture. However, before we are able to do that, some prelimi-
nary definitions and concepts need to be presented here.

For effective learning of safety constraints for planning,
we assume the existence of a domain ontology, O, that spec-
ifies conceptual knowledge about the underlying problem
domain and the relationships within that domain. The do-
main ontology specifies object classes and their properties
in the world. An object class, C, defines a set of entities that
belong together because they share a domain property. An
example object class is the set of all fighter planes. An ex-
ample domain property could be the maximum altitude that
a fighter plane is allowed to fly.
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Figure 1: An example of an ACO deconfliction problem instance.

33 Select-Conflict ACM ID #1: F4 ACM ID #2: AWACS1
34 Get-Conflict-Details ACM ID #1: F4 ACM ID #2: AWACS1
35 Select-ACM ACM ID: F4

36 Begin-Altitude-Modification ACM ID: F4 Usage: AIRCORR

37 Set-ACM-Min-Altitude ACM ID: F4 Altitude: 34000

38 Set-ACM-Max-Altitude ACM ID: F4 Altitude: 35000

39 Commit-Altitude-Change ACM ID: F4

40 Get-Conflicts ACMREQ ID: ACMREQ1 ACMConflictList(ACMConflict(*"AWACS1~, "F57))
M Select-Conflict ACM ID #1: F5 ACM ID #2: AWACS1

42 Get-Conflict-Details ACM ID #1: F5 ACM ID #2: AWACS1

43 Select-ACM ACM ID: F5

44 Begin-Altitude-Modification ACM ID: F5 Usage: AIRCORR

45 Set-ACM-Min-Altitude ACM ID: F5 Altitude: 20000

46 Set-ACM-Max-Altitude ACM ID: F5 Altitude: 25000
47 Commit-Altitude-Change ACM ID: F5
48 Get-Conflicts ACMREQ ID: ACMREQ1 ACMConflictList()

Figure 2: An example demonstration trace for deconflicting
airspaces.

Formally, an object property is a function f : C — R.
For example, if F1 is a fighter, then its maximum altitude
could be described as finazq1t(F1) = 60,000 ft. Similarly,
we also entertain binary domain relations g : C x C — R
that define properties on pairs of airspaces. For example,
9aistance(F1, F2) = 5 nm, represents that airspaces F1 and
F2 are located 5 nautical miles from each other. Below, we
show how these properties can be rephrased in the form of
safety constraints. In addition to constraints, there is also
background knowledge in the form of facts. The domain
theory, D, consists of both O and the set of all known facts.

Let A be the set of all possible actions in the planning
domain. An action might be setting a maximum altitude, for

example. A demonstration trace T is defined as a sequence
of actions. Figure 2 shows an example of a demonstration
trace for deconflicting airspaces.

Let C be an object class, let F' be a set of object properties,
G the set of binary relational properties (where we use F' and
G because they are functions), and let 7" be a demonstration
trace. We define two types of safety constraints. An object
(safety) constraint as a four-tuple of the form (c, f, Ib, ub),
where c is an object in C, f is a unitary property in F’, and
b and ub are the lower and the upper bounds on the possible
values of f(c). Similarly, a relational (safety) constraint is
a five-tuple, (c1, ¢, g, b, ub), where ¢; and ¢y are in C, g
is a binary relation in G, and [b and ub are lower and upper
bounds on g(c1, ¢2).

As an example, suppose we wish to represent the lower
and upper bounds on the minimum altitude of the fighter F1
as 5,000 and 10,000 feet respectively. Formally this would
be expressed as (F1, fiinait, 5000, 10000). The lower and
upper bounds delineate the lowest and highest (respectively)
values of property f permissible according to the constraint.
Finally, note that we need not use both the lower and upper
bound slots in a constraint — only the one that is relevant,
such as [b but not ub on minalt. Also, because we adopt a
Bayesian approach to constraint learning, we actually pro-
duce posterior beliefs over the values of (b and ub. For this
reason, we represent [b and ub with probability distributions
over property values.



The domain ontology describes an abstraction hierarchy
over the object classes in the domain. For example, F1 and
F2 can be abstracted to the class “fighter.”” Constraints can
be learned simultaneously at two or more levels of abstrac-
tion. Greater abstraction implies increased succinctness.
Therefore, the more abstract version of a constraint may be
preferable for use when it exists.

