
35

Dynamic Graph-Based Software
Fingerprinting

CHRISTIAN S. COLLBERG

University of Arizona

CLARK THOMBORSON

University of Auckland

and

GREGG M. TOWNSEND

University of Arizona

Fingerprinting embeds a secret message into a cover message. In media fingerprinting, the secret
is usually a copyright notice and the cover a digital image. Fingerprinting an object discourages
intellectual property theft, or when such theft has occurred, allows us to prove ownership.

The Software Fingerprinting problem can be described as follows. Embed a structure W into
a program P such that: W can be reliably located and extracted from P even after P has been
subjected to code transformations such as translation, optimization and obfuscation; W is stealthy;
W has a high data rate; embedding W into P does not adversely affect the performance of P ; and
W has a mathematical property that allows us to argue that its presence in P is the result of
deliberate actions.

In this article, we describe a software fingerprinting technique in which a dynamic graph fin-
gerprint is stored in the execution state of a program. Because of the hardness of pointer alias
analysis such fingerprints are difficult to attack automatically.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—Object-oriented languages; D.3.3 [Programming Languages]: Language Constructs and
Features—Dynamic storage management; E.1 [Data Structures]: Graphs and networks; K.5.1
[Legal Aspects of Computing]: Hardware/Software Protection—Proprietary rights

General Terms: Languages; Legal Aspects, Security

Additional Key Words and Phrases: Software piracy, software protection, watermarking

An earlier version of this article was published as COLLBERG, C., AND THOMBORSON, C. 1999. Software
watermarking: Models and dynamic embeddings. In Conference Record of POPL ’99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Authors’ addresses: C. S. Collberg and G. M. Townsend, Department of Computer Science, Univer-
sity of Arizona, Tucson, AZ 85721; email: {collberg,gmt}@cs.arizona.edu; C. Thomborson, Depart-
ment of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand;
email: cthombor@cs.auckland.ac.nz.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/10-ART35 $5.00 DOI 10.1145/1286821.1286826 http://doi.acm.org/
10.1145/1286821.1286826

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:2 • C. S. Collberg et al.

ACM Reference Format:

Collberg, C. S., Thomborson, C., and Townsend, G. M. 2007. Dynamic graph-based software fin-
gerprinting. ACM Trans. Program. Lang. Syst. 29, 6, Article 35 (October 2007), 67 pages. DOI =
10.1145/1286821.1286826 http://doi.acm.org/10.1145/1286821.1286826

1. INTRODUCTION

1.1 Background

Steganography is the art of hiding a secret message inside a host (or cover)
message. The purpose is to allow two parties to communicate surreptitiously,
without raising suspicion from an eavesdropper. Thus, steganography and cryp-
tography are complementary techniques: cryptography attempts to hide the
contents of a message while steganography attempts to hide the existence of a
message [Anderson and Peticolas 1998].

Steganography—in the form of media watermarking and fingerprinting—
has also found commercial applications. In a typical application of image wa-
termarking, a copyright notice identifying the intellectual property owner is
imperceptibly embedded into the host image. Fingerprinting is a form of wa-
termarking in which an individualized mark is embedded into a copy of the
media. A typical fingerprint would include vendor, product, and customer iden-
tification numbers. This allows the intellectual property owner to trace the
original purchaser of a pirated media object.

Our interest is the fingerprinting of software. Although much has been writ-
ten about protection against software piracy [Albert and Morse 1982; Herzberg
and Karmi 1984; Hauser 1995; Simmel and Godard 1994; Herzberg and Pinter
1987; Maude and Maude 1984; Mori and Kawahara 1990], software finger-
printing is an area that has received very little attention. This is unfortunate
since software piracy is estimated to be a 15 billion dollar per year business
[International Planning and Research Corporation 2003; Malhotra 1994].

Specifically, this article is concerned with a game between two adversaries, a
software producer, Alice, and a software pirate, Bob. Prior to selling her program
P to Bob, Alice will embed Bob’s unique identifier Bob, yielding a new program
Pid=Bob:

P
Bob,key−→ Pid=Bob.

When Alice locates a suspected pirated copy of P she can extract the identity
of the original purchaser from the marked copy, and use this as part of a legal
argument against him:

Pid=Bob
key−→ Bob

In this game, it is assumed that Bob knows the embedding and extraction
algorithms used by Alice, but not the mark nor the secret key necessary for
extraction. His goal, then, is to create a disturbed copy P′

id=Bob from Pid=Bob

(without damage to its utility) to the point that it can be illicitly resold without

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:3

Alice being able to extract the mark:

Pid=Bob −→ P′
id=Bob

key
�−→ Bob

Software fingerprinting differs from other anti-piracy techniques in signif-
icant ways. First of all, unlike dongles and related techniques, fingerprinting
does not rely on the existence of specialized, secure, hardware. Second, finger-
printing does not prevent software from being pirated but rather allows tracing
of perpetrators after the fact. Finally, unlike software license checking code that
is embedded within the application itself (and hence provides valuable clues to
the attacker about the location of the mark), a fingerprint extractor is external
to and not delivered with the marked application.

To illustrate these points, consider the class of fingerprinting algorithms
based on reordering. The idea is that whenever there are m language elements
that can be arbitrarily reordered, log2(m!) ≈ log2(

√
2πm(m/e)m) = O(m log m)

bits of a fingerprint can be embedded. For example, before selling her program
P below to Bob, Alice embeds his unique customer identifier, 3, resulting in the
marked program P3. The embedding is accomplished by reordering the arms
of a switch-statement to yield the third permutation 〈5, 1, 9〉 (in lexicographic
order) of 〈1, 5, 9〉:

When Alice discovers a pirated copy of P3 she applies her fingerprint extractor
in order to discover who purchased the original copy. The extractor locates the
relevant switch statement and converts the permutation 〈5, 9, 1〉 back into the
mark 3, letting Alice know that this copy was sold to Bob. To prevent recognition,
prior to resale of P3 Bob randomly permutes the arms of every switch statement
in the program thereby obliterating all marks.

1.2 Contributions

This article makes the following contributions.

—We present the first complete implementation of a dynamic software finger-
printing algorithm (known as the Collberg–Thomborson (CT) algorithm) for
Java bytecode.

—We introduce several techniques for improving the stealth of the introduced
fingerprint code, the data of the embedding, and the resilience of the finger-
print against automatic attacks.

—We evaluate the CT algorithm with respect to stealth, data rate, and re-
silience to automated attack. This is the first software fingerprinting algo-
rithm that has been evaluated to this level of detail.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:4 • C. S. Collberg et al.

In the remainder of this section, we discuss software fingerprinting schemes,
attacks on fingerprinting systems, and practical considerations for the use of
software fingerprinting. In Section 2, we give an informal classification of soft-
ware fingerprinting algorithms, discuss related work, present the ideas behind
the CT fingerprinting algorithm, and show the SandMark software protection
research tool in which CT has been implemented. In Section 3, we present the
basic implementation of the CT algorithm. In Sections 4, 5, and 6, we discuss
methods for improving the resilience, data rate, and stealth of the algorithm,
respectively. In Section 7, we empirically evaluate the algorithm; in Section 8,
we discuss our findings and in Section 9, we summarize.

1.3 Software Fingerprinting Schemes

Conceptually, a software fingerprinting system consists of functions

embed(P, w, key) → Pw

extract(Pw, key) → w

recognize(Pw, key, w) → [0.0, 1.0],

where embed transforms a program P into Pw by embedding the fingerprint
w using a secret key, and where extract extracts w from Pw. The functionality
of P and Pw must be identical: fingerprint embedding must preserve program
semantics.

There are many minor variations of the definitions given above. For example,
the extract function may return a list of fingerprints, as well as a confidence
level for each fingerprint in the list. Some practical fingerprinting systems are
unkeyed; the key parameter is suppressed in their embedding, extraction and
recognizing functions. The key parameter may include a complete copy of the
original (unfingerprinted) program P . This extreme case is called a non-blind
fingerprinting system, in which the extract and recognize functions are best
expressed as having another explicit parameter, this being a copy of the unfin-
gerprinted object.

Since software fingerprinting is done in an adversarial environment, it be-
comes essential to properly model the goals and capabilities of the attacker. In
particular, the attacker will thwart the defender’s goals by discovering functions
of the following form:

detect(Pw) → [0.0, 1.0]
attack(Pw) → P ′

w.

The first function models a strong (steganographic) form of confidentiality,
whereby an adversary is unable to detect whether or not a possibly fingerprinted
object is actually fingerprinted or not.

The second function models a form of fingerprint availability, whereby an
adversary is unable to attack a suspected fingerprinted object to the point that
its fingerprint becomes unextractable or unrecognisable, except by modifying
the object so severely that it becomes useless.

We also consider collusive attacks of the forms detect(Pw) and attack(Pw)
where an attacker has access to a collection Pw of programs.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:5

1.4 Evaluating Fingerprinting Systems

We define three desiderata of fingerprinting systems. A stealthy fingerprinting
system is one that resists adversarial attempts to discover a detect function.
A resilient fingerprinting system is one that resists adversarial attempts to
discover an attack function. We cannot hope to have a precise metric for either
of these aspects, in the absence of a precise (and analytically tractable) model
of the adversary. Instead, we evaluate these two desiderata only in qualitative
terms, except in the case of the specific and very weak adversary considered in
Section 7.

Our third desideratum we call data rate. Data rate expresses the space effi-
ciency of the fingerprinting system. There are two variants: dynamic data rate
and static data rate. In both variants, the numerator is the number of bits in the
fingerprint, and the denominator measures the overhead (in bytes) added by
the fingerprint. In the static measure, we compute the increase in the compiled
size of the fingerprinted program as we add fingerprinting bits. In the dynamic
measure, we compute the increase in the consumption of storage space, as a
function of the number of fingerprinting bits, when the fingerprinted program
is run.

An ideal software fingerprinting system would have maximal data rate,
stealth, and resilience. In practice, it is not possible to maximize any one of
these without having some deleterious effect on one or both of the other desider-
ata. For example, increasing the data rate tends to decrease the stealth of a
fingerprint, because the addition of more “fingerprinting code” will give more
clues to an adversary’s detect function. Another simple trade-off is to increase
resilience at the expense of a lower data rate and a lower stealth, by using
several different methods to embed the same fingerprint value repeatedly in
the same program. The resilience of this scheme is raised, because an adver-
sary must remove or distort all these fingerprints. However, the data rate is
certainly lower. The stealth is probably lower, since the adversary will know
the program is fingerprinted if he is able to detect any one of the fingerprints.

1.5 Attacks on Fingerprinting Systems

The attacker’s detect function is an unkeyed version of the defender’s recognize
function. The suppression of the key parameter reflects the usual assump-
tion in a security proof: the defender will not directly reveal the key to the
adversary.

Since we assume the recognize function is nonsecret, an adversary can triv-
ially define a randomized detect function for use in a brute-force search. This
randomized function is an application of recognize(), where the value of the key
and w parameters are chosen probabilistically according to the adversary’s prior
distribution on possible key-watermark pairs. Thus, we see that the adversary’s
uncertainty about the key and watermark space is an important consideration
in any evaluation of stealth.

The most dangerous detect function, from the defender’s point of view, is
perfectly accurate, with neither false-negatives nor false-positives as defined

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:6 • C. S. Collberg et al.

by the following two equations:

∀P, w : detect(embed(P, w)) ≥ 0.5
∀X : detect(X) < 0.5 ⇒ ∀S, P, w : embedS(P, W) �= X .

On information-theoretic grounds, no ideal fingerprint detector can possibly
exist for any finite object X , because of the unbounded range of the variables
S, P , and w in the false-positive equation above. In practical settings, however,
any competent adversary will have prior probability distributions on the range
of fingerprinting systems S, programs P , and fingerprints w used by the de-
fender. The adversary will also have a prior belief in whether or not any specific
program X has been fingerprinted. Such an adversary may use the output of
a nonideal detector (which must be designed and configured appropriately, in
light of their prior probability distributions) to generate posterior distributions
of sufficient accuracy to guide a devastating attack.

To evaluate the resilience of a fingerprinting scheme we must know how
well it stands up to different types of attacks. This is, by necessity, an incom-
plete argument. We cannot precisely specify all possible attacks by all possible
adversaries, and we cannot expect a real system to provide “perfect” security
against any nontrivial attack. Bender et al. [1996] characterize the security of
media-fingerprinting systems as follows: “. . . all of the proposed methods have
limitations. The goal of achieving protection of large amounts of embedded data
against intentional attempts at removal may be unobtainable.”

Below, we illustrate these differing attacks in the following scenario. Alice
fingerprints a host program P with fingerprint w and key key, and then sells
P to Bob:

Pw = embed(P, w, key).

Before Bob can resell Pw he must ensure that the fingerprint has been rendered
useless, or else Alice will be able to prove that her intellectual property rights
have been violated.

1.5.1 Additive Attacks. Bob can augment P by inserting his own finger-
print w (or several such marks). An effective additive attack is one in which
Bob’s bogus mark seems to be present in the modified program. Formally, Bob
seeks a bogus mark w′, possibly without knowing Alice’s recognition key, for
the fingerprinted program Pw with the following properties:

recognize(attack(Pw), key, w′) > 0.5
recognize(attack(Pw), key, w) > 0.5

Note that Bob’s mark w′, as well as Alice’s mark w, are both recognizable in the
attacked program.

1.5.2 Subtractive Attacks. If Bob can detect the presence and (approxi-
mate) location of w, he may try to crop it out of Pw. An effective subtractive
attack is one where the cropped program has retained enough original content
to still be of value to Bob. A formal statement of the subtractive attack is that
Bob seeks a semantics-preserving attack transformation on the fingerprinted

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:7

program such that

recognize(attack(Pw), key, w) < 0.5

1.5.3 Distortive Attacks. If Bob cannot locate w and is willing to accept
some degradation in quality of P , he can apply distortive transformations uni-
formly over the program and, hence, to any fingerprint it may contain. An
effective distortive attack is one where Alice can no longer detect the degraded
fingerprint, but the degraded program still has value to Bob. A distortive at-
tack is thus very similar to a subtractive attack, but the former is an unsound
attack and the latter is a sound attack, in the terminology recently proposed
by Madou et al. [2005]. An attack is sound if it is guaranteed to work in all
program executions. By contrast, an unsound attack will result in a program
whose behavior differs on some inputs.

Of the attacks listed above, distortive attacks seem to be the most prob-
lematic for media watermarking systems. Common image transforms such as
cropping, rotation, and lossy compression will cause most image fingerprints to
be unrecognizable and unextractable [Anderson and Peticolas 1998; Peticolas
et al. 1998]. One advantage of software fingerprinting over media fingerprint-
ing, as we will see later in this article, is that a software fingerprint can be
embedded in ways that are difficult to distort.

Bob may also indulge in combined attacks. For example, he may construct
a combined additive and subtractive attack, whereby his mark w′ is the only
mark that is recognizable in the attacked program.

1.5.4 Collusive Attacks. Since every distributed copy of Alice’s program
embeds a different secret message, fingerprinted programs are also vulnerable
to collusive attacks. The idea is that an adversary might attempt to gain access
to several fingerprinted copies of a program, compare them to determine the
location of the fingerprints, and, as a result, be able to perform an additive,
subtractive, or distortive attack.

1.5.5 Protocol Attacks. In cases where the defender Alice lacks complete
security over the choice of recognition (or extraction) apparatus and keys, Bob
may indulge in a protocol attack. There are several variations [Craver et al.
1998]. Bob may produce a bogus key k′ that purports to prove the existence of
his mark w′ in the unchanged program Pw, using Alice’s recognition function:

recognize(Pw, k′, w′) > 0.5

Alternatively, Bob may produce a bogus recognition function that purports to
prove the existence of his mark w′ in the unchanged program Pw:

recognize′(Pw, key, w′) > 0.5.

Bob may subvert several elements of the protocol simultaneously:

extract′(Pw, k′) → w′.

Protocol attacks may be combined with an additive, subtractive or distortive
attack on the program itself. For example, Bob might develop an additive attack

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:8 • C. S. Collberg et al.

that works in combination with a protocol attack to confuse a courtroom test of
ownership in a case where Alice is unable to require the use of her extraction
function and her key:

extract′(attack(Pw), k′) → w′.

Protocol attacks on the recognition or extraction function are outside the
scope of the remainder of this article, because the best defense is to use a well-
defined protocol that is secured against adversarial change. For example, when
a recognizer or extractor is subjected to a judicial test, we would expect the court
to call an expert witness. Bob should be required to give this witness a functional
version of his purported embedder, recognizer, and extractor; he should explain
their design and operating principles to the satisfaction of this witness; and he
should explain how and why he chose his key and fingerprint. This requirement
to justify a protocol design would preclude many protocol attacks. For example
it would expose any attempt by Bob to make evidentiary claims on the basis of
a constant-valued extract′ function that reports his fingerprint w′ is present in
an arbitrary software program.