A constraint database, x, consists of a finite set of con-
straints. Given a demonstration trace 7', x is admissible if
the following holds: for all (¢, f,1b,ub) € ¥, if f(c) ap-
pears in T, Ib < f(¢) < wb and for all (¢q, ¢, g, lb,ub) € x
if g(c1,co) appears in T, Ib < g(c1, c2) < ub.

A constraint learning problem is a tuple (D, T,C, F,G),
where D is the domain theory, 7" is a demonstration trace,
C is an object class from O, and F' and G are finite sets of
object and relational domain properties on the objects in C'.
Our notion of a constraint database x that solves the con-
straint learning problem is one that specifies an admissible
constraint on the value of each object property in F' asso-
ciated with each object in C, and relational property in G
associated with each object pair in C' x C' that appears in the
demonstration trace 7.

Bayesian Learning of Safety Constraints

Learning safety constraints can be quite challenging in gen-
eral. Here, we focus on learning the parameter values for the
constraints. Constraint templates are provided by the system
designer a priori, and it is the job of the learner to infer the
values of parameters within these templates.! For example, a
constraint template might state that a fighter has a maximum
allowable altitude, and then the learner would infer what the
value of that maximum should be. The inference is based on
examples of maximum altitudes in the demonstration trace.

This section presents our method, called Constraint
Learner (CL), for learning an admissible constraint database
for a given learning problem. The CL takes as input a
learning problem (D, T, C, F,G) and returns a constraint
database x for that problem. The demonstration trace T'
contains specific deconfliction and constraint enforcement
decisions that an expert has made on a set of objects and
their properties. CL notes every object in C' and their prop-
erties, /' and G, that appear in the trace. Entities appear-
ing in the demonstration trace provide evidence on the exis-
tence of constraint bounds. This evidence is appreciated in a
Bayesian way, resulting in constraint updates, e.g., increas-
ing the upper bound on a maximum altitude or decreasing
the lower bound on a minimum altitude. In the CL, we as-
sume that bounds exist for all entities.

Learning Object and Relational Constraints. In the
Bayesian framework, learning proceeds as follows. As de-
scribed previously, CL is given a set of domain objects C' =
{c1,ca, ...}, a set of object properties F' = { f1, fa,...}, G =
{91, 92, ...} on the objects in C, and a demonstration trace T
made up of demonstrations of acceptable values for the in-
dividual domain properties, {f(¢;), fs(¢;j), gu(ck, 1), ...}

'In the future, CL will learn the templates.

The goal is to learn an admissible constraint database y =
{(civ fr, P(fT))7 (cj7 fs, P(fé))a (Cka Cl> Gu;, P(gu))v }7
where P(f.) and P(f,) are discrete probability distribu-
tions over the values of properties f, and fs. This is the
Bayesian representation of constraints.

We estimate P(x|T'), the posterior probability of x, given
the observed demonstration trace 7'. Bayes’ rule implies that
P(X|T) = P(T|x) x P(x)/P(T), where P(T|x) repre-
sents the probability of observing trace 1" given constraint
database x, P(x) is the prior belief over constraint databases
from our domain theory, and P(T') is the normalizing prob-
ability of observing trace 7. Assuming that constraints cor-
responding to distinct objects and properties are indepen-

dent, we have P(X|T) = [l .cc jer P((c, f, P(f))|T) x

Hcl €C,c2€C,geG P((Cla 2,9, P(f))‘T)

The above assumption enables us to decompose the
general problem into manageable subproblems. Consider
one such subproblem, the case of learning the constraint
Wi, mazalt = (Cia fmarcalt, P(.fmamalt)) for the range of val-
ues of the maximum altitude associated with a particular
airspace ¢;.> Learning proceeds by witnessing evidence
at each step k of the demonstration trace. This evidence
from the expert is in the form f* . .(c;). For exam-
ple this might be a change in maximum altitude that oc-
curs as the expert positions and repositions an airspace for
the purpose of avoiding or removing conflicts. Bayesian
learning proceeds as follows. Our prior belief over the
value of P(w; mazait) (Which is equivalent to the prior be-
lief distribution P( f,qza1t)) 18 represented by a distribution
Pprior (Wi mazalt)- When we observe evidence from the ex-
pert, f&  ..(c;), this prior distribution is updated to be-
come the posterior P(w; mazatt| [X yrare (Ci))-

In general, applying Bayes’ rule to find the posterior dis-
tribution, we have:

P(fr(ci”wi,r) X Ppm‘or(wi,r)
P(fT(Ci))

Here, Py ior(wi,r) represents the prior distribution over
property f, of airspace ¢;, and P(f,(¢c;)|w; ) is the proba-
bility that the demonstration trace will contain a particular
value of f,. for object c;, given the constraint w; ;.

These values can usually be defined using reasonable as-
sumptions. For instance, in the context of our airspace de-
confliction example, P,;or(w; ) can be obtained from a
Gaussian approximation of the real distribution by asking
the expert for the average, variance, and covariance of the
minimum and maximum altitudes.

P(fr(c;)|wi,r) is the probability that an airspace will be
placed at a certain altitude, given the altitude constraint. We
assume that the expert (in the demonstration trace) always
puts the airspace with uniform probability within the safe

P(wi | f(e) = (D

“More precisely, if the property is the maximum altitude, then
P(fmazait) is actually a probability distribution over the upper
bound on mazalt. Likewise, if the property is the minimum al-
titude, then P(fminqit) is a distribution over the lower bound on
mainalt. We omit this technical detail in the paper for the sake of
succinctness and readability.



region of placements. This assumption enables us to start
learning without any a priori background knowledge about
the expert’s behavior and the underlying domain. Further-
more, this assumption has two nice properties. First, it en-
ables the Bayesian update described above to assign a zero
probability to any constraint that is inconsistent with the ex-
pert’s airspace placements, because we know that expert’s
actions are always correct. Thus, any constraint database
generated by the CL is guaranteed to be admissible. Sec-
ond, P(f,(¢c;)|w; ) is greater for more restrictive sets of
constraints. This means that if we observe an airspace re-
peatedly placed at or below 50,000 feet, our confidence that
the true maximum altitude constraint is near to 50,000 feet
(as opposed to much higher) will grow. Thus, more evidence
will produce more confident posterior belief distributions,
which will result in tighter constraints.

Note that the safety constraints mimic the expert’s behav-
ior, but they may or may not reflect the true bounds. Since
the CL’s only knowledge is the demonstration trace, this is
the best the CL can do. Fortunately, the trace typically pro-
vides conservative bounds with respect to the true bounds,
though this may not always be the case.

Safety Checking Learned Constraints

After the constraints have been learned, they are then used
by the planners to generate constrained candidate partial
plans. These partial plans are then composed into one pro-
posed solution. Because the candidate partial plans are gen-
erated by multiple independent components (planners), they
may be inconsistent. For this reason, the Safety Checker
(SC) portion of the SCLC is called to verify that the pro-
posed solution obeys the learned safety constraints. Any
constraint violations are reported back to the planners for
remediation.

As an example, consider the situation where each compo-
nent planner has the job of proposing a sequence of decon-
fliction actions (which constitute a candidate partial plan).
These actions are intended to be applied to an ACO, which
consists of spatio-temporal trajectories of all airspaces. To
verify that the candidate partial plan satisfies all safety con-
straints, the SC is invoked. The SC applies the sequence of
steps/actions that constitutes a proposed solution. By apply-
ing this solution, the SC develops a hypothetical scenario —
a modified ACO. The SC then uses its 4D Spatio-Temporal
Reasoner to verify whether each constraint is still satisfied
or not. Any violations are reported for evaluation. Violation
reports include the violated constraint, specific information
about the violation, optional advice for plan repair, blame
assignment (all deconfliction actions involved will receive a
share of blame), and the degree (severity) of violation nor-
malized to a value in the range [0.0, 1.0]. Specific infor-
mation about the violation states which aircraft in the ACO
caused the violation, e.g., fighter F4. The degree of vio-
lation is used to rank violations, to allow planners to first
concentrate problem resolution on more severe violations. It
also makes it possible to ignore less severe violations in the
event that no completely safe plan is discovered within the
allotted time.

The other planners use this feedback from the SC to re-
pair and re-plan, until a solution is found that is violation-
free or has an acceptable violation level. Figure 1, shown
previously to highlight an example of an ACO instance, is
taken as a screen shot of our 4D Spatio-Temporal Reasoner
performing safety checking on the shown ACO.

Inferring the Expected Degree of Violation

Recall that our Bayesian constraint learning approach results
in a probability distribution over the parameter values for
a constraint template. For example, it might learn that the
maximum altitude of a fighter is best represented as a Gaus-
sian distribution with a mean of 30,000. The CL also records
the set of all specific maximum altitudes that were obtained
from the demonstration trace. We call this set Ap7. Recall
from above that an example of an expert-generated maxi-
mum altitude can be represented as f* _ ..(c;). The goal
of the Safety Checker is to test whether the updated ACO
(modified by the proposed solutions) still satisfies the safety
constraints. To do this, it examines values in the newly-
revised ACO and sees whether they are acceptable.