1.5.6 Tamperproofing. Alice might, in some applications, be able to tam-
perproof her program against attacks from Bob. An program is effectively tam-
perproofed if the adversary is unable to modify the fingerprinted program with-
out fatal damage to its use-value. More formally, we would say a program Pw has
been tamperproofed if Alice has transformed it into P ′

w in such a way that the
set of semantics-preserving transformations available to Bob for P ′

w is smaller
than the set available to Bob for transforming the untamperproofed Pw. In
Section 2, we will see that some types of software fingerprinting techniques are
more amenable to tamperproofing than others.

1.6 Security Properties

When the field of software fingerprinting is fully mature, we would have
mathematically-sound proofs, similar to those currently expected of crypto-
graphic systems, for important security properties of fingerprinting systems.
As with cryptographic proofs, fingerprinting proofs will be based on assump-
tions about the adversary’s capabilities. In particular, a secure system generally
includes one or more “black boxes” for storing and using secret keys. The se-
curity of such systems rests critically on an assumption that the adversary is
unable to observe or control operations “inside” a black box.

However, no mathematically sound security proofs for software fingerprint-
ing systems are yet in existence, essentially for the same reason that so-called
“white-box cryptography” is currently infeasible. We do not yet know how to con-
struct a truly secure black box entirely out of software. Constructing such boxes
will require significant advances in the theory and practice of program trans-
formation and semantic analysis, by automated and semi-automated methods,
in an adversarial model.

Anderson and Peticolas [1998] described a fundamental problem of software
fingerprinting in the following way. “[A]n active warden can completely block
the stego channel. For example, if (a) his model of the communication at least

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:9

as good as the prisoners’ [and] (b) the covertext information separates cleanly
from the covert information, then [the warden] can replace the latter with noise.
This is the case of a software pirate who has a better code mangler than the
software author.”

We cannot hope to prove a software fingerprinting system is secure against
Anderson’s active-warden attack, except by introducing limits to the warden’s
analytic powers. However, after we introduce limits, we can argue security. For
example, if the warden is not a human but is, instead, a computer program de-
signed based on any known technique in program transformation and semantic
analysis, then this article’s dynamic software fingerprinting system can secure
complex programs against the active-warden attack. See Section 4 of this ar-
ticle, where we argue that the second step of Anderson’s attack is infeasible.
Below, we sketch the main lines of this argument.

Anderson’s active-warden attack can be viewed as an attempt to rewrite the
fingerprinted program in a “clean room”, with reference only to its semantic
description. However, suitably precise and complete semantic descriptions of
large software objects are generally unavailable to attackers, because even the
designers of such systems do not often (if ever) have such descriptions. A fun-
damental difficulty is the nonexistence of general-purpose automated tools for
extracting a complete semantic description from a compiled program. Lacking
a complete semantic description, an automated active warden will be unable to
build a clean-room version of the fingerprinted program, from which all possibly
fingerprinted data structures have been deleted.

1.7 Practical Considerations

In addition to the data-rate and security issues described in the previous sec-
tion, we must consider some other issues in any practical fingerprinting scheme.
We tentatively classify these issues under two headings, and indicate some sam-
ple questions under each heading.

Cover Program. Will the program be distributed in a typed architecture-
neutral virtual machine code, or in an untyped native binary code? Does
the cover program execute mostly floating-point operations, or does it exe-
cute operations that are more typical of a user-interface program?

Logistics. How do we generate and distribute keys to our fingerprint detectors?
How do we generate and distribute fingerprinted programs, and how do we
handle debugging issues arising in these?

This article will sidestep such complications, by making simplifying assump-
tions which will allow us to argue the feasibility of secure dynamic fingerprint-
ing for a class of typical Java programs that can be found by a web-search.
However, we warn readers that the “devil is in the details” for fingerprinting
system design, as with any other real-world design problem. For example, an
adversary with sufficient knowledge of the covertext class of programs can use
this knowledge to mount an effective attack against the fingerprinting system.
Such attacks may be as simple as an exhaustive search for an unfingerprinted
program with the same functionality (over a finite but sufficiently large testset

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:10 • C. S. Collberg et al.

of possible inputs) as a fingerprinted program. Thus, the generic security anal-
yses of this article do not, and cannot, supplant the need for a specific security
analysis of any application of a fingerprinting system designed along the lines
suggested in this article.

In this article, we will assume that Alice’s objectO is a program distributed to
Bob as a collection of Java class files. As we shall see, fingerprinting Java class
files is at the same time easier and harder than fingerprinting stripped native
object code. It is harder because class files are simple for an adversary to decom-
pile [Proebsting and Watterson 1997] and analyze. It is easier because Java’s
strong typing allows us to rely on the integrity of heap-allocated data structures.

Although we have defined a wide range of possible attacks in this section,
in our subsequent security analyses we assume a threat-model consisting of
the distortive attacks that an adversary might construct from widely-known
semantics-preserving code transformations. This assumption is similar in spirit
to the use of the StirMark [Petitcolas 2004] benchmark to evaluate the re-
silience of an image fingerprint. Our threat-model transformations consist of
the most common translations (compilation, decompilation, and binary trans-
lation Compaq [2004]), optimizations, compressions [Debray et al. 2000], and
obfuscations [Collberg et al. 1998a,b, 1997].

Under these assumptions, we will examine various software fingerprinting
techniques and attempt to answer the following questions:

—In what kind of language structure should the fingerprint be embedded?
—How do we extract the fingerprint and prove that it is ours?
—How do we prevent Bob from distorting the fingerprint?
—How does the fingerprint affect the performance of the program?

2. TECHNIQUES FOR SOFTWARE FINGERPRINTING

Static Fingerprints are stored in the application executable itself. In a Unix
environment this is typically within the initialized data section (where static
strings are stored), the text section (executable code), or the symbol section
(debugging information) of the executable. In the case of Java, information
could be hidden in any of the many sections of the class file format: constant
pool table, method table, line number table, etc.

Static Data Fingerprints are very common since they are easy to construct
and extract. For example, several copyright notices can easily be extracted from
the Netscape 4.78 binary:

> strings /usr/local/bin/netscape | grep -i copyright
Copyright (C) 1998 Netscape Communications Corporation.
Copyright (c) 1996, 1997 VeriSign, Inc.

Media fingerprints are commonly embedded in redundant bits, bits which
we cannot detect due to the imperfection of our human perception. Static Code
Fingerprints can be constructed in a similar way, since object code also contains
redundant information. For example, if there are no data or control dependen-
cies between two adjacent statements S1 and S2, they can be flipped in either

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:11

order. A fingerprinting bit could then be encoded in whether S1 and S2 are in
lexicographic order or not.

Dynamic Fingerprints are extracted from a program’s execution state rather
than from the program code or data itself. They were first introduced in Collberg
and Thomborson [1999]. The idea is that in order to extract a fingerprint from
an application it is run with a special input sequence I = I1· · ·Ik , which makes
it enter a state which represents the fingerprint. I can be thought of as a secret
key known only to the owner of the software and unlikely to occur naturally.

Dynamic fingerprinting methods differ in which part of the program state
the fingerprint is stored, and in the way it is extracted. When the special input
sequence is entered, Dynamic Easter Egg Fingerprints perform some action that
is immediately perceptible by the user, making fingerprint extraction trivial.
Typically, the code will display a copyright message or an unexpected image on
the screen. For example, entering the URL about:mozilla in the Netscape 7.01
browser will make a message And the beast shall be made legion.. . . appear.

Dynamic Execution Trace Fingerprints are extracted from the trace (either
instructions or addresses, or both) of the program as it is being run with a
particular input I. The fingerprint is extracted by monitoring some (possibly
statistical) property of the address trace and/or the sequence of operators exe-
cuted.

Dynamic Data Structure Fingerprints are extracted by examining the cur-
rent values held in the fingerprinted program’s variables, after the end of the
special input sequence has been reached. This can be done using either a dedi-
cated fingerprint extraction routine which is linked in with the executing pro-
gram, or by running the program under a debugger.

2.1 Attacks Against Software Fingerprints

No known software fingerprinting method is completely immune to attack. In
the worst case an adversary can study the input/output behavior of the fin-
gerprinted application and completely rewrite it, sans the mark. We do not
consider this a reasonable attack. We would, however, want the fingerprint to
survive attacks by translation, optimization, and obfuscation, since tools that
perform such operations are readily available [Debray et al. 2001a,b; Compaq
2004; Nystrom 2004; Collberg et al. 2003b] and can be used by even the most
unsophisticated attacker.

Static data fingerprints are highly susceptible to distortive attacks by ob-
fuscation. In the simplest case, an automatic obfuscator might break up all
strings (and other static data) into substrings that are then scattered over
the executable. This makes fingerprint extraction nearly impossible. A more
sophisticated de-fingerprinting attack would convert all static data into a pro-
gram that produces the data [Collberg et al. 1998a].

Many code obfuscation techniques [Collberg et al. 1998a,b] will successfully
thwart the extraction of code fingerprints. Since software is such a fluid medium
it is easy to devise transformations which will destroy just about any structure
of a program. Figure 1(a) shows some of the basic code transformations on which
code obfuscations can be built:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:12 • C. S. Collberg et al.

L: X:

SPLIT MERGE

Increase

Dimensions

Increase
Nesting

REF

RENAME

CLONE

REORDER

Decrease

DEREF

Dimensions

Decrease

Nesting

A
A

A

(a) Basic code obfuscation transformations.

SPLIT

Increase

Dimensions

Increase
Nesting REF

MERGE
REORDER

(b) Example showing how simple obfuscating transformations can be combined.

Fig. 1. Obfuscation attacks against software fingerprints.

—A language construct can be split or two constructs can be merged. For ex-
ample, an array or a method can be split into two halves, or two modules or
two integer variables can be merged into one.

—The dimensionality of a construct can be increased or decreased. For example,
an array can be folded or flattened.

—The nesting level of a construct can be increased or decreased. For example,
the complexity of a method can be increased by turning a single loop into a
loop nest, or a scalar variable can be boxed into a heap-allocated variable.

—A level of indirection can be added, for example by turning a static method
into a virtual method.

—Language constructs such as methods, variables, and classes can be renamed.
—A compound language construct can be reordered. For example, two adjacent

statements without data- or control-dependencies can be swapped.
—A language construct can be cloned. For example, a method can be duplicated,

each clone can be differently obfuscated, and different calls can be made to
invoke the different clones.

Most current commercial code obfuscators only perform name obfuscation.
SandMark, however, supports a full-fledged obfuscation engine with transfor-
mations that affect control-flow, classes, methods, and data-structures.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:13

While each individual obfuscation may only add a small amount of confusion,
transformations can be cascaded, as shown in Figure 1(b).

Figure 2 shows the result of applying a sequence of obfuscating transforma-
tions to a simple program. The transformations were performed automatically
by the SandMark tool and the resulting program was decompiled using Ahpah’s
SourceAgain Ahpah [2005] decompiler. The transformations applied were:

(1) Boolean splitting (a Boolean variable is split into two small integer vari-
ables);

(2) basic block splitting (a bogus branch protected by an opaquely false predi-
cate [Collberg et al. 1998b] ((q + q ∗ q) mod 2) �= 0 is inserted);

(3) string encoding (the string "Answer:" is encoded into an unintelligible string
that gets decoded at runtime);

(4) scalar promotion (integer variables are converted to java.lang.Integer
boxed integers);

(5) signature unification (every method in the program is given the same
Object[] signature, where possible);

(6) name obfuscation (gcd is renamed get0).

It is obvious that many obfuscating transformations add a nontrivial amount
of overhead. It may therefore well be the case that while a certain sequence
of transformations would obliterate a particular fingerprint, the resulting de-
fingerprinted program would be too slow or too large to have any value to the
attacker. The goal of software fingerprinting research is to design marking algo-
rithms that will be robust against semantics-preserving transformations that
add an acceptable amount of overhead, that is, without slowing the program
down (or increasing it size) to the point that it is unsaleable by the pirate
attacker. A similar situation arises in robust image fingerprinting, where an
attacker would be uninterested in obliterating a fingerprint by blurring the im-
age to the point that it is apparently damaged. The borderline of acceptability is
a heuristic, not an exact calculation, and will depend on the performance sensi-
tivity of the application. In lightweight applications, a 100x slowdown might be
acceptable. However as little as a 2% slowdown might be completely unaccept-
able if the application is running very near some hard realtime limit. As a rule
of thumb, we would expect an attacked application to be unacceptable if it be-
comes “heavy” (consuming more than 50% of some resource such as CPU cycles)
for its target computing platform, in the cases where the unattacked applica-
tion was “light” (consuming less than 25% of that resource). If the unattacked
application consumes more than 25% of some critical resource, then its attacker
probably won’t accept a doubling of its consumption. As noted in Section 3.2, an
acceptability criterion is also necessary in an implementation of a fingerprint
embedder, which must not introduce a slowdown that is unacceptable to the
defender of the fingerprint.

Classic Easter egg fingerprints are revealed to the end-user if a special input
sequence is entered. The main problem with this class of fingerprints is that
they seem to be easy to locate. There are even web-site repositories of such
fingerprints [Nagy-Farkas 2004]. Unless the effects of the Easter egg are really

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:14 • C. S. Collberg et al.

Fig. 2. Obfuscation example.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:15

subtle (in which case, it will be hard to argue that they indeed constitute a fin-
gerprint and are not the consequence of bugs or random programmer choices),
it is often immediately clear when a fingerprint has been found. Once the right
input sequence has been discovered, standard debugging techniques will allow
us to trace the location of the fingerprint in the executable and then remove or
disable it completely.

Data structure fingerprints have some nice properties. In particular, since no
output is ever produced, it is not immediately evident to an adversary when
the special input sequence I has been entered. This is in contrast to Easter egg
fingerprints, where, at least in theory, it would be possible to generate input
sequences at random and wait for some “unexpected” output to be produced.
Furthermore, since the extraction routine is not shipped within an application
that has been fingerprinted using a data structure fingerprint (it is linked in
during fingerprint extraction), there is little information in the executable itself
as to where the fingerprint may be located.

2.2 Software Fingerprinting Algorithms

Many simple fingerprinting algorithms have been based on reordering language
constructs to embed the fingerprint. The first such published static code finger-
printing algorithm is due to Davidson and Myhrvold [1996b]. The idea is to em-
bed a fingerprint by rearranging the order in which the basic blocks of a control-
flow graph (CFG) are laid out in the executable. See Figure 5(a), which shows
how a fingerprint is encoded in the basic block sequence 〈B5, B2, B1, B6, B3, B4〉.
Like all other algorithms based on reordering this one is trivial to attack by ran-
domly reordering the basic block layout of the program.

Qu and Potkonjak [1998] propose to embed the fingerprint in the register
allocation of a program. Like all software fingerprinting algorithms based on
renaming structures of the program this algorithm is very fragile; if Alice can
rename a program structure to embed the mark, then Bob can rename it to re-
move the mark. Fingerprints typically do not even survive decompiling and then
recompiling the program. This algorithm also suffers from a low bit-rate [Myles
and Collberg 2003].

Stern et al. [1999] present an algorithm that uses a spread-spectrum tech-
nique to embed the fingerprint. The algorithm embeds the fingerprint by chang-
ing the frequencies of certain instruction sequences, replacing them by different
but semantically equivalent sequences. A codebook gives equivalent instruction
sequences that can be used to manipulate code frequencies. This algorithm is re-
silient to semantics-preserving transformations that only affect the high-level
structure (such as the class-hierarchy and call-graph) of a program. However,
it can be defeated by obfuscations that modify data-structures and data-
encodings and many low-level optimizations [Sahoo and Collberg 2004]. See
Figure 5(b).

Moskowitz and Cooperman [1996] describe a data fingerprinting method in
which the fingerprint is embedded in an image (or other digital media such as
audio or video) using one of the many media fingerprinting algorithms. This
image is then stored in the static data section of the program. See Figure 5(c).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:16 • C. S. Collberg et al.

Arboit’s algorithm [Arboit 2002] embeds the fingerprint by adding special
opaque predicates to the program. Extraction is done by pattern-matching on
the opaque predicates, and hence attacks by pattern-matching are easily con-
structed.

Monden’s algorithm [Monden et al. 1998; 2000] adds a bogus method to the
application. The bogus method is guarded by an always-false predicate, where
the predicate may be generated from a programmer’s assertion statement. The
fingerprint is encoded steganographically in the opcodes and operands of the
static code in the bogus method.

Pieprzyk [1999] describes a digital-rights management scheme for software,
with two alternative methods for fingerprinting. The first alternative is to em-
bed the fingerprint signal in the choice of synonyms for short sequences of
instructions, similarly to Stern et al. [1999]. Pieprzyk notes that this method
is weak against adversaries who make a “random selection of variants for each
instruction.”