To accomplish this verification of the revised ACO,
the SC inputs the specific, instantiated constraint along
with the distributions over the parameter values (such as
P(fmazait)), the set Apr, and the value seen in the ACO. It
then executes the following algorithm for simple constraints:

1. Take the difference between the value in the ACO being
tested and each of the expert-generated (from the demon-
stration trace) values f*(c;) in Apr.

2. Use the probability of each value in A pr (found from the

posterior distribution P(f,.)) to weight the differences.

3. Calculate the expected value over all the differences.

4. Normalize this expected value to a number between 0 and

1. This value is output as the Expected Degree of Violation
(EDoV).

To illustrate, consider the following example. Suppose we
wish to test the Bayesian-derived constraint (F1, fiazait,
P(fmazait)). We use the current probability distribution
P(fmazait) and the values from the demonstration trace
collected in Apy such as f3 .. = 38,000, f3 ... =
37,000, and %Gamlt = 35, 000. This information yields the
following maximum altitude values and their probabilities
0.21, 0.60, and 0.19, which are assumed to come from the

posterior learned distribution P( f,,qzait)):
e p(38000) = 0.21
o p(37000) = 0.60
e p(35000) = 0.19

Furthermore, suppose that the altitude found in the ACO is
41,000. Then we can calculate the EDoV as:

0.21-3000 + 0.60-4000 + 0.19-6000 = 4170.

The 4170 is normalized to a number between 0 and 1, and
is output by the SC as the EDoV of the constraint associated
with the given proposed solution.

For more complicated constraints, e.g., those with con-
junctions and/or disjunctions, the EDoV is built up from



the components of the constraint. For example, if multiple
CAPs (combat air patrols) satisfy the minimum altitude for a
CAP, then we take the average EDoV over all of these CAPs.
Finally, note that this approach is used for both object and
relational safety constraints.

Assigning Blame to Solution Steps

Recall that a solution proposed by the planners is composed
and sent to the SC; it consists of a sequence of steps. For as-
signing precise blame to the planners, a percentage of blame
is assigned to individual steps in a proposed solution. This
percentage of blame to steps is then converted into a per-
centage of blame that goes to each planner — because each
component may be responsible for having generated some
of the individual plan steps in the solution. In other words,
the SC needs to assign a percentage of blame to each step
that leads to the violation of a particular constraint for the
proposed solution. This seems straightforward, except that
we also need to know whether certain combinations of steps
Jjointly are to blame for a constraint violation. In response
to these requirements, we have developed the following data
structure as output by the SC:

BLAME FOR CONSTRAINT C7

WITH CANDIDATE SOLUTION S4

STEP14 3% blame
STEP17 4% blame
STEP38 20% blame
STEPS14 and 17 7% blame
STEPS17 and 38 28% blame
STEPS14 and 38 3% blame
STEPS14 and 17 and 38 35% blame

The observant reader will have noticed that we are testing
the power set of the set of all steps in the proposed solution,
and that the total blame sums to 100%. There appears to be
redundancy in this representation, but there is actually not.
From this output, one may learn for example that there is
a negative synergy between steps 17 and 38 because jointly
they earn more blame than the sum of each alone.

The SC obtains this data structure by actively running ex-
periments, i.e., by ablating steps to see the effect on the
EDoV of the constraint. To obtain all of this information,
the SC executes the following algorithm, which assumes that
the selected constraint has been violated:

1. Select the constraint and the proposed solution on which
to focus the experiments (or iterate through them).

2. Examine the proposed solution. Within that solution, find
every step that is potentially relevant to causing the con-
straint to be violated. The set of all of these potentially
relevant steps becomes the Suspect Set.

3. Run a factorial set of all possible experiments that ablate
all possible subsets (i.e., the power set) of the Suspect Set
from the Candidate Solution. Note that these subsets in-
clude multiple simultaneous culprits, thereby recording
the information needed regarding combinations of steps
that cause the constraint violation.

4. For each experiment, record the difference in EDoV when
going from with-ablation to without-ablation. For exam-
ple, suppose the EDoV for the proposed solution with
STEP14 ablated is 0.08, and the EDoV for the proposed
solution with STEP14 included is 0.27. Then the differ-
ence in EDoV is -0.19. In other words, this is the degra-
dation in performance obtained by including the faulty
STEP14.3

5. Normalize this difference in EDoV for each experiment
by summing all of the differences in EDoV over all ex-
periments, and then figuring out what fraction of reduced
EDoV we get for this experiment.