Venkatesan’s algorithm [Venkatesan et al. 2001] constructs a CFG whose
topology embeds the fingerprint number. This fingerprint CFG is attached to
an existing CFG by adding bogus control-flow edges using opaque predicates.
In order to be able to extract the fingerprint, basic blocks that belong to the
fingerprint graph are marked. See Figure 5(d).

Cousot and Cousot [2004] describe a fingerprinting process, in which the
fingerprint is recognizable by a static analysis of program semantics in a secret
model. The embedding key is a series [n1, n2, . . . , ni] of relatively prime positive
integers. The fingerprint c is any integer in the range 0..�ini −1. It is embedded
as a series of residues ci = c mod ni, computed in loops, where these ci are
constant in the secret semantic model used for fingerprint recognition. In the
standard execution model, the values ci are non-constant and may closely re-
semble the pseudorandom variates used in stochastic numerical computations
such as Monte Carlo estimation algorithms. The fingerprint recognition process
is essentially the static analysis done by an optimizing compiler to recognize
constant assignments in loops. This is a promising method in static data finger-
printing, however an attacker may be able to recognize the fingerprint data in
commonly occurring programs, because of its use of unusually complex literal
constants. In a survey of 600 Java programs, we found that 92% of all literal in-
tegers are 2k or 2k +1, so the fingerprinting method of Cousot and Cousot would
be nonstealthy in such programs. We see promise in this method, because it is
not difficult to devise a method to hide arbitrarily-complex literal constants in
secret, nonstandard semantics for commonly occurring code sequences in Java.
The secret detection semantics for the Cousot and Cousot fingerprint must,
however, remain simple if it is to be persuasive evidence in favor of the embed-
ded fingerprint. Otherwise, the attacker may construct an alternative secret
semantics that fraudulently detects an arbitrary, nonexistent fingerprint.

2.3 The CT Algorithm

The CT software fingerprinting algorithm is the primary focus of this article. It
is a dynamic algorithm, that is, rather than embedding the fingerprint directly

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:17

Heap

n2=CreateNode()
n3=CreateNode()
addEdge(n1,n2)
addEdge(n1,n3)
addEdge(n2,n3)

n1=CreateNode()

n4=CreateNode()
n5=CreateNode()
addEdge(n4,n5)
addEdge(n1,n4)
addEdge(n5,n1)

P ⇒

PwG1 G2

G
⇒ W⇒⇓

⇓
W

⇒

i1, i2, . . . , n

p1

p2

p3

p4

G

⇒

⇓

Fig. 3. Overview of the CT algorithm.

in the code of the application, code is embedded that builds the fingerprint at
runtime. The algorithm requires its user to select a secret key that is sufficient
to extract the fingerprint. The key is a sequence of legal inputs I0, I1, . . . , to the
application.

The embedding and extraction processes are illustrated in Figure 3. The fin-
gerprint number W is embedded in the topology of a graph G; the graph is split
into several components G1, G2, . . .; each Gi is converted into Java bytecode Ci

that builds it; and each Ci is embedded into the application along the execu-
tion path that is taken on the special input I0, I1, During extraction the
fingerprinted application is run with I0, I1, . . . as input, the fingerprint graph
gets built on the heap, the graph is extracted and the fingerprint number is
recovered.

There are several motivations for this design. First of all, because of pointer
aliasing effects it is difficult to analyze code that builds graph structures [Ghiya
and Hendren 1996; Ramalingam 1994]. Thus, it would be difficult for an at-
tacker to statically analyze a fingerprinted program to look for code that builds
a fingerprint graph or to destroy the graph using semantics-preserving trans-
formations. Second, object-oriented programs typically contain a large number
of the types of operations necessary to build a graph, namely object allocations
and pointer assignments. Thus, the code that gets inserted is likely to fit in
with surrounding code. Third, since a large graph (which would be easy to spot
were it embedded in only one place) can be split into an arbitrary number of
components that can be spread over the entire program, it should be possible
to stealthily embed large fingerprints. Fourth, and finally, since the fingerprint
is data rather than code it should be easier to tamperproof. If the fingerprint
graph is selected to have a particular property (such as being planar, having
a certain diameter, etc.) code can be inserted to test this property. This is in
contrast to static code fingerprints for which tamperproofing requires the code
segment of the executable to be examined. This is difficult to do stealthily. In
Java, for example, it is not possible to write code that examines the code seg-
ment of the running program, in order to determine if a fingerprint code has
been tampered with.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:18 • C. S. Collberg et al.

Fig. 4. Example of a trivial class before and after being fingerprinted with the CT algorithm.

Figure 4 shows a simple example of a what a program may look like af-
ter having been fingerprinted. The original program Simple is modified into
Simple W such that when run with the secret input argument "World" the fin-
gerprint graph is built on the heap. In a typical implementation Simple W and
Watermark would be obfuscated to prevent attacks by pattern matching.

Palsberg et al. [2000] present a dynamic fingerprinter based on the CT al-
gorithm. In this simplified implementation, the fingerprint is not dependent
on a key input sequence, but is constructed unconditionally. The fingerprint
value is a data structure representing a graph. Pointers into a decoy structure
of similar type to the fingerprint graph were used in opaque predicates for tam-
perproofing. The idea is that Bob cannot simply remove all “fingerprint-like”
graph structures from this tamperproofed program, because this will invali-
date some opaque predicates on the decoy structure, and these predicates are
required for program correctness. The CT algorithm was found to be practical

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:19

and robust, in Palsberg’s experimentation. We compare their implementation
to ours in Section 8.2.

2.4 SandMark

SandMark [Collberg et al. 2003b] is a tool for doing research on software pro-
tection algorithms. The goal is to provide an infrastructure for implementing
and evaluating algorithms for code obfuscation, software fingerprinting, and
tamperproofing. SandMark currently contains implementations of forty code ob-
fuscation algorithms and fourteen fingerprinting algorithms. It also supports
various reverse engineering tools such as a slicer, a bytecode differ [Baker and
Manber 1998], and a bytecode viewer. These can be used to aid manual at-
tacks against software protection algorithms. A number of software complexity
metrics [Harrison and Magel 1981; McCabe 1976; Munson and Kohshgoftaar
1993; Oviedo 1980; Halstead 1977; Henry and Kafura 1981] are provided for
measuring the effect of code obfuscation and fingerprinting algorithms.

SandMark works on Java bytecode. A typical code obfuscation algorithm, for
example, will read a Java jar-file (a collection of class files) as input and produce
a modified jar-file as output.

SandMark is designed using a plug-in style architecture and supports a num-
ber of useful static analyses (class hierarchy, control-flow, call graph, def-use,
stack-simulation, liveness, etc.) simplifying the development of new software
protection algorithms. SandMark relies on BCEL [2004] for bytecode editing,
DynamicJava [Dyn 2004] for scripting, and BLOAT [Nystrom 2004] for code
optimization. SandMark is currently approximately 120,000 lines of Java code
of which approximately 10,000 lines comprises the CT implementation. The
source code can be downloaded from sandmark.cs.arizona.edu.

2.5 Tamperproofing Static Fingerprints

Our experience with obfuscation tells us that all static structures of a program
can be successfully scrambled by obfuscating transformations. And, in cases
where obfuscation is deemed too expensive, inlining and outlining [Collberg
et al. 1998a], various forms of loop transformations [Bacon et al. 1994] and
code motion are all well-known optimization techniques that will easily destroy
static code fingerprints. Thus, static code fingerprints must be tamperproofed
to be secure against adversaries who modify the fingerprinted code.

Moskowitz and Cooperman [1996] describe how to tamperproof their static-
data software fingerprinting method, which embeds the fingerprint in an image
included in a static data area of the application. The basic idea is to embed
a fingerprint that evaluates to an “essential” piece of code. See Figure 5(c).
This code is occasionally extracted and executed, making the program fail if
an adversary tampers with the image to destroy or modify its fingerprint. The
adversary might make use of the StirMark Petitcolas [2004] suite, which con-
tains a number of image transforms selected for their fingerprint-destroying
properties.

The Moskowitz tamperproofing process must emit sequences of instructions
that decode, then execute, a fingerprint extracted from a static string. These

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:20 • C. S. Collberg et al.

Fig. 5. Fingerprinting algorithms. (a) [Stern et al. 1999], (b) [Davidson and Myhrvold 1996a],
(c) DICE [Moskowitz and Cooperman 1996], (d) [Venkatesan et al. 2001].

instructions must be cloaked or disguised somehow, otherwise a detect function
could work by simple pattern-matching.

We conclude that Moskowitz’s tamperproofing method would not be effective
in increasing either stealth or resilience against a highly skilled adversary,
unless it is coupled with a strong obfuscation method to prevent a pattern-
matching detect followed by an automated attack transformation in which the
fingerprinted static string is replaced by its decoded version. Another method

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:21

for tamperproofing involves introspection: a code might “watch itself” or its
data structures for signs of adversarial change [Horne et al. 2001; Chang and
Atallah 2001].

Software obfuscation is a potent method for tamperproofing software fin-
gerprints. As our focus in this article is on software fingerprinting, we limit
our discussion of obfuscation to those aspects that bear directly on software
fingerprinting. For example, as mentioned in our literature survey above, Ar-
boit’s software fingerprint [Arboit 2002] is extracted by a pattern-match on
its opaque predicates. If these opaque predicates were obfuscated, they would
not be recognizable by the extractor. So this form of software fingerprinting
can be attacked, but not defended, by software obfuscation. This illustrates an
intrinsic problem with static fingerprints: stronger obfuscation methods will
generally assist the adversary more then the defender. When Bob obfuscates
code containing a static fingerprint, he can make it difficult, or even impossible,
for Alice to recognize or extract her fingerprint. However, if Alice instead uses
a dynamic software fingerprint, then she can obfuscate her fingerprinted code
to defend against Bob’s code analysis. Strong obfuscation will make it more
difficult for Bob to analyze the code well enough to design a distortive attack.
We will return to this topic in Section 4, where we argue that a well-designed
dynamic data fingerprint can be recognized or extracted even after the finger-
print has been attacked by obfuscations that affect the data structures of the
fingerprint program.

3. THE CT ALGORITHM—BASIC IMPLEMENTATION

In this section, we discuss our implementation of the CT algorithm described
in the previous section. The embedder must introduce code that builds the
fingerprint at runtime. The algorithm assumes a secret key K which is used
to extract the fingerprint, where K is a sequence of inputs I0, I1, . . . to the
application. See Figure 3, where the fingerprint (a graph structure) is built by
the fingerprinted application Pw when its execution takes path p1, p2, p3, p4 as
a result of special input I0, I1, Figure 4 shows a simple example of a what
a program may look like after having been fingerprinted.

In the SandMark implementation of CT, fingerprint embedding and extrac-
tion runs in several steps (see Figure 6):

Annotation. Before the fingerprint can be embedded the user must add anno-
tation (or mark) points into the application to be fingerprinted. These are
calls of the form

The mark() calls perform no action. They simply indicate to the finger-
printer locations in the code where (part of) a fingerprint-building code
can be inserted. The argument to the mark() call can be any string or
integer expression that (directly or indirectly) depends on user input to

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:22 • C. S. Collberg et al.

Fig. 6. Overview of how the CT algorithm fingerprints an application. First, the user adds anno-
tation points (mark()-calls) to the application. These are locations where fingerprinting code may
be inserted. Secondly, the application is run with a secret input sequence, I0, I1, . . . and the trace
of mark()-calls hit during this run is recorded. Finally, code is embedded into the application (at
certain mark()-call locations) that builds a graph GW at runtime. The topology of GW embeds the
fingerprint W.

the application. These arguments help distinguish paths that were taken
through the program for the special input sequence (that should trigger the
building of the fingerprint graph), and those paths that were the result of
normal (non-fingerprint recognition) execution.

Tracing. When the application has been annotated the user performs a tracing
run of the program. The application is run with the chosen secret input
sequence, I. During the run one or more annotation points will be hit. Some
of these points will be the locations where fingerprint-building code will later
be inserted.

Embedding. During the embedding stage the user enters a fingerprint, a string
or an integer. A string is converted to an integer. From this number, a graph
is generated, such that the topology of the graph embeds the number. The
graph is converted to Java bytecode that builds the graph. The relevant
mark()-calls are replaced with this graph-building code.

Extraction. During fingerprint extraction the application is again run with the
secret input sequence as input. The same mark()-locations will be hit as
during the tracing run. Now, however, these locations will contain code for
building the fingerprint graph. When the last part of the input has been
entered, the heap is examined for graphs that could potentially be fingerprint
graphs. The graphs are decoded and the resulting fingerprint number is
reported to the user.

We will next consider these tasks in detail.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:23

3.1 Annotation

The CT fingerprint consists of dynamic data-structures. This means that the
code inserted in the application will look like this:

Hence, we should prefer mark locations that

—allocate objects and manipulate pointers, and
—directly depend on user input.

We should avoid mark locations that

—are hot-spots, and
—are executed nondeterministically.

In other words, mark()-calls should be added to locations where the resulting
fingerprint code will be fit in (is stealthy), will not affect performance, and will
be executed consistently from run to run, depending only on user actions.

For example, the following code is undesirable since Math.random() may gen-
erate different values during different runs of the program:

Similarly, if thread scheduling, network activity, processor load, etc. can af-
fect the order in which some locations are executed, these locations are not valid
annotation points and should be avoided.

3.2 Tracing

SandMark makes heavy use of Java’s JDI (Java Debugging Interface) framework.
During tracing and extraction SandMark starts up the user’s application as a
subprocess running under debugging. This allows SandMark to set breakpoints,
examine variables, and step through the application—all the operations that
can be done under an interactive debugger.

During tracing we are interested in obtaining a trace of the mark()-calls
that are hit while the user enters their secret input. We also want to know the
argument to the mark()-call and the stack trace at the point of the call. During
extraction, we use JDI to examine the objects on the heap to look for fingerprint
graphs.

At the end of tracing run, we have gathered a list of TracePoints that repre-
sent the mark()-calls that were hit during the trace. Each TracePoint contains
three pieces of information:

(1) the location in the bytecode where the mark()-call was located;

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:24 • C. S. Collberg et al.

Fig. 7. An example Java program annotated for tracing and the generated tracepoints. The method
actionPerformed is abbreviated aP. The corresponding trace forest is shown in Figure 17.

(2) the value of the expression e that the user supplied as an argument to the
mark(e)-call, or ∅ if a parameterless mark()-call was hit;

(3) a list of the stack-frames active when the mark()-call was hit.

Figure 7 shows an example application and the corresponding list of trace
points.

Not all annotation marks encountered during a tracing run can be used
to build the fingerprint graph. There are various reasons for unacceptability,
which we itemize below. An annotation point 〈value, location〉 is unique if

(1) there is exactly one trace point at location, or
(2) there are multiple trace points at location, but they all have unique values.

An annotation point is acceptable only if it is unique; otherwise code embedded
at that location would generate the fingerprint data structure many times, at
an unnecessarily high cost in runtime and heap space. For example, consider

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:25

the following mark()-points:

〈∅, L0〉
〈1, L1〉
〈1, L1〉
〈10, L2〉
〈11, L2〉
〈12, L2〉

〈0, L0〉 is unique, because it is the only mark()-point at location L0. The marks
〈10, L2〉, 〈11, L2〉, 〈12, L2〉 are unique because the mark values (10, 11, 12) are
unique. 〈1, L1〉 is not unique because there are two identical annotation values
at this location. If we were to insert fingerprint-building code at this location
we would need to introduce a state variable to distinguish between its first
and second invocation. This introduces a stealthiness vulnerability, because an
attacker may be able to distinguish the code manipulating these state variables
from the code in the original, unwatermarked program. If the recognition is
fairly accurate, the attacker will be able to construct a detect() function. If the
recognition is extremely accurate, then the attacker will be able to build an
effective attack() function that would distort or remove the watermark without
affecting program correctness.

If there is just one value observed at a marked location, this mark()-call
is said to be LOCATION-based; otherwise, it is VALUE-based. At a LOCATION-
based mark(), the watermark-building code is unconditionally executed. By con-
trast, the watermark-building code at a VALUE-based mark() must be guarded
by a predicate that tests the value. We consider a VALUE-based mark() to be
marginally acceptable. Its guard predicate is not as unstealthy as the state-
variable testing predicate that would be used at a nonunique mark() location,
because the variable in a VALUE-based mark was present in the unwatermarked
program, and the value being tested has been observed (in our trace) to occur in
the original program. By contrast, the predicate guarding a nonunique mark()
must be constructed out of whole cloth.

In addition to uniqueness, acceptable marks have three other properties.
Acceptable marks must be reproducible, that is, they must recur reliably when
the program is run again on the same input. Acceptable marks must be efficient,
that is, the marked locations must not occur too many times on any input in the
program author’s test suite. Finally, acceptable marks should be specific, that
is, the marked locations should not occur on any (or at least not on very many)
inputs other than the special key input. If there are no acceptable marks, then
the tracing step must be repeated with a new set of tracepoints and/or a new
secret input.

With the exception of uniqueness, all our acceptability tests are heuristic.
The threshold of acceptability, the total number of tracing runs, and the choice
of inputs in the test suite, are all decisions that can be made appropriately in
the context of a particular application for software fingerprinting. We discuss
these heuristics very briefly below.

The threshold for acceptable specificity must be set to zero for any program
which takes no input, for it can have no input-specific marks, the threshold for

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:26 • C. S. Collberg et al.

specificity must be set to zero in such a case. A program that takes multiple
inputs can have a highly specific fingerprint, however, for we can select a se-
quence of several marks that has been observed (in our traces) to occur reliably
only for a single input sequence. As we increase the specificity of a fingerprint,
we increase its stealth against some adversarial attacks, for example by some-
one who would be able to operate a fingerprint extractor on the fingerprinted
program if they knew (or guessed) an input that would cause the fingerprint to
be built.

The threshold for acceptable efficiency will depend on the performance con-
straints of the application. If an unfingerprinted application is already very
close to the limits of acceptable performance, then any amount of fingerprinting
overhead may be unacceptable. However, we believe that performance-critical
applications are unlikely to be written in Java. Our experiments indicate that a
static data rate of five codebytes per fingerprint bit is achievable. See Figure 21.
If all of this fingerprint-building code is positioned at location-based marks,
then it is only executed once. We conclude that the efficiency of our finger-
print, when placed at location-based marks, will be sufficient for all but the
most performance-sensitive applications. However, when fingerprint code is
placed at value-based marks, there will be additional runtime overheads due
to the conditional branching that avoids building the fingerprint more than
once. Thus marks are not acceptable in inner loops in performance-sensitive
code.

The threshold for reproducibility will depend on one’s tolerance for false-
negative outputs from the fingerprint recognizer. Generally, we have not found
reproducibility to be a problem in the codes we have fingerprinted and inspected,
because these do not have race conditions or other real-time behavior that would
make traces unreproducible.

3.3 Embedding

Once acceptable mark points have been selected for our application, we can
start embedding the fingerprint. The input to this phase is a list of acceptable
marks, a fingerprint W to be embedded, and a jar-file containing the classfiles
in which to embed the mark. The embedding is divided into five phases:

(1) Generate a graph G whose topology embeds W.
(2) From G, generate an intermediate code C that builds this graph.
(3) Translate the intermediate code C into a Java method M that, when exe-

cuted, will build G.
(4) Finally, replace one of the acceptable mark()-calls with a call to the M -

method. The remaining mark()-calls are ignored.

The result is a new jar-file that, when executed with the special input sequence,
will execute the method M . Consequently, it will build the fingerprint graph G
on the heap.

In Section 5, we will extend the embedding method such that the fingerprint
graph is split into several pieces and inserted at several mark()-locations.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:27

3.4 Constructing the Graph

An ideal class of fingerprint graphs should

(1) have a root node from which all other nodes are reachable to prevent pieces
of the graph from being garbage collected,

(2) have a high data rate so that a large fingerprint will result in a small graph,
(3) have low out-degree to resemble common data-structures such as lists and

trees,
(4) have some error-correcting properties such that minor changes to the

graphs by an attacker, or minor failures during extraction, will not pre-
vent the graph from being extracted,

(5) have some internal structure that makes the graph easy to tamper-proof.
(6) have computationally feasible “unranking” and “ranking” functions Myr-

vold and Ruskey [2001] based on some enumeration Harary and Palmer
[1973] of all graphs in the class, so that a fingerprinting integer can be con-
verted to the corresponding graph during embedding or recognition, and so
that a fingerprinting graph can be converted to the corresponding integer
during an extraction, and

(7) have some computationally feasible algorithm for graph isomorphism
method, for use during recognition.

We do not expect to find a single class of graphs that simultaneously opti-
mizes all these criteria. Instead, we are developing a library of algorithms for
building fingerprint graphs with different sets of properties. Depending on a
user’s particular requirements (high data rate, high resilience to attack, high
stealth, etc.) this will allow an appropriate graph (or combination of graphs) to
be found. Currently, SandMark contains an implementation of four of the five
classes of fingerprint graphs illustrated in Figure 8.

3.4.1 Permutation Encoding. A fingerprint integer W, in the range[
0..n − 1

]
, may be represented by a permutation of the numbers 〈0, . . . , n − 1〉.

Our embedder can use any convenient mapping of permutations onto integers.
For example, Myrvold’s [Myrvold and Ruskey 2001] unrank1 function would
encode the fingerprint 180398 as the permutation π = 〈9, 6, 5, 2, 3, 4, 0, 1, 7, 8〉.
The same unranking function must be used during a fingerprint recognition,
and the corresponding ranking function, rank1 in this case, must be used during
a fingerprint extraction.

We use a singly-linked, circular list data structure to represent a permuta-
tion. We call this structure a Permutation Graph. See Figure 8(a). Each element
i of the list has two pointers. Its data pointer refers to the element π (i) to which
i is mapped by the permutation π . It also has a list pointer referring to element
(i + 1) mod n.

During the recognition phase there is a need to distinguish the list pointers
from the data pointers. Our circular structure allows us to so by looking for the
longest simple cycle in the graph.

The dynamic data rate of a Permutation Graph is the number (lg n!) of fin-
gerprint bits represented by an n-element list, divided by the number of bytes

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:28 • C. S. Collberg et al.

8 90 1 2 3 4 5 6 7

(a) Permutation

3 · 64 + 2 · 63 + 3 · 62 + 4 · 61 + 1 · 60

(b) Radix

Preamble

Foot

Head

0 1 2 3 4 5 6 7 8 9 10

Body

(c) Reducible permutation graph

48:

1:
2: 22:

(d) Parent-pointer

RL

RL

RL

RL

RL

RL

RL

RL

(e) PPCT

Fig. 8. Graph encodings. This figure is taken from Collberg et al. [2003a].

(an + b) required to represent this list in computer memory. To embed a non-
negative fingerprint integer w, we use n = min{k : k! > w} list elements. Using
the first term of Stirling’s approximation, we have n = m/ lg m + O(m/ lg lg m),
where m = �lg(w + 1)� is the number of bits in w, so the dynamic data rate
r(m) = (lg m)/a + O(lg m/ lg lg m) is a slowly increasing function of m.

We can estimate the dynamic data rate by estimating the values of a and
b. Both are small integers whose exact value will depend on implementation
details. On a computer with 32-bit addresses, we expect a = 16 bytes, because
dynamic storage allocators generally use frame sizes that are a power of two,
and each list cell has two pointers plus some overhead for the storage allo-
cator. The list-overhead coefficient b is also expected to be small, perhaps 16
bytes. The exact value of b is irrelevant when computing data rates for large
fingerprints, and it is not very important even when m is small. On the basis
of these estimates, we conclude that Permutation Graphs have a dynamic data
rate of lg(n!)/(an + b) = 32.5/224 = 0.15 hidden bits/overhead byte, when fin-
gerprints of length m = 32.5 bits are embedded in Permutation Graphs with

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:29

n = 13 list elements. This data rate rises slowly, in proportion to lg m, for larger
fingerprints. In Section 7, we confirm our estimates for a and b by analyzing
experimental measurements on our implementation.

The static data rate is the number of fingerprint bits, divided by the number
of bytes of code required to build the fingerprint. In a straightforward imple-
mentation, there would be an overhead of b′ code bytes to create the list header,
plus a′ code bytes per list element. Thus the static data rate will have the same
asymptotic form (with different constants) as the dynamic data rate.

Permutation Graph fingerprints have a modest resilience to attacks on its
pointer fields. Any change to one of its list pointers will disrupt its circular-list
property. Any change to one of its data pointers will disrupt its permutation
property. We summarize these observations by saying that Permutation Graphs
are single-error detecting.

3.4.2 Radix Encoding. Figure 8(b) illustrates a Radix Graph in a circular
linked list of length n. The data pointer field encodes a base-n digit in the length
of the path from the node back to itself. A null-pointer encodes a 0, a self-pointer
a 1, a pointer to the next node encodes a 2, etc. Note that this is the same data
structure as a Permutation Graph, however Radix Graph fingerprints have
higher data rate and less error-detection capacity, because their data pointers
are less constrained.

A Radix Graph of length n can represent any integer in the range 0 · · · (n +
1)n − 1. The list requires an + b words, so its dynamic data rate, as a function
of n, is n lg(n + 1)/(an + b) ≈ (lg n)/a. We expect the values of a and b to be
similar for Radix Graphs and Permutation Graphs, and this is confirmed by
our experimental data of Section 7.

If a = b = 16 bytes, a Radix Graph of length n = 9 will hide m = n lg(n+1) =
29.9 bits of information in an+b = 160 bytes of information, for a dynamic data
rate of 0.19 bits/byte. As with Permutation Graphs, the dynamic data rate grows
as lg m. We note that Radix Graphs are more efficient than Permutation Graphs,
because the former is the less restrictive organization, and therefore carries
more information for any fixed number of list elements: every Permutation
Graph is a Radix Graph, but not all Radix Graphs are Permutation Graphs.

We expect the static data rate of a Radix Graph, in any implementation, to
be slightly better than the static data rate of a Permutation Graph in a similar
implementation, because similar code will build both structures but the latter
organization holds less hidden information per list element.

3.4.3 Parent-Pointer Trees. Many other classes of graphs, in addition to
Permutation Graphs and Radix Graphs, allow efficient fingerprinting schemes.
In Section 4, we discuss the data rates and error-correcting properties of the
more complex graphs illustrated in Figures 8(e) and 8(c).

In this subsection, we consider the case where the fingerprinting graph G is
an oriented “parent-pointer” tree, enumerable by the techniques described in
Knuth [1997, Section 2.3.4.4]. See Figure 8(d) for an illustration of these trees.

We construct the rank or index w of a parent-pointer tree in the usual way,
that is, by ordering the operations in an enumeration. When we enumerate the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:30 • C. S. Collberg et al.

n-node parent-pointer trees in “largest subtree first” order, then the unbranch-
ing tree (a path of length m − 1) is assigned index 1. Indices 2 through an−1 are
assigned to the other trees in which there is no branching at the root, that is,
when there is a single subtree of size n − 1 connected to the root node. Indices
an−1 +1 through an−1 +an−2 are assigned to the trees with exactly two subtrees
connected to the root node, such that one of the subtrees has exactly n−2 nodes.
The next an−3a2 = an−3 indices are assigned to trees with exactly two subtrees
connected to the root node, such that one of the subtrees has exactly n−3 nodes.

The number an of parent-pointer trees with n nodes is asymptotically (for
c ≈ 0.44 and 1/α ≈ 2.956) an = c(1/α)n−1/n3/2 + O((1/α)n/n5/2). Thus we
can encode an arbitrary 1024-bit integer w in a graphic fingerprint with
1024/ lg 2.956 ≈ 655 data pointers. This might require as little as 2620 bytes
on a 32-bit architecture, if these data pointers were added to objects that were
allocated by the original unfingerprinted program, rather than being stored
in separately allocated objects. We note that these fingerprinting data point-
ers might significantly slow de-allocations, and thereby hugely decrease the
dynamic data rate, if they prevented some large, otherwise-dead, objects from
being de-allocated until all its children objects in the fingerprint tree were also
dead.

The dynamic data rate of a Parent Pointer Tree fingerprint might thus be as
high as lg(2.956)/4 ≈ 0.4 hidden bits per overhead byte, for large fingerprints
such as the m = 1024 case considered immediately above. The dynamic data
rate would be much lower than this if the Parent Pointer Tree structure is
separately allocated, rather than being carried as extra pointers in an already-
existing data structure. The dynamic data rate should not change appreciably
with m, although for small m it will be smaller than 0.4, because our asymptotic
approximations have ignored some low-order terms that are important when m
is small. Even so, Parent Pointer Trees may be preferable, from the point of view
of dynamic data rate, to Radix Graphs and Permutation Graphs, for small and
moderate m. This data-rate advantage will disappear for larger m. According
to our estimates from the previous subsection, Radix Graphs of length n = 128
are large enough to be more efficient than Parent Pointer Trees, for a Radix
Graph of this size can hold m = 897 bits of hidden information, at a dynamic
data rate of 0.43.

Parent Pointer Trees have not yet been implemented in SandMark, so we
have not yet conducted an experimental validation of the asymptotic analysis
and model developed above.

3.5 Generating Intermediate Code

We could, of course, generate Java code directly from the graph components.
However, it turns out to be advantageous to insert one intermediate step. From
the fingerprint graph we generate a list of intermediate code instructions, much
in the same way a compiler might generate an intermediate representation
of a program, in anticipation of code generation and optimization. In a com-
piler, the intermediate code separates the front-end from the back-end, im-
proving retargetability, and also provides a target-independent representation

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:31

Fig. 9. (a) Shows a fingerprint graph, (b) the corresponding intermediate code, and (c) the resulting
Java code.

for optimizing transformations. Similarly, our intermediate representation
provides

(1) retargetability, to allow future generation of code for other languages; and
(2) transformability, that is, the ability to optimize or otherwise transform the

intermediate code prior to generating Java code.

In fact, in our implementation we start by generating straightforward inter-
mediate code and then run several transformations over the code to optimize
it.

Given the graph in Figure 9(a) we would generate the intermediate code
in Figure 9(b). Nodes are named n1, n2, etc. The n = CreateNode() instruction

creates a new node n. The AddEdge(n
edge−→ m) instruction adds an edge from

node n to node m. Since the graphs are multi-graphs the out-edges are named
edge1, edge2, etc. The instruction SaveNode(n,L) is used to store the root node n
in a global storage location L, such as a hash table, vector, etc. This ensures the
liveness of every node so that the graph will not be reclaimed by the garbage
collector. As we will in Section 6.1, we can often do away with these global
pointers by passing root nodes as method arguments. This is much stealthier
since most programs have few global variables but many method parameters.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:32 • C. S. Collberg et al.

To generate intermediate code from a graph G, we perform a depth-first
search from the root of the graph. CreateNode()-instructions are generated

from each node, in a reverse topological order. We issue an AddEdge(n
edge−→ m)-

instruction as soon as the instructions m = CreateNode() and n = CreateNode()
have both been generated.

The complete set of intermediate code instructions is given in Table I. These
will be discussed in more detail in conjunction with the splitting of graphs into
multiple pieces.

3.6 Generating and Inserting Java Code

Generating Java code from the intermediate representation is relatively
straightforward. We use the BCEL library to generate a bytecode class Watermark.
From the intermediate code in Figure 9(b) we would generate the Java code in
Figure 9(c).

The chosen mark()-location is replaced by a call to Watermark.Create(). A
final obfuscation pass over the fingerprinted application will inline the call,
rename the fingerprint class, etc., to prevent attacks by pattern-matching.

To insert the call to Watermark.Create() two cases must be considered,
depending on whether the mark()-call is LOCATION-based or VALUE-based. A
LOCATION-based mark()-call is simply replaced by a call

A VALUE-based mark(expr)-call is replaced by the call

Code is also inserted to create the hashtables, arrays, vectors, etc. that are
used to store fingerprint graph root nodes.

3.7 Extraction

To extract the fingerprint, the fingerprinted application is run as a subprocess
under debugging, again using Java’s JDI debugging framework. The user enters
their secret input sequence I0, Ii, . . . exactly as they did during the tracing
phase. This causes the method Watermark.Create() to be executed and the
fingerprint graph to be constructed on the heap. When the last input has been
entered, it is the extractor’s task to locate the graph on the heap, decode it, and
present the fingerprint value to the user.

There may, of course, be an enormous number of objects on the heap and it
would be impossible to examine them all. To cut down the search space, we rely
on the observation that, when the secret key input sequence has been entered,
the root node of the fingerprint graph will be one of the very last objects to
have been added to the heap. Hence, a good strategy is to examine the heap
objects in reverse allocation order. Of course, an adversary who is able to guess
the correct key input (or even a partial key) when running our watermarked
program can use the same strategy and look for a plausible root node near the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:33

top of the heap. As noted in Section 1.5, we cannot expect to have a stealthy
watermarking system unless the adversary is initially very uncertain about the
keys and watermarks we are using. Under this assumption, the adversary will
not learn very much more about the keys and watermarks from each program
run they observe.

There is no support as yet, in JDI, for examining the heap after a program
run. This makes it more difficult for us to build a watermark recognizer, and our
recognizer is somewhat inefficient, but it also causes our adversary to spend
more time when attacking our watermarks.