Note that testing the power set can be computationally in-
efficient. Therefore, we use relevance to make the testing
efficient. In particular, we identify only the most relevant
steps to put into the Suspect Set. The constraint is used for
determining relevance, e.g., if the constraint gives a maxi-
mum altitude for fighters, then any step mentioning a fighter
is considered to be relevant.

Experimental Results

In a recent experiment performed by DARPA BlueForce that
compares the quality of deconfliction solutions generated
by GILA and novice human airspace managers, GILA was
able to perform slightly better than the average human so-
lutions. In particular, when GILA was compared against
twelve human novices, the mean score (out of 100%) for the
humans was 90.6% and the mean score for GILA was 92%.
For fairness of comparison, the humans and GILA received
equivalent background knowledge/inputs, according to care-
ful measurements made by BlueForce. The quality metric
included considerations such as the number of solution steps
that differed between the expert and the novice/GILA.

We performed further experiments to better understand
the impact of the SCLC within GILA. In these experiments,
we used three airspace deconfliction scenarios; all are simi-
lar to the demonstration trace example in Figure 2.

We ran GILA on several combinations of these scenarios.
In each, one scenario and corresponding demonstration trace
was designated for learning and another scenario was used
as the target problem that GILA needed to solve with the
learned knowledge. In order to determine the quality of our
solution, we compared it to the demonstration trace associ-
ated with the target problem. For each case, we ran GILA
with and without the SCLC, thereby allowing us to interpret
the effect of constraint learning/enforcement on the overall
GILA system behavior.

For each scenario, GILA had to choose which airspaces
should be moved, and in what manner they should be moved,
to eliminate spatio-temporal conflicts. This led to the fol-
lowing two performance metrics for our experiments:

e Metric 1: We compared all airspaces moved by GILA and
the expert by grouping them as true positives, i.e., those

3Note that any step (or steps) whose inclusion reduces or does
not change the EDoV is removed from the Suspect Set and is also
removed from consideration because it is harmless or perhaps even
beneficial.



moves performed by both GILA and the expert, false pos-
itives, i.e., those moves that were only done by GILA but
not the expert, and false negatives, i.e., those that were
done by the expert but not by GILA. Metric 1 determines
whether GILA moves the correct airspace, according to
the human expert.

o Metric 2: We compared all (airspace, type) move pairs
done by GILA and the expert. Type can be altitude, time,
or geometry. For example, a move pair can be as (F1,
Altitude), which means that the move changes the altitude
of the airspace F1. As a performance score, we measured
how many pairs were in agreement between GILA and
the expert. Metric 2 determines whether GILA selects the
correct parameter values, according to the human expert.
This is a more specific metric than the first one.

The score of GILA, with versus without the SCLC, is
given by the following formula:

TP

TP+ FP+FN’
where TP, FP, and F'N are the number of true positives,
false positives, and false negatives in an experiment, respec-
tively. The maximum possible score is 1.0, corresponding
to complete agreement between GILA and the expert. The
lowest score, 0.0, occurs when GILA and the expert choose
completely disjoint sets of airspace modifications.

Across all of our five experimental cases, the system gen-
erated the following results with the SCLC: TP = 30,
FP =18, and FFN = 22. Based on this outcome, GILA’s
score using the first metric was 0.429 when the SCLC was
included. The score of the system dropped to 0.375 when the
SCLC was excluded, with the following results: TP = 27,
FP =20,and N = 25.

Using the second metric, the relative scores were 0.293
and 0.265 when GILA included or excluded the SCLC, re-
spectively. These results suggest the value added by includ-
ing the SCLC — GILA was able to perform more similarly
to the expert by learning safety constraints of the underlying
problem domain and checking the solutions generated by the
system against those constraints. In conclusion, the learning
and enforcement of safety constraints helps GILA choose
correct deconfliction actions, by penalizing potentially un-
safe actions that would be entertained otherwise.

Regarding execution time, the entire planning and decon-
fliction process took the human novices about 3.5 hours on
average, and took GILA about 3 hours on average. There-
fore, task automation is promising.