An elegant and efficient approach would be to modify the constructor for
Java’s root class java.lang.Object to include a counter:

Since every constructor must call java.lang.Object.〈init〉 (the class construc-
tor) this means that we have assigned an allocation order to the objects on the
heap at the cost of only an extra add and assign per allocation.

We’ve shied away from this approach, however, since it would require modi-
fying the Java runtime library. Also, it is conceivable that some Java compilers
may optimize away calls to java.lang.Object.〈init〉 under the assumption
that this constructor does nothing. The additional 4-byte overhead for every
allocated object might also be prohibitive under some circumstances.

Instead, we rely on a more heavyweight but portable solution. Using JDI we
add a breakpoint to every constructor in the program. Whenever an allocation
occurs we add a pointer to the new object to a circular linked buffer. This way, we
always have the last 1000 (say) allocated objects available. This is illustrated in
Figure 10. The downside is a fairly substantial slowdown due to the overhead
incurred by handling the breakpoints.

To extract the fingerprint graph, we consider each object on the circular
buffer in reverse allocation order, extracting the reachable subgraph. Since ev-
ery fingerprint graph has a root from which every node is reachable we are
guaranteed to eventually find the graph. From the graph, the fingerprint num-
ber is extracted by the algorithm in Figure 11.

4. IMPROVING RESILIENCE

To properly design and evaluate a fingerprinting algorithm it is essential to
define a precise model of a realistic attack. This has been a failing of most pre-
vious work on software fingerprinting. In this article, we assume that the fin-
gerprinted program is too large for manual inspection by the adversary. In other
words, it is infeasible for the adversary to read the (decompiled) source to locate
and destroy the fingerprint code. Rather, we want to protect the fingerprinted

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:34 • C. S. Collberg et al.

Buffer

last Heap

sm$array:

Fig. 10. A view of memory during extraction. A circular linked buffer holds the last allocated
objects. The extractor examines the objects in reverse allocation order and extracts the subgraph
reachable from each object. This is decoded into the fingerprint.

Fig. 11. Fingerprint extraction algorithm. We assume that all graph codecs generate graphs with
outdegree two, which is the case in the SandMark system. Since an adversary might add extra
outgoing edges to the graph nodes we try all possible subgraphs of outdegree two. k is the outdegree
of G. In cases where the user knows which graph codec was used during embedding, the outermost
loop is removed.

program against class attacks—the construction of automated methods of de-
stroying the fingerprint. For example, if a particular code transformation can
be shown to destroy a fingerprint, then it is an easy task for an adversary to
construct an attack that will destroy every fingerprint in every program.

An appealing consequence of our approach is that many translating, optimiz-
ing, and obfuscating transformations will have no effect on the heap-allocated
structures that are being built. There are, however, other techniques that can
obfuscate dynamic data, particularly for languages with typed object code, like
Java. There are four types of obfuscating transformations that are dangerous
to a dynamic software fingerprint. To confuse the extractor, an adversary can

(1) add extra pointers to the nodes of linked structures (Figure 12(a)) to make
it hard for the extractor to identify the real graph edges within many extra
bogus pointer fields;

(2) rename and reorder instance variables (Figure 12(b));

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:35

Fig. 12. Obfuscation attacks against graph-based fingerprints.

(3) add levels of indirection, for example by splitting nodes into several linked
parts (Figure 12(c));

(4) add extra bogus nodes pointing into our graph, preventing us from finding
the root.

Figure 13 illustrates a combination of such attacks.
With the exception of renaming and reordering, these attacks can have some

very serious consequences for the memory requirement of an adversary’s de-
fingerprinted program. For example, splitting a node costs 12 bytes per allocated

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:36 • C. S. Collberg et al.

XY

XY

XY

XY

2P Q

P Q P Q

P Q P Q

1

⇒ ⇒

⇓

⇐

V
V5

Y

BX

A

Y

BX

A

Y

BX

A

Y

BX

A Y

BX

A

4

Y

BX

A

Y

BX

A

Y

BX

A

Y

BX

A Y

BX

X

A

Y

XY

XY

XY

XY

3

B

B

B

B

B

XY

Fig. 13. Example obfuscation attack against the fingerprint graph in 1©. The adversary renames
and reorders node pointer fields (2©), adds a bogus pointer field B (3©), and splits nodes by adding
a bogus pointer field A (4©). Finally, in 5© bogus pointers into the graph obscure the root node.

node (one 4-byte pointer cell plus approximately 8 bytes of overhead for current
Java implementations). Furthermore, since we are assuming that an adversary
will not know in which dynamic structure our fingerprint is hidden, he is going
to have to apply the transformations uniformly over the entire program in order
to be certain the fingerprint has been obliterated. In other words, programs with
high allocation rate of dynamic storage are likely to be resilient to these types
of attacks, since the de-fingerprinted program will have a much higher memory
requirement than the original one.

4.1 De-Fingerprinting by Field Reordering

A simple way to protect against field reordering is to consider every order of the
fields during fingerprint extraction. This could, however, lead to an increased
false positive rate, since a user graph might, under some reordering transfor-
mation, appear to have the same structure as our fingerprint graphs. A better
approach is to choose an unlabeled class of graphs for which the order of out-
going edges do not affect the fingerprint value. Reducible Permutation Graphs
and Planted Plane Cubic Trees have this property. Unfortunately, as we will see
these graphs have a lower bit-rate than Permutation Graphs and Radix Graphs.

4.1.1 Reducible Permutation Graph. Figure 8(c) shows a reducible permu-
tation graph (RPG) [Collberg et al. 2003a]. An RPG is a reducible flow graph
with a Hamiltonian path consisting of four pieces:

A header node. The root node of the graph having out-degree one from which
every other node in the graph is reachable. Every control-flow graph has
such a node.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:37

The preamble. The rest of the graph is only reachable from the header node
through all preamble nodes. Thus, any node from the body can have an edge
to any node in the preamble, and the graph is still reducible.

The body. Edges among the body, from the body to the preamble, and from the
body to the footer node encode a permutation that is its own inverse.

A footer node. A node with out-degree zero that is reachable from every other
node of the graph. Every control-flow graph has such a node, representing
the method exit.

Every node of an RPG has one outgoing “list edge” and one outgoing “permu-
tation edge”. Thus, each node can be represented by a data structure with two
pointers per element.

There is a one-to-one correspondence between self-inverting permutations
and isomorphism classes of RPGs. We have developed a low-degree polynomial-
time algorithm for encoding any integer w as the RPG corresponding to the wth
self-inverting permutation in this correspondence. We also have an efficient
algorithm for decoding w from an RPG.

An RPG encoding a permutation on n elements has a bitrate of approximately
0.375 lg n− 0.62 bits per node, plus or minus approximately 0.125 lg n bits per
node depending on the size of the preamble required for the RPG corresponding
to the fingerprint w. This is, very roughly, half the bitrate of a Permutation
Graph.

Each node in an RPG has exactly one incoming “list edge” and exactly one
incoming “permutation edge”. Thus, any single change to an edge pointer will
cause some node to have an indegree less than two, and the erroneous edge can
be easily identified and corrected. Thus, RPGs can correct single errors.

The preamble of an RPG was designed to make its Hamiltonian unique,
which gives RPGs a strong error-correction ability against adversaries who re-
ordering the pointer fields in node elements. We call such a reordering of pointer
fields an “edge-flip” because it flips the coloring of a node’s outgoing edges.

Permutation Graphs do not have the RPG’s capacity to correct an arbitrary
number of edge-flip errors. Indeed, the fingerprint in a Permutation Graph may
not survive as few as two (carefully or luckily) chosen edge-flips, for a graph
g ′ obtained by two edge-flips from a Permutation Graph g (w) may be a legal
Permutation Graph encoding a fingerprint w′ �= w.

RPGs are thus preferable to Permutation Graphs, in situations where re-
silience to attacks is more important than bitrate.

4.1.2 Planted Plane Cubic Trees. Figure 8(e) shows an example of the class
Gn of planted plane cubic trees (PPCT) on n leaf nodes v1, v2, . . . , vn. PPCT
graphs are enumerated in Goulden and Jackson [1983]. Such trees have n − 1
internal nodes and one root node v0, so there are 2n nodes in each w ∈ G p. We
would represent w by using 2n objects, where each object holds two pointers
l and r. this data structure requires 4n words. A leaf node vi is recognizable
by its self-loop r(vi) = vi. The root node v0 can be found from any leaf node by
following l -links. Furthermore, leaf node indices are discoverable in linear time
by following an (n + 1)-cycle on l -links: l (vi) = v(i+1)mod(n+1).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:38 • C. S. Collberg et al.

PPCTs have a dynamic bitrate of approximately 1 bit per node. Note that this
is asymptotically much worse than the bitrate of our other encoding methods, for
it lacks the logarithmic term. The nodes in a PPCT are the same size as the other
encoding methods in SandMark, because they hold two user-addressable pointer
fields. If each node takes 16 bytes, then the bit-rate of a PPCT is approximately
1 bit per 16 bytes.

PPCTs have the same edge-flip correction property as RPGs, by the following
argument. There is only one (n+ 1)-cycle in any PPCT on n leaf nodes, and this
cycle is the outercycle linking all of its leaves with its root. This outercycle can be
discovered quite efficiently: in linear time with a depth-first search. The colors
(L,R) on the edges in the interior of the tree can be assigned unambiguously,
also in linear time, by maintaining planarity at successively higher levels in
the tree. Thus, the correct colors (L,R) can always be recovered, even if these
are modified by an adversary.

PPCTs have a local consistency property that could be checked, efficiently,
by tamper-detection code. The idea is to test the PPCT’s planarity locally, for
any internal node x, by confirming that the leftmost child of x ’s right subtree is
l-linked to the rightmost child of its left subtree. Any disruption of the PPCT’s
planarity (as may occur when an adversary modifies the PPCT in an attempt to
obliterate its fingerprint) may be detected by some subsequent planarity test.
When such a planarity violation is discovered, this could trigger a “logic bug”
or an outright crash in the fingerprinted program.

Any tamper-response mechanisms invoked by a tamper-detection code will
introduce a stealthiness vulnerability, as will the tamper-detection code itself.
This vulnerability can be mitigated by introducing additional code that is very
similar to the watermarking code but which is required for program correctness,
as suggested by Nagra [2006].

4.2 De-Fingerprinting by Node Splitting

Node-Splitting is an effective attack against our fingerprint graphs but one
which will have serious detrimental effect on the performance of the de-
fingerprinted program. Even so, Figure 14 shows another representation that,
at the expense of a lower data rate, will increase a graph fingerprint’s resilience
to node-splitting attacks. The idea is to turn every node into a 3-cycle and ev-
ery edge into a path of length 3 during embedding. We call such graphs cycled
graphs. During fingerprint extraction the cycles and paths are contracted back
to the original graph. Any node or an edge split by an adversary will be ignored
by this process.

In our SandMark implementation, any of our graph encodings can be turned
into a cycled graph. The algorithm for node and edge contractions is shown in
Figure 15.

4.3 De-Fingerprinting by Bogus Field Addition

The reflection capabilities of Java (and other languages like Modula-3 and Icon)
give us a simple way of tamperproofing a graph fingerprint against many types
of attack, including the addition of bogus fields in the graph nodes. Assume that

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:39

2

B

D

C
D

B

E

E

2

3

A

C

1
3

1

A

Fig. 14. The top-most graph shows a radix encoding of the value 3. The bottom-most graph shows
how this encoding is made more resilient against node-split attacks by turning each node into a
3-cycle and each edge into a path of length three. For identification purposes, nodes have been
labeled 1–3 and edges A-E in this figure. Edges on the spine are shown solid and edges encoding a
radix digit are shown dashed.

we have a graph node Node:

Then, the Java reflection class lets us check the integrity of this type at runtime:

Unfortunately, this type of code is unstealthy in a program that does not oth-
erwise use reflection.

Reflection can also be used to protect against reordering and renaming at-
tacks The idea is to access fingerprint pointers through reflection. For example,
rather than �O.car=V�, we let car be represented by the first relevant pointer in

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:40 • C. S. Collberg et al.

Fig. 15. Algorithm to contract edges and cycles for cycled graphs.

the node O:

Because reflection is unusual in most programs these techniques are of lim-
ited usefulness. For this reason, they have not yet been implemented in the
current version of SandMark.

4.4 Future Work: Manipulating Graphs

One of our main motivations for using dynamically built graph structures to
represent the fingerprint is that the code that builds the fingerprint will be diffi-
cult to analyze. The reason is the inherent hardness of alias analysis. However,
current alias analysis algorithms do very well with noncircular data structures
(such as linear lists and trees) and purely constructive code. That is, an algo-
rithm may be successful in analyzing code that builds a linear list, but may fail
if that list is taken apart and reassembled [Ghiya and Hendren 1996].

We could increase our resilience to attacks based on pattern-matching anal-
ysis, by exploiting these weaknesses in current alias analysis algorithms. For
example, along the special execution path we cannot only merge graph compo-
nents, but also split components into subparts, which are later reassembled.

5. INCREASING FINGERPRINT SIZE

While the operations by which the fingerprint graph is built (pointer assign-
ments and the “new” bytecode for dynamic memory allocation) are stealthy in
themselves, a large number of such operations concentrated to one place in
the code would be likely to arouse suspicion. Furthermore, our fingerprint be-
comes more input-specific if it is built at several points along an execution path
with input dependencies, rather than at a single point. For these reasons, we

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:41

Table I. Intermediate Code Instructions.

INSTRUCTION DESCRIPTION

AddEdge(n
edge−→ m) Add an edge from node n to node m. Since the graphs are multi-

graphs the out-edges are named.
n = CreateNode() Create node n.
CreateStorage(S) Create the global storage structure S.

FollowLink(n
edge−→ m) Return m by following the edge edge from n.

LoadNode(n,L) Load node n from global storage location L.
SaveNode(n,L) Save node n in global storage location L.

therefore split the graph G into several components G0, G1, . . . whose code is
spread along the special execution path. There are several issues to consider:

(1) The subgraphs should be of roughly equal size.1

(2) The splitting of G should be done in such a way that each subgraph has a
root, a special node from which all other nodes in the graph can be reached.
This allows us to store only pointers to root nodes to prevent the garbage
collector from collecting the subgraphs.

(3) We should attempt to split G in such a way that the number of edges between
subgraphs is minimized. The reason for this restriction is that the more
edges there are between subgraphs, the more Java code we will have to
generate in order to connect the subgraphs into the complete graph G.

We use an algorithm by Kundu and Misra [1997] to partition the fingerprint
graphs. Other algorithms which split the graph in connected and rooted com-
ponents of equal size would do equally well. Given the graph on the left in
Figure 16(a) our implementation would produce the two graph components G2
and G4 on the right. Figure 16(b) shows the generated intermediate code. The
main intermediate code instructions are given in Table I. As before, SaveNode
instructions are used to store the root node of each graph component in a global
structure such as a hash table, vector, etc. LoadNode instructions are used to
reload the nodes. We do this to protect against garbage collection, but also so
that the graph components can be connected. Note how root node n2 from graph
G2 has been loaded from global storage in order to connect n1 to n2. Note also
how the FollowLink instruction is used to traverse G2 from the root node n2 to
get to node n3, which can then be connected to n1 in G4.

The intermediate code for a subgraph Gi contains instructions connecting Gi

to all the previous subgraphs G0, . . . , Gi−1. If there is an inter-subgraph edge

m
edge−→ n from Gk to Gi (i.e., m is a node in Gk and n is in Gi), we generate

(1) one or more FollowLink()-instructions to reach node m by traversing Gk

starting at its root node, and
(2) a final AddEdge() instruction to link m to n.

1For stealth reasons, it might be better if the components are of random size. The current imple-
mentation, however, splits in equal-size pieces.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:42 • C. S. Collberg et al.

Fig. 16. (a) Shows a fingerprint graph that has been split into two components. Root nodes have
been shaded and inter-component edges have been dashed. The graphs are identified by their root
nodes. (b) Shows the intermediate code for each component and (c) the corresponding Java code.

This is done by finding the shortest path from k (the root of subgraph Gk) to m
and issuing a FollowLink()-instruction for each edge on the path.

5.1 Generating Java Code

Table II lists possible translations of the intermediate instructions and
Figure 16(c) shows the Java class generated from the intermediate code in
Figure 16(b). Method Create G2 builds subgraph G2 and Create G4 subgraph
G4. Note, in particular, the statements which link nodes n3 and n1. To get
access to G2’s node n3 we follow the edge from G2’s root node n2 to n3. This
will work provided G2 has been created at this point. However, if we are
not doing a extraction run (i.e., the input sequence in not exactly I0, I1, . . .)
then G2 may not have been created, and n2 may be null. Table II shows sev-
eral ways to protect against null-pointer exceptions. It is useful to have a

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:43

Table II. Translation from Intermediate Code Instructions to Java

INSTRUCTION JAVA

AddEdge(n
edge−→ m) Generate n.edge = m

CreateNode(n) Generate Watermark n = new Watermark()

CreateStorage(G,S) Generate one of

(1) static java.util.Hashtable hash = new

java.util.Hashtable();
(2) static Watermark arr = new Watermark[m];
(3) static java.util.Vector vec = new

java.util.Vector(m); vec.setSize(m);
(4) static Watermark n1,n2,. . . ;

where m is the number of nodes in the graph and n1,n2,. . .

are the root nodes of the subgraphs.

FollowLink(n
edge−→ m) Generate

Watermark m = n.edge

or if n can be null at this point, generate one of

(1) Watermark m = (n!=null)?n.edge:new

Watermark();

(2) try {
Watermark m = n.edge;

// Any code referencing m

} catch (Exception e){};
(3) if (n != null) {

Watermark m=n.edge; //

Any code referencing m

}
LoadNode(n,S) Generate one of

(1) Watermark n = (Watermark) Watermark.hash.get(new

java.lang.Integer(k));

(2) Watermark n = Watermark.arr[k − 1];
(3) Watermark n = (Watermark Watermark.vec.get(k − 1);
(4) Watermark n = Watermark.nk

depending on how n is stored. k is n’s node number.
SaveNode(n,L) Generate one of

(1) hash.put(new java.lang.Integer(k), n);
(2) Watermark.arr[k − 1] = n;
(3) Watermark.vec.set(k − 1, n);
(4) Watermark.nk = n

depending on how n is stored. k is n’s node number.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:44 • C. S. Collberg et al.

whole library of such protection mechanisms to prevent attacks by pattern
matching.

5.2 Future Work: Splitting the Fingerprint Number

There is an alternative approach to increasing the size of the fingerprint that
can be inserted in a given program. Rather than splitting the graph, we split
the fingerprint number n into several (smaller) numbers n0, n1, . . . , nk using the
Chinese Remaindering theorem [Muratani 2001]. The numbers are encoded
into graphs G0, G1, . . . , Gk which are embedded along the special execution
path. The problem is that during extraction all the graphs need to be found,
which precludes us from examining only the last few allocated objects as was
done in Section 3.7. Instead, we may want to produce k traces using k special
input sequences, and embed each subgraph along one of the resulting special
execution paths. This approach, however, will be more onerous for the user,
both during embedding and extraction.

6. IMPROVING STEALTH

While our main goal is to protect the fingerprint from automatic means of
destruction, we would also like to protect it against manual attack whenever
possible. Furthermore, we would also like our fingerprints to be as stealthy as
possible, so that an adversary is unable to detect their presence with any degree
of accuracy.

The goal of stealth is often linked to the goal of resilience, because an ad-
versary’s unkeyed detector for a dynamic software fingerprint may operate by
pattern-matching or other analysis of the static representation of the finger-
printed code. Consider an adversary who develops an automated tool that iden-
tifies, with 90% assurance, a small amount (say 10%) of a fingerprinted code
as the portion that contains fingerprint-building constructs. Such an adversary
may then be enabled to manually search these regions of the decompiled pro-
gram, correctly locating some or all of the fingerprint code, and successfully
modifying or deleting the fingerprint.

Thus, it is very important to improve the stealth of a software fingerprint,
even when one’s main goal is to increase its resilience. In this section, we will
consider three techniques for improving the stealth of our graph fingerprints.

6.1 Avoiding Global Variables

We have so far assumed that the roots of subgraphs are stored in static fields. In
Figure 16(b), for example, the roots of subgraph are stored in global variables
array and hash. This is likely to be un-stealthy since programs written in a
modern object-oriented style typically contain only a few globals. Instead, we
would like to pass roots in the formal parameters of methods. This means we
are going to have to find paths through the call-graphs from one mark()-call to
the next.

To facilitate finding the right method calls along the special execution path
to modify, we use the information collected during tracing to build a precise
call-graph. In the general case, this graph is a forest of directed acyclic graphs.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:45

The root of each DAG represents either the main method (which was invoked by
the user), or a method that was invoked by the Java runtime system in response
to an asynchronous event such as the user interacting with the graphical user
interface. There are four kinds of call-graph nodes: ENTER and EXIT nodes
represent the entry into and return from a method, and CALL and RETURN
represent the invocation of a method. It should be noted that, in contrast to the
conservative call-graphs built by static analysis tools, our graphs are exact.

Figure 17 shows the trace forest generated from the trace points in Figure 7.
Solid lines represent the path actually taken during tracing. Dashed lines rep-
resent paths along which information can be passed as method arguments.

We first need to identify locations in the program where the structures that
store subgraph nodes can be created. We call these Storage Structures. For
example, if we want to store subgraph roots in a vector, we need to insert the
code

at a location where vec can be passed on to all the locations in the program
where it is needed. More precisely, the code can be placed at any call-forest
node that dominates all the mark()-nodes being used. This allows us to pass
the storage structures in a method parameter from the point of creation to all
the chosen mark()-calls. In a language that (unlike Java bytecode) supports
pass-by-reference parameters, a simpler strategy could be used: the storage
structure could simply be created at the same point as the first created graph
component. Pass-by-reference parameters can, of course, be simulated in Java
bytecode by adding an extra level of indirection, but we believe this would be a
less stealthy solution.

The next question that arises is which of the available mark()-calls should be
selected for graph construction. To allow us to select the most stealthy locations
we add weights to the nodes and edges in the call-forest. The fingerprinting code
that the CT algorithm inserts into a program has approximately the distribu-
tion shown in Table III. The weight of a method that contains a mark()-call is
calculated to be proportional to how similar its code is to this distribution.

We also have to take into account to which methods it would be allowable
to add an extra storage structure argument, and for which methods it would
be stealthy to do so. It is not legal to change the signature of a method that—
directly or indirectly—overrides a method in the Java standard library. For
example, we cannot change the signature of actionPerformed in Figure 7. We
must also be careful not to “hide” a method by changing a method signature
such that spurious overloading is introduced into the program. By building
the complete inheritance tree of the program, we can compute which are legal
signature changes.

The weight of an edge from a CALL-node to an ENTER-node is computed
based on the stealthiness of adding a storage structure argument to the called
method. This depends on factors such as the number of arguments the method
has and the types of these arguments. In general, adding yet another argument

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:46 • C. S. Collberg et al.

Q

main

Q

Q

Q

P

P

P

mark(1)

EXIT

CALL

RETURN

ENTER

mark()

mark(3)

aP

aP

aP

Q

Q

Q

Q

aP

aP

main

main

main

Q

Q

Q

Q

P

Q

mark(2)

aP

main

main

Q

mark(1)

C

A

B

D

E

Fig. 17. The trace forest generated from the trace points in Figure 7.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:47

Table III. The Distribution of Java Bytecode
Instructions in Generated Graph-Building

Code

bytecode frequency

aload* 29%
putfield 10%
astore* 8%

new 7%
invokespecial 7%

dup 7%
getstatic 6%

invokevirtual 6%
iconst*,ldc 5%

ifnull 3%
pop 2%

return 2%
getfield 2%
checkcast 1%

goto 1%

to a method that already has several should be good. Also, since we will be
adding a pointer argument (a reference to an array, vector, hash table, etc.) it
is probably stealthy if the method already has one or more such parameters.

We then heuristically select the mark()-nodes based on the node weight, the
path weight, and the distance between mark()-nodes. Since we are passing stor-
age structures as formals we need to identify all the methods that appear in the
path between the point of creation and the selected mark()-node. The signature
of these methods are modified accordingly, and all calls to these methods are
modified to pass the storage structures as actual arguments in addition to their
existing arguments. Calls to these methods which are not on the path between
mark()-calls are also modified by adding dummy actuals.

6.2 Protecting Against Static Collusive Attacks

All the calls to the fingerprint creation methods are inlined. Additionally, the
complete fingerprinted program can be obfuscated using any sequence of Sand-
Mark’s obfuscators, complicating attacks by pattern-matching. One important
advantage of dynamic graph fingerprinting is that typical obfuscating trans-
formations (reorder statements, split/merge methods, split/merge classes, etc.)
will have no effect on the inserted fingerprint code. This is in contrast to most
other software fingerprinting methods where obfuscation after fingerprint em-
bedding will destroy the mark.

SandMark also contains several obfuscation executives [Heffner and Collberg
2004], loops that automatically select sequences of obfuscating transformations
in a way that attempts to maximize the amount of confusion and minimize the
amount of computational overhead introduced. The sequences of transforma-
tions are generated based on user input (which parts of the program are security
and performance critical), profiling data, measurements of the level of obfus-
cation that each transformation incurs (using software complexity metrics),

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:48 • C. S. Collberg et al.

and a seed that initializes a random number generator. This allows us to ob-
fuscate each differently fingerprinted version of a program using a different
sequence of obfuscating transformations. As a result, collusive attacks become
more difficult.

Against particularly powerful collusive adversaries, the obfuscation tech-
niques of Chow et al. [2001] and Wang [2000] are likely to be very effective.
These are both advanced forms of obfuscation by interpretation. In both tech-
niques, the control flow of the program is encoded into a finite state machine,
where, in Wang’s construction, the next-state function is computed dynamically.
In Chow’s finite state machine, each block is either functional (i.e., originating
from the original program) or a glue block which permutes register numbers.
The idea is that many clones of functional blocks are strung together during
interpretation by the glue blocks that ensure that each block manipulates the
appropriate input and output registers. This obfuscation should effectively frus-
trate a static pattern-matching attack on local stealth, if each basic block in the
original code appears in more than one of the functional blocks.

6.3 Hiding the Watermark Class

Figure 4 shows how a special class Watermark has been generated that is used
to create nodes in the fingerprint graph. Obviously, this is not very stealthy.
Instead, we search the application to be fingerprinted for a class that closely
resembles the Watermark class. Ideally, the class should already have one or
more fields of the appropriate reference type. If there are several candidate
classes, we break ties based on which class has more static instantiations. If
there is no class with enough pointer fields, extra fields are added to the most
appropriate class.

In situations where there is no appropriate user class, and adding new classes
would be unstealthy, it may be possible to reuse classes from the Java library.
For example, the graph from Figure 9 can be built using Java’s LinkedList
class (which can build up arbitrary lists of lists), the Event class (which has
two public Object fields target and arg), arrays of length two of Object type,
or even combinations of such types:

To be useable, a class C in the Java library needs to have at least two fields fi

of reference type ti such that C is a subclass of ti and the fi are either public

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:49

or have both setter and getter methods. Unfortunately, in Java 1.4.2, we know
of only 21 classes that fullfil these criteria, and, as a result, this method of
increasing stealth is of limited usefulness.

6.4 Future Work: Protecting against Dynamic Collusive Attacks

So far, research into software fingerprinting has focused on protecting against
attacks based on static analysis. Much more powerful attacks are possible if
we allow the adversary to execute the marked program. This gain in power is
particularly apparent in collusive attacks.

Consider, for example, the following attack scenario. Bob buys two programs
P1 and P2 from Alice, knowing that they carry different CT-style fingerprints.
The programs have been heavily obfuscated, so a static pattern-matching attack
yields Bob no information as argued in Section 6.3. Bob might then engage
in a dynamic attack in which he runs both programs simultaneously, on the
same input, synchronizing them by stopping whenever the programs execute
a system call. He then forces P1 and P2 to perform garbage collections, and
compares the remaining linked structures on the heaps. Bob will naturally
assume that P1 and P2 will execute the same sequence of system calls, in the
same order. When stopped at a particular call, these two fingerprinted programs
should be in the same state. Thus, when Bob compares the two heaps, any CT-
like structure that doesn’t match a structure on the other heap is very likely
to be a part of a CT-style fingerprint. Bob could then trace back through the
code to discover where this structure was built. If this attack is successful, the
fingerprint is not locally stealthy.

This scenario represents a very serious attack that will be difficult to defend
against. One possible defense is for Alice to insert random bogus system calls
that will prevent Bob from synchronizing the execution of the two programs.
This will be hard to do for a typical Java program, since many calls have unde-
sirable and difficult-to-cancel effects such as opening a window or writing to a
file. Bob can choose any set of system calls for his dynamic analysis, so his list
would probably include graphics and IO primitives, but exclude the collection
classes and any other system call which have side-effects he thinks Alice might
know how to cancel. So we are not optimistic that Alice can prevent Bob from
synchronizing his executions of fingerprinted code at many system call sites.

However, we believe it should be possible for Alice to prevent Bob from learn-
ing very much from his synchronization points. The idea is to ensure that on
most every path through the program bogus CT-style graph pieces are built. If
there is a “sufficiently large number” of bogus live pieces on the heaps wher-
ever Bob stops the two programs, it will be difficult for him to distinguish Alice’s
real from her bogus fingerprint structures. Unfortunately, for a fingerprinter
to add such graph-building code automatically to an arbitrary program is non-
trivial—it has to ensure that any bogus pieces are live long enough that Bob’s
garbage collection won’t remove them, but not so long that the heap becomes
too full. This obfuscation can be seen as advanced form of Palsberg’s tamper-
proofing [Palsberg et al. 2000], and has been explored in some of our other
publications. See, for example Thomborson et al. [2004].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:50 • C. S. Collberg et al.

6.5 Future Work: Avoiding Weak Cuts

An important part of Venkatesan’s fingerprinting algorithm [Venkatesan et al.
2001] is to bind the fingerprint code (in their case, a control-flow graph) tightly
to the application. The reasoning is that segments of weakly connected code are
unusual in real programs and are easy to find using existing graph algorithms.
To prevent this attack Venkatesan et al. connect the fingerprint code to the
application by adding a number of bogus control-flow edges realized by opaque
predicates.

Our current implementation of the CT algorithm does not try to connect the
graph building code to the application. If it is indeed the case (as Venkatesan et
al. [2001] conjecture) that weakly connected code is unusual, this would leave
us open to attacks that attempt to locate weak cuts in the control-flow graphs.

While it is certainly possible to use Venkatesan’s technique to remedy this
problem, there are far easier and stealthier methods. Since the structure of
the fingerprint graph is known at each point in the program we can use it as
a source of opaque values. For instance, a literal integer 3 in the application
can be replaced by computation that uses the fingerprint graph as input to
compute the value 3, perhaps as a function of the path length from the root to
a leaf [Thomborson et al. 2004].

7. EVALUATION

There is no widely accepted method for measuring the strength of a software
fingerprinting algorithm. As a result, most previous publications in this area
contain little or no theoretical or empirical evaluation. While measuring the
data rate of an embedding is relatively straightforward, measuring stealth and
resilience is much harder, since this requires a model of how an adversary might
measure and transform the fingerprinted program. Future work in this area
will have to develop and validate such models.

This section contains embryonic evaluation techniques for stealth, data rate,
and resilience. While these techniques have yet to be validated, we believe they
are a vast improvement over previous attempts, and form a solid basis for future
study.

7.1 Stealth

Many different definitions of stealth are possible. Our main definition was
sketched in the Introduction of this article, and is stated formally in Eq. (2)
below. Informally, we say a fingerprinting scheme has a high degree of stegano-
graphic stealth if, when given access to a fingerprinting algorithm A and a
fingerprinted program Pw, an adversary cannot determine if Pw has been fin-
gerprinted with A or not.

We developed an alternative definition of stealth informally in the previous
section, when we discussed the interaction of stealth with resilience. We for-
malize this definition in Eq. (1) below. Informally, an algorithm exhibits a high
degree of local stealth if, given access to a fingerprinting algorithm A and a
program Pw known to be fingerprinted with A, an adversary cannot determine
the location of w within Pw.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:51

Further refinements are conceivable. We might speak of static local stealth if
the adversary cannot identify the static code that generates a dynamic software
fingerprint. Dynamic local stealth might imply that the adversary is unable to
distinguish a program’s unfingerprinted data structures from the fingerprinted
data structures it builds when it is exhibiting its fingerprint. However, we doubt
that this distinction will be helpful in practice, as either possible form of local
unstealthiness probably implies the other form, if the adversary is at all com-
petent. For the sake of clarity and simplicity, then, the phrase “location of w”
in our definition of local stealth should be understood to mean the “location of
the code that builds w” in the case of a dynamic software fingerprint.

Any measure of stealth must be conditioned on, at least implicitly, on some
universe U of unfingerprinted programs. Any adversary must make some as-
sumptions about U in order to distinguish some fingerprinted version of a pro-
gram P ∈ U from the unfingerprinted original version of this program P . Fur-
thermore, any well-designed application of a fingerprinting scheme will adjust
the embedding algorithm so that it is as stealthy as possible within the range
U of its intended application. For example, a fingerprinting algorithm which
encodes the fingerprint in the number of xor instructions in the program is
likely to be unstealthy for most host programs expressed in typical executable
languages, since xor instructions are unusual in common code. So this algo-
rithm is inappropriate for general U ; however, it could be quite stealthy when
applied to a range U ′ of programs with cryptographic or bitmapped-graphic
primitives.