Related Work

We first address research related to the Constraint Learner.
Our general approach of learning from observing human ex-
pert behavior can be traced at least back to the learning ap-
prentice paradigm. For example, Mitchell ef al’s LEAP is a
system that learns to VLSI design by unobtrusively watch-
ing a human expert solving VLSI layout problems (Mitchell,
Mahadevan, & Steinberg 1985). Similarly, (Shavlik 1985)
shows how the general physics principle of Momentum Con-
servation can be acquired through the explanation of a “can-
cellation graph” built to verify the well-formedness of the

solution to a particular physics problem worked by an ex-
pert. More recently, the apprenticeship paradigm has been
applied to learning hierarchical task networks (Nejati, Lan-
gley, & Konik 2006), and to learning autonomous control of
helicopter flight (Abbeel & Ng 2005).

Our learning framework, when seen in the context of mul-
tiple planners, may at first seem to fit into the paradigm of in-
tegrated architectures (Langley 2006). These include ACT*,
SOAR, THEO, ICARUS, PRODIGY, and many others. But
our architecture is quite different. These architectures are
directed toward integration in a psychologically plausible
way, but their mechanism are more centralized. Unlike these
other cognitive architectures, GILA does not have a single,
homogeneous, unifying computational mechanism; nor does
it require sharing of common representations. GILA is more
of a diverse, ensemble approach to modeling the acquisition
and application of domain expertise.

Our research is also strongly related to prior research
in learning control rules for search/planning. This area
has a long history, e.g., see (Minton & Carbonell 1987),
and has more recently evolved into the learning of con-
straints (Huang, Selman, & Kautz 2000) for constraint-
satisfaction planning (Kautz & Selman 1999).

Next, we address research related to the Safety Checker.
There is related work on “safe planning.” The purpose of
safe planning is to ensure that plans made by agents obey
safety constraints that prevent them from resulting in dan-
gerous consequences (Weld & Etzioni 1994; Gordon 2000).
Our safety constraints have a similar motivation.

Another related area of research is credit/blame assign-
ment. This topic has a long history that includes classi-
fier systems such as the bucket brigade (Wilson & Gold-
berg 1989), temporal difference and reinforcement learning
(Russell & Norvig 2003), and testing methodologies for sys-
tem fault diagnosis, e.g., (Pipitone, DeJong, & Spears 1991).
Our approach is different from all of these — because the ul-
timate goal of our blame assignment is to improve the per-
formance of a heterogeneous ensemble of planners. Further-
more, our approach is focused on safety constraints.

The Safety Checker is also related to formal verification,
such as model checking (Clarke & Grumberg & Peled 1999).
However our work has a more novel twist that is more akin
to the recent work by Chockler and Halpern, in which for-
mal verification is extended to include a “degree of blame”
(Chockler & Halpern 2004). In particular, the EDoV is a
form of degree of blame. Chockler and Halpern present a
theoretical framework for the degree of blame in relation to
an agent’s epistemic state. Our notion of degree of blame, on
the other hand, is more tailored to the combination of proce-
dural solutions (i.e., plans) and safety constraints. In other
words, our conceptual framework for “degree of blame”
bridges the gap between ‘“‘safe planning” and the Chockler
and Halpern idea of refining the blame (from binary to de-
grees) assigned during formal verification.

A final novelty of both the CL and the SC is that they are
learning and applying constraints in an unusual context of
very few examples and multiple learners. This is in sharp
contrast to the traditional learning paradigm that consists of
one learner and many training examples. It poses an enor-



mous challenge, i.e., that of maximizing the information
gleaned from a minimal amount of data. The heterogene-
ity of the ensemble of planners helps in this respect because
the bias of each planner can counteract the biases of the oth-
ers. Another way that our approach maximizes its gain from
little data is by simultaneously learning at multiple levels of
abstraction. The GILA results demonstrate the value of our
approach.

Conclusions and Future Work

This paper has described a new framework for learning
and applying safety constraints in an important, real-world
airspace deconfliction problem. Learning occurs from ob-
servation of a demonstration trace generated by a domain
expert. The trace includes information about the expert’s
behavior, but it does not include complex high-level plan-
ning knowledge. An implementation of our approach in a
multi-planner system developed for the DARPA Integrated
Learning Program demonstrated its effectiveness at facili-
tating the production of safe plans.

The next step in this research will be to extract the SCLC
from GILA so that it can run as a standalone module. This
will enable us to run extensive experiments to test hypothe-
ses about our constraint methodology, and it can lead to fur-
ther algorithmic improvements. We can also test how per-
formance changes as the problem scales.
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