As noted before in this article, stealth interacts with data rate as well as
with resilience. For example, a fingerprinting scheme A might allow a stealthy
embedding of a 4-bit fingerprint but not a 40-bit fingerprint, in a given program
P . We parameterize this dependence of stealth on fingerprint size in our formal
definitions.

Definition LOCAL STEALTH. Let A be a watermarking algorithm, L be an ad-
versary’s locator function, m the length (in bits) of a watermark, w a watermark
chosen uniformly at random from 0..2m−1, U a universe of benchmark unwater-
marked programs, P a program chosen at random from U , and λ a real-valued
constant in [0..1]. The locator function L : X → {0, 1}|X | is intended to flag
the instructions and constant data in a watermarked program X . Let L̂ be an
error-free locator function, such that L̂(X)[i] = 1, if the ith instruction of X
builds, modifies or encodes a watermark, and L̂(X)[i] = 0 otherwise. We say A
is locally λ-stealthy for L if either the false-positive or false-negative error rate
is at least λ on an instruction j chosen uniformly at random from a random
input X = A(P,w):

max

{
Prob

(
L̂(X)[j] = 0 ∧ L(X)[j] = 1

)
,

Prob
(
L̂(X)[j] = 1 ∧ L(X)[j] = 0

)
}

≥ λ (1)

Definition STEGANOGRAPHIC STEALTH. Let S be an adversarial detection
method mapping programs onto 0-1 (where 1 indicates the presence of a wa-
termark) and let σ be a real-valued constant in [0..1]. If A, U , P , m, w are
defined as above, we say A is steganographically σ -stealthy for S if either the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:52 • C. S. Collberg et al.

false-positive or false-negative error rate of S is at least σ :

max{Prob(S(P) = 1), Prob(S(A(P, w)) = 0)} ≥ σ (2)

Any given fingerprinting algorithm will score differently on a stealth metric
based on either of the definitions above, depending on the specific adversary
that is chosen. We can, for example, imagine a worst-case scenario where a
“local-stealth” adversary decompiles, reads, and learns to understand an en-
tire program in order to locate redundant fingerprint code. Alternatively, we
can imagine a much less demanding “steganographic-stealth” scenario, where
an adversary constructs a class attack which computes static statistics of a
program, from which a simple heuristic determines if the program contains a
fingerprint or not. In this article we make an initial exploration of the latter
scenario, deferring other evaluations of stealth to future work.

7.1.1 Experimental Setup. We collected a universe of 622 Java jar-files
from the Internet in July 2003. The programs range in size from 6 to 40858
methods. The total number of instructions in each program ranged from 21 to
508,806; with an average of 13,500 instructions and a median of 3,676 instruc-
tions. The programs come from a variety of sources, were written by a large
number of programmers, are both applets and applications, and are of a wide
range of sizes. We thus assert that they form an interesting random sampling
of real Java programs.

For each jar-file a set of instruction windows was computed by sweeping a
peephole or window of size n (n = 1, 2, 3, 4) instructions over the instruction
stream. The frequency of each n-gram (the number of times it occurred in each
jar-file) was recorded.

Prior to computing the n-grams, similar instructions were put into equiv-
alence classes. This prevents anomalies resulting from different applications
being compiled with different compilers, using different code-generation strate-
gies. Our use of equivalence classes, and our restriction to short window
lengths, has the further advantage of making our simple stealth analysis rea-
sonably predictive of actual stealth (relative to a rudimentary adversary) af-
ter an obfuscation. Note that any adversary who relies on long windows, or
specific choices of instructions, would be easily fooled by simple obfuscations
that reorder instructions and substitute short sequences of instructions by
synonyms.

For example, to push the value 2, one compiler (or one obfuscator) might
generate iconst 2, while another might generate iconst 2. With this in mind,
we put all iconst instructions into an ICONST class, all iload instructions into an
ILOAD class, all integer arithmetic instructions into an IARITH class, all branch
instructions into an IF class, etc.

We generated Fingerprint classes (as in Figure 4) W4,3, W16,3, W32,3, and
W64,3 for uncycled Radix Graph fingerprints of size 4, 16, 32, and 64 bits. The
second subscript indicates that the fingerprint graphs were split into three com-
ponents. We analyzed the n-grams in these classes by the algorithm sketched
above: first we classified the opcodes into their equivalence class (e.g., ILOAD),
and then we computed instruction window frequencies. Figure 18 plots our data

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:53

0 5 10 15 20

pattern occurences

PUSH anewarray
ALOAD areturn

PUSH aaload
PUSH ALOAD

ALOAD putstatic
nop return

putstatic ALOAD
invokespecial return

ALOAD invokespecial
anewarray ASTORE

ICONST ALOAD
ICONST aaload

putfield return
getstatic PUSH

ALOAD aastore
aaload ASTORE
putfield getstatic

ASTORE new
ASTORE getstatic

aastore ALOAD
getstatic ICONST

nop ALOAD
putfield nop
putfield new

putfield ALOAD
ALOAD getfield

nop ASTORE
aconst_null nop
getfield GOTO

nop aconst_null
GOTO nop

invokespecial ASTORE
DUP invokespecial

new DUP
ALOAD IF
IF ALOAD

ASTORE ALOAD
ALOAD ALOAD
ALOAD putfield

p
a

tt
er

n

0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%

0.85%
0.85%
0.85%
0.85%

1.27%
1.27%
1.27%
1.27%
1.27%
1.27%

1.7%
1.7%

2.12%
2.12%

2.55%
3.82%
3.82%
3.82%
3.82%
3.82%
3.82%

4.68%
4.68%
4.68%

5.95%
5.95%

7.65%
8.93%
8.93%

Fig. 18. Digram frequencies generated for a 32-bit CT fingerprint.

for windows of size n = 2, revealing that digrams involving aload and astore
instructions are very common in the graph building code W32,3.

In our steganographic stealth analysis below, we ignore the frequency of
occurrence. Instead, we assume our adversary computes the set of n-grams
that occur in a jar-file, for n ≤ 4. Specifically, we reveal to our adversary (or as-
sume they somehow learn) the sets Wm,n,3 of n-gram occurrences in our graph-
building codes Wm,3 for m = {4, 16, 32, 64} for n ≤ 4. Our adversary will com-
pute a measure of similarity between this occurrence vector, and the n-gram
occurrences observed in some possibly fingerprinted code X . If almost all of the
n-grams in Wm,n,3 also occur in X , the adversary will conclude that X is likely
to be fingerprinted. In future work, we will consider more powerful adversaries
who possess n-gram frequency information on our fingerprints.

In order to evaluate stealth against our adversary, we construct a large
number of datasets Pm,n,i of the n-gram occurrences in fingerprinted Java

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:54 • C. S. Collberg et al.

bytecode code. Each of these 4 × 4 × 622 = 9952 datasets is a union of the
n-gram occurrences in one of our four fingerprint classes Wm,3, with the n-
gram occurrences of one of our 622 applications Pi, for some window size
n = 1, 2, 3, 4. Note that this is an approximation to the true n-gram occur-
rences that would be obtained if we actually embedded fingerprints in these
applications Pi. It would be impractical for us to produce a more accurate set
of n-grams for a dataset of this size. As noted earlier in this article, the CT em-
bedding algorithm in SandMark is not completely automatic, for the user must
annotate the code and then run it with a secret input sequence to produce a
trace.

We have identified two sources of error in our simulation. First of all, in an
actual embedding, some windows in the application would be broken up by the
inserted fingerprinting code, so a few digrams in our simulated fingerprinting
may not be present at all in actual fingerprinted code. Also, before and/or after
an actual embedding, we would want to apply code obfuscation to increase
stealth. This would certainly affect n-gram frequencies, and it may also have
an effect on the n-gram occurrences we use in our stealth analysis. Both effects
are small, and would tend to decrease the accuracy of our adversary’s detector
in any practical setting, so they will cause us to make a slight overestimation
of the stealth of the CT algorithm.

7.1.2 Steganographic Stealth Analysis. We compute steganographic
stealth, relative to an adversarial detector B. This detector is a one-sided test of
similarity, the value of which is maximized when the code X under test contains
all the n-grams occurring in a reference set Wm,n,3.

We define our adversary formally as follows.

Bm,n,δ(X) =
{

1, if |window types that occur in Wm,n,3 but not in X |
|window types that occur in Wm,n,3| < δ

0, otherwise.
(3)

Our adversarial detector B is parameterized on the length m of the fingerprint
(m = {4, 16, 32, 64}, the length n of the n-grams (n ≤ 4), and a sensitivity
parameter δ (0 < δ < 1). We would expect an adversary to choose an n that
maximizes the accuracy of their detector. We assume the adversary will choose
m accurately, based on some prior knowledge of the fingerprinting scheme.
The adversary will choose an appropriate δ based on their tolerance for false-
positive and false-negative errors. For δ near 1, the detector will suffer from
false-positive errors: it will report some unfingerprinted X as being finger-
printed. For δ near 0, the detector will suffer from false-negative errors: it will
report some fingerprinted X as being not fingerprinted.

We assume the adversary will be intolerant of false-negative errors, because
it can be very expensive to be “caught out” distributing code bearing someone
else’s fingerprint. By contrast, false-positive errors are likely to be inexpensive
to the adversary. In response to a false-positive, an adversary would conduct
further attacks on X , until an X ′ is constructed for which B(X ′) = 0. We assume
an adversary will be unable to evaluate false-positive error rates accurately,
for this will require excellent knowledge of many parameters that are difficult

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:55

0060040020

applications

0

20

40

60

80

100
%

window size = 1
window size = 2
window size = 3
window size = 4

Fig. 19. Steganographic stealth evaluation. For each of the 622 applications in our benchmark
universe, the graph shows the fraction of n-grams which occur in the embedded 32-bit CT fingerprint
code, but which do not occur in the application itself.

to estimate, such as the universe U1 of codes that are likely to be input to a
fingerprint embedder. In our stealth evaluation, we assume that the adversarial
detector has a low sensitivity δ = 0.1, so that it can have a low false-negative
rate.

Note that B has the correct endpoint behavior, for any sensitivity in the range
0 < δ < 1. It will report that X is fingerprinted (Bm,δ(X) = 1), if all n-grams in
Wm,3 also occur in X . However, if none of the n-grams in W(m,3) also occur in X ,
then Bm,δ(X) = 0.

Figure 19 shows that at sensitivity δ = 0.1 (plotted on the y-axis), a 32-bit
fingerprint is steganographically stealthy in 395 out of the 622 applications in
our benchmark universe U . We conclude that the CT fingerprint, in its present
form, is suitable for use against adversary B in about half of the Java programs
that have been published to the web recently.

This is the first published evaluation of stealth for any software fingerprint-
ing technique. Improvements to the stealth analysis are certainly possible. For
example, we could evaluate stealth against stronger adversaries who compute
χ2 measures of similarity to n-gram frequency vectors of fingerprinting code.
We could also evaluate stealth against adversaries who construct signatures,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:56 • C. S. Collberg et al.

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

200

400

600

800

1000

1200

si
ze

(b
yt

es
)

PPCT graph heap size

reducible permutation graph heap size

permutation graph heap size

radix graph heap size

Fig. 20. Sizes of the graph as a function of the size of the fingerprint.

similar to those used in heuristic scans for computer viruses in email, of the
n-grams that are most characteristic of fingerprinted code.

In addition to improving the offensive power of the adversary, we can also
improve the defensive stealth of any fingerprinting method against that ad-
versary. Indeed, in Section 6 we have already discussed several methods for
improving stealthiness against various types of adversaries.

7.2 Data Rate

Figure 20 shows the runtime size of the different graph structures as a function
of the size of the fingerprint.

We used linear regressions to estimate the parameters a, b of the best-fit
equation S(m) = am + b for each of our encoding methods. Here, m is the
number of bits in the fingerprint integer w, that is, m = �lg(w + 1)� when w
is any non-negative integer. As noted below, all our estimated parameters are
in good agreement with the theoretical expectations for dynamic bitrate we
developed in earlier sections.

As expected, the PPCTs have the lowest bitrate. Our regression line is
Sppct(m) = 17m + 127. We had expected a bitrate of 16 bytes per bit, not the
17 bytes per bit of this equation; however, this expectation was based on an
asymptotic approximation that ignored low-order terms. The R2 metric for this
regression is 0.999, indicating that all our observations are very accurately pre-
dicted by this equation, and implying that the low-order terms in the bitrate
expression for PPCTs are almost negligible.

Our theoretical analysis predicted that the bitrates of our other three meth-
ods would be slowly increasing functions of the number of bits m in the
fingerprint. This was reflected in our experimental data, however the non-
linearity is so slight over the range of our experimentation that it is almost
imperceptible in our plots.

Our regression line for the Reducible Permutation Graph is SRPG(m) =
9.3m+104, showing that RPGs have roughly twice the bitrate of PPCTs. We see

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:57

a modest amount (R2 = 0.970) of unexplained variance. A tiny amount of this
unexplained variance is the expected nonlinearity, but the majority is clearly
visible as “noise” in Figure 20. We believe this apparent noise is due to the de-
pendence of the size of the preamble of an RPG, on the value of the fingerprint
w being encoded as an RPG: two fingerprints w with the same number of bits
can have differing sizes of RPGs. Our asymptotic analysis indicated that the
RPG size would vary by ±33% for any given number of bits m; however, this
was an asymptotic upper bound. Our experiments indicate that the variability
is perhaps half of this for m in the range of our measurements.

Our regression lines for Permutation Graphs and Radix Graphs are similar,
but with Radix Graphs having slightly higher bitrate, in accordance with our
theory. We find SPG(m) = 4.4m + 84 and SR(m) = 3.4m + 67, with R2 = 0.991
in both cases. The unexplained variance in this regression is almost entirely
attributable to the slight nonlinearity that was predicted by our theory.

We conclude that PGs and RGs have somewhat more than twice the bitrate
of RPGs, and that RPGs have about twice the bitrate of PPCTs. None of our
methods required more than 1.3 KB of dynamically allocated storage to embed
a 64-bit fingerprint.

Figure 21 shows the size of the generated bytecode for each of our encoding
methods. We fit regression lines to this dataset to estimate the static bitrates
of our fingerprinting methods. As expected, the static bitrates are in proportion
to the dynamic bitrates: 21 codebytes per fingerprint bit for PPCTs, 12 for
RPGs, 6.3 for PGs, and 4.9 for Radix Graphs. Each regression line had a modest
additive “overhead” term of between 77 and 150 codebytes.

The amount of bytecode necessary to build a graph of a particular type of n
nodes and m edges can differ due to the structure of the graph. In particular,
the size can depend on the number of edges between low-numbered nodes. This
is due to the fact that there are two kinds of JVM store instructions: a one-byte
instruction is sufficient to store into low-numbered local variables, but a two-
byte instruction is necessary to store into high-numbered locals. This explains
the nonmonotonic nature of the radix graph curve in Figure 21.

Figure 22 shows the size of the generated bytecode as a function of k, the
number of components into which the graph is split. Our statistical analysis,
with a generalized linear model, revealed that the average increase in bytecode
size was 22(k − 1)%. Thus, for example, the 4.9 codebytes per fingerprint bit
of the Radix Graph method becomes approximately 6 codebytes per fingerprint
bit if the Radix Graph is built up in two components (which are subsequently
merged) rather than in a single component.

The observed linear dependence on k is easily explained: the more compo-
nents the graph is split into, the more extra code needs to be generated to merge
the components together.

Fingerprinting with many small components is probably more stealthy than
using a single component. However, if k is very large, then the total amount of
fingerprinting code may become large enough that an attacker may be able to
recognize some frequently repeated patterns.

Overall, our experimentation has confirmed that the dynamic and static over-
head of dynamic data fingerprinting is acceptably small for most applications.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:58 • C. S. Collberg et al.

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

500

1000

si
ze

(b
y
te

s)

PPCT graph bytecode size
reducible permutation graph bytecode size
permutation graph bytecode size
radix graph bytecode size

Fig. 21. Sizes of the graph building bytecode as a function of the size of the fingerprint.

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

200

400

600

800

si
ze

(b
y

te
s)

1 component
2 components
3 components
4 components
5 components

Fig. 22. Size of the bytecode for building a Radix Graph, as a function of the number of components
into which the graph is split.

7.3 Resilience

SandMark currently contains approximately forty code obfuscators. They per-
form a wide variety of transformations on code and data, such as merging
methods, splitting classes, splitting arrays, changing the signature of methods,
turning scalars into objects, etc. None of these transformations prevent extrac-
tion of a fingerprint inserted by the CT algorithm, except for the NODESPLITTER

transformation, described in Section 4.2. Using cycled rather than plain graphs
counters this attack. However, as shown in Figure 23, this resilience comes at
a significant cost: the dynamic data rate is reduced by a factor of almost two.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:59

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

1000

2000

3000

4000

5000
si

ze
(b

y
te

s)

cycled radix graph heap size
bytecode size of cycled radix graph with 1 component
bytecode size of cycled radix graph with 2 components
bytecode size of cycled radix graph with 3 components
bytecode size of cycled radix graph with 4 components
bytecode size of cycled radix graph with 5 components

Fig. 23. Bytecode size, and runtime heap size, for cycled radix graphs.

original 1 split 2 splits 3 splits 4 splits

number of node splits

5

10

15

20

ch
a
n

g
e

_201_compress
_202_jess
_209_db
_222_mpegaudio
_227_mtrt
_228_jack

Fig. 24. Overhead of applying sequence of node-splittings to the SpecJVM benchmark suite. The
javac benchmark was excluded since it currently fails on the NODESPLITTER obfuscation.

Figure 24 shows the overhead of applying multiple node-splittings to the
SpecJVM benchmark suite. These results show that on many applications an
attacker can easily apply one or two node-splits without having to worry about
performance overhead. The variance is high, however. Applying two node-splits
makes 228 jack a 16% slower and 227 mtrt 286% slower. Therefore, for less
performance critical applications it may in many cases be worthwhile to use
cycled graphs, if the lower data rate can be tolerated.

The BLOAT Nystrom [2004] bytecode optimizer is included in the SandMark
system. It also has no effect on the success of fingerprint extraction. In gen-
eral, unless a compiler discovers (through a static shape analysis [Ghiya and

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:60 • C. S. Collberg et al.

Hendren 1996], a dead code analysis, etc.) that our inserted code is redundant,
and removes it, typical compiler transformations are ineffective attacks against
our fingerprints.

8. DISCUSSION

Because software fingerprinting is a new field, many fundamental issues have
yet to be resolved. From a practical point of view, the most important question is
what constitutes a reasonable threat-model. In this article, we have identified
several types of threats:

(1) Distortive attacks on the resilience of the fingerprint, using semantics-
preserving transformations such as translation, optimization, and obfus-
cation.

(2) Statistical attacks on the local stealth of the fingerprint, which attempt to
locate a fingerprint by identifying anomalies in the distribution of instruc-
tions or computations.

(3) Collusive attacks on the local stealth of a fingerprint, attempting to locate
it by comparing several differently fingerprinted copies of a program.

(4) Cropping attacks on the resilience of an unstealthy fingerprint, which re-
move a located fingerprint or extract an individual module from a finger-
printed application.

(5) Additive attacks on the resilience of a fingerprint, which insert new bogus
fingerprints into an already fingerprinted program.

None of the methods we have presented are immune to all types of attacks.
Easter egg fingerprints and dynamic graph fingerprints are highly resilient
against distortive attacks, but, by their very nature, they fingerprint complete
applications, not individual modules. Hence, cropping a particularly valuable
module from an application for illegal reuse is likely to be a successful attack
against these methods.

Static fingerprints, on the other hand, are easily duplicated many times in an
application and can thus be made to protect individual modules or even parts of
modules. Unfortunately, static fingerprints are highly susceptible to distortive
attacks.

Whether a statistical attack is successful or not will depend on the nature of
the fingerprint, and the nature of the application. Dynamic graph fingerprints
are stealthy in typical object-oriented programs which tend to create large and
complex heap structures. They would be very unstealthy, and hence susceptible
to statistical attacks, in programs that are primarily numerical in nature; and
our analysis in Section 7.1 confirms that our prototype implementation of the
CT fingerprinting method is unstealthy in approximately half of all Java ap-
plications currently published to the web. Davidson’s [Davidson and Myhrvold
1996b] method (in which a serial number is encoded in the order of basic blocks)
is also prone to statistical attacks since the resulting control flow graphs tend
to appear convoluted and suboptimal.

It is interesting to note that the problems we face in software fingerprinting
are often quite different from those that arise in fingerprinting media. The

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:61

reason is the fluidity of software, which allows us to make quite sweeping
changes to the text of a program without changing its behavior. For example, it
is quite difficult to protect against a collusive attack on an image fingerprint,
since, by their very nature, all fingerprinted copies must appear identical. Soft-
ware fingerprints do not face this problem. We can easily protect against collu-
sive attacks by applying a different set of obfuscating transformations to each
distributed copy of an application. Thus, comparing several fingerprinted copies
of the same application is unlikely to reveal the location of the fingerprint, since
the text of each distributed copy will appear completely different.

For similar reasons, distortive attacks are a less serious threat to media
fingerprints than to software fingerprints. A distortive attack on a media object
is restricted to making imperceptible changes, whereas an obfuscation attack
on a program is only restricted to preserving its semantics.

8.1 Legal and Practical Concerns

Deploying a software fingerprinting system in a practical setting raises many
issues not covered in this article. We briefly discuss some of these legal and
technical problems here.

First of all, what, if any, legal protection does software fingerprinting provide?
If a program marked with Bob’s identifier is discovered in the possession of
Charles, will Alice be able to successfully prosecute Charles and/or Bob? At
the present time we are aware of no case law that answers this question. The
problem is complicated by the fact that Bob might have bought his copy of the
program using false credentials (such as a stolen credit card) and that Charles
might be an end user from whom Alice is unlikely to extract financial relief. It
is our belief that software fingerprinting will be one of many pieces of evidence
needed in a legal proceeding against a software pirate.

Software fingerprinting has many applications in addition to tracing soft-
ware pirates. For example, Alice may want to distribute early versions of her
software to a few select collaborating companies, allowing them the opportu-
nity to integrate it with their own products, perform compatibility analysis,
etc. Fingerprinting each copy with the collaborators’ identities will allow her to
seek relief from any company that allows these early versions to escape into the
public domain. In this case, prosecution will be simpler, since Alice is dealing
with a small number of possible culprits, all of whom can be held financially
responsible.

Fingerprinting can also be used in a government and military setting. Sev-
eral cases have come to light where security-sensitive software has escaped
into the hands of an adversarial government, either by careless handling of
portable devices or by deliberate sale by a traitor. Marking each distributed
copy with the owner’s signature can, at the very least, serve as a deterrent
against carelessness and treachery.

Where and when does the actual fingerprinting of a program take place?
At the present time, most software is sold “shrink-wrapped,” that is, hard-
coded on a CD-ROM. This distribution channel does not seem to lend itself
to fingerprinting, since every distributed CD-ROM contains the same image.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:62 • C. S. Collberg et al.

Embedding the user’s identifier could be done at install time (possibly sending
information back to the manufacturer’s site), but this provides a convenient
attack: modify the installer so that the wrong identification is embedded. We
believe that in the future, all software will be distributed in “soft” form, as
network downloads. In this scenario, it is straight-forward for Alice to verify
the customer’s credentials (their credit card number, for example) and embed
a unique identifier into the binary program before it is downloaded.

A major concern is debugging and quality assurance of fingerprinted and
obfuscated programs. We expect every differently marked program to undergo
a different set of obfuscating transformations in order to prevent collusive at-
tacks. Our SandMark tool contains several obfuscation executives [Heffner and
Collberg 2004] that can generate random but legal sequences of obfuscations,
seeded by a secret key. In order to effectively field bug-reports it will be nec-
essary for Alice to store, for ever sold copy, the keys used to fingerprint and
obfuscate it. This will allow her to recreate the exact copy distributed to an
individual user, should this copy need to be debugged.

8.2 SandMark and JavaWiz

The first implementation based on the CT algorithm was JavaWiz Palsberg
et al. [2000]. This section contrasts the SandMark implementation with that of
JavaWiz.

The JavaWiz implementation is unkeyed. In the SandMark implementation,
a particular input sequence serves as a key for embedding and is required for
fingerprint extraction. User annotation of the source program is required to
make the fingerprint input-dependent.

Both implementations embed an arbitrary bit string as the fingerprint, treat-
ing it as a single large integer. JavaWiz requires the input of an integer; Sand-
Mark accepts either an integer or an arbitrary text string.

JavaWiz encodes the fingerprint in a Planted Plane Cubic Tree (PPCT). Sand-
Mark offers a choice of four encodings, including PPCT. SandMark also offers an
option to use a “cycled graph” encoding (of any of its representations) as a de-
fense against node-splitting attacks.

SandMark generates several code fragments which are inserted at user-
specified locations. Code generation requires some care to allow the segments
to be executed out of order. JavaWiz constructs the graph in a single sequence.

JavaWiz uses a user-specified class for graph nodes. SandMark attempts to
deduce one automatically.

Both implementations require access to portions of the source code of the
target application: SandMark for annotating, and JavaWiz for modification.

Both implementations rely on features of the Sun reference implementation
of the Java language. SandMark uses JDI tracing facilities as part of both the
embedding and recovery stages. JavaWiz uses the heap dump facility to recover
a constructed fingerprint.

Both implementations generate relatively straight-forward code under the
assumption that it will be subsequently obfuscated.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:63

9. SUMMARY

Software fingerprinting embeds an identifying value in a program. The ideal
fingerprint is easily extractable with a key but difficult to detect otherwise. It
imposes little program overhead and is robust against a wide variety of program
transformations.

Most software fingerprints are static: They are applied to, and detected in,
an executable binary file. In this article, we have described the CT algorithm,
where a dynamic fingerprint is encoded by a graph that is built during program
execution. Graph construction is driven by a specific input sequence that serves
as the key. A dynamic fingerprint is much harder to detect than a static finger-
print and is also much more robust against transformations such as obfuscation
and optimization.

The CT fingerprinting scheme has been implemented in the SandMark pack-
age, a large collection of tools for modifying Java programs. The SandMark im-
plementation provides several options for configuring the fingerprint, including
a choice of graph encodings. User annotation of the target program specifies the
dependence on program input and the locations for code insertion. Incorpora-
tion of fingerprinting as part of SandMark allows obfuscation after modification.

We have explored trade-offs among graph encodings and fingerprint sizes and
evaluated their effects on code size and memory requirements. We have mea-
sured execution-time overhead and found a real but not impractical increase.
We have presented a model for measuring the stealth of a software fingerprint
and found that the code introduced by the CT algorithm is stealthy for a large
fraction of real Java programs.

We tested the CT fingerprint’s resilience against SandMark’s suite of ob-
fuscators, and found it invulnerable to all but node splitting. This somewhat
costly obfuscation is in turn overcome by use of a more redundant graph
encoding.

The greatest vulnerability of our implementation of CT watermarking is due
to the limited stealthiness of the watermarking code. We have demonstrated,
in Section 7.1, that CT watermarks are stealthy against a statistically-naı̈ve
attacker. A somewhat more clever attacker will eventually discover an accurate
way to detect a CT watermark, by carefully analzing they obtain a large number
of programs that are known to be watermarked. An attacker could construct
such a collection, fairly easily, by using the CT watermark embedder in the
SandMark package, available for download at sandmark.cs.arizona.edu.

One, very ambitious, goal for future research would be to develop a highly
stealthy watermark. The embedder in such a system can not leave any signa-
ture which will be obvious to the attacker. This suggests that its output must be
highly randomized and yet still resemble unwatermarked code; otherwise, the
attacker will be able to detect the presence of the watermark. A more realistic
goal for future research is to construct a highly resilient CT watermark that is
locally stealthy but not steganographically stealthy. Jasvir Nagra has recently
shown how to construct a thread-based watermark with these security prop-
erties, under two assumptions: that the attacker is unable to guess the secret
key and tables used in recognition, and that the attacker is unable to crack the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:64 • C. S. Collberg et al.

opaque predicates used in tamperproofing Nagra [2006]. It is an open problem
to extend Nagra’s approach to the development of a CT watermarking method
that is highly resilient and locally stealthy.

ACKNOWLEDGMENTS

We thank Edward Carter, Andrew Huntwork, Kamlesh Kantilal, and Jasvir Na-
gra for implementation assistance. William Zhu provided some valuable insight
into our theoretical models. Our anonymous referees made many suggestions
and criticisms which pointed the way to many improvements.

REFERENCES

BCEL. 2004. jakarta.apache.org/bcel.

DynamicJava. 2004. koala.ilog.fr/djava.

AHPAH. 2005. Sourceagain. ahpah.com.
ALBERT, D. AND MORSE, S. 1982. Combating software piracy by encryption and key management.

IEEE Comput. 17, 4 (Apr.), 68–73.
ANDERSON, R. J. AND PETICOLAS, F. A. 1998. On the limits of steganography. IEEE J-SAC 16, 4

(May).
ARBOIT, G. 2002. A method for watermarking Java programs via opaque predicates (extended

abstract). In Proceedings of the 5th International Conference on Electronic Commerce Research
(ICECR-5). citeseer.nj.nec.com/arboit02method.html.

BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. 1994. Compiler transformations for high-performance
computing. ACM Comput. Surv. 26, 4 (Dec.), 345–420.

BAKER, B. S. AND MANBER, U. 1998. Deducing similarites in Java sources from bytecodes. In
Proceedings of the USENIX Annual Technical Conference.

BENDER, W., GRUHL, D., MORIMOTO, N., AND LU, A. 1996. Techniques for data hiding. IBM Syst.
J. 35, 3&4, 313–336.

CHANG, H. AND ATALLAH, M. 2001. Protecting software code by guards. In Security and Privacy
in Digital Rights Management, ACM CCS-8 Workshop DRM 2001 (Philadelphia, PA), Lecture
Notes in Computer Science, Vol. 2320. Springer Verlag, New York.

CHOW, S., GU, Y., JOHNSON, H., AND ZAKHAROV, V. 2001. An approach to the obfuscation of control-
flow of sequential computer programs. In Information Security: Fourth International Conference
(ISC 2001), Davida and Frankl, Eds. Lecture Notes in Computer Science, vol. 2200. Springer
Verlag, 144–155.

COLLBERG, C., CARTER, E., KOBOUROV, S., AND THOMBORSON, C. 2003a. Error-correcting graphs. In
Proceedings of the Workshop on Graphs in Computer Science (WG’2003).

COLLBERG, C., MYLES, G., AND HUNTWORK, A. 2003b. SANDMARK—A tool for software protection
research. IEEE Magazine of Security and Privacy 1, (Aug.).

COLLBERG, C. AND THOMBORSON, C. 1999. Software watermarking: Models and dynamic embed-
dings. In Conference Record of POPL ’99: The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (San Antonio, TX). ACM, New York.

COLLBERG, C., THOMBORSON, C., AND LOW, D. 1997. A taxonomy of obfuscating transforma-
tions. Tech. Rep. 148, Department of Computer Science, University of Auckland. July.
citeseer.nj.nec.com/collberg97taxonomy.html.

COLLBERG, C., THOMBORSON, C., AND LOW, D. 1998a. Breaking abstractions and unstructuring data
structures. In Proceeding of the IEEE International Conference on Computer Languages, ICCL’98.
(Chicago, IL), IEEE Computer Society Press, Los Alamitos, CA.

COLLBERG, C., THOMBORSON, C., AND LOW, D. 1998b. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Proceedings of the Principles of Programming Languages (POPL’98) (San
Diego, CA), ACM, New York.

COMPAQ. 2004. FreePort Express. hwww.support.compaq.com/amt/tools/migrate-cover.html.
COUSOT, P. AND COUSOT, R. 2004. An abstract interpretation-based framework for software water-

marking. In Proceedings of the ACM Principles of Programming Languages. ACM, New York.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:65

CRAVER, S., MEMON, N., YEO, B.-L., AND YEUNG, M. M. 1998. Resolving rightful ownerships with
invisible watermarking techniques: limitations, attacks, and implications. IEEE J. Select. Areas.
Commun. 16, 4 (May), 573–586.

DAVIDSON, R. AND MYHRVOLD, N. 1996a. Method and system for generating and auditing a
signature for a computer program. US Patent 5,559,884, Assignee: Microsoft Corporation.
www.delphion.com/details?pn=US055598844.

DAVIDSON, R. L. AND MYHRVOLD, N. 1996b. Method and system for generating and au-
diting a signature for a computer program. US Patent 5,559,884. Assignee: Microsoft
Corporation.

DEBRAY, S., EVANS, W., MUTH, R., AND SUTTER, B. D. 2000. Compiler techniques for code compaction.
ACM Trans. Prog. Lang. Syst. 22, 2 (Mar.), 378–415.

DEBRAY, S., MUTH, R., WATTERSON, S., AND BOSSCHERE, K. D. 2001a. ALTO: A link-time optimizer
for the Compaq Alpha. Softw.—Pract. Exp. 31, 67–101.

DEBRAY, S., SCHWARZ, B., ANDREWS, G., AND LEGENDRE, M. 2001b. PLTO: A link-time optimizer
for the Intel IA-32 architecture. In Proceedings of the 2001 Workshop on Binary Rewriting
(WBT-2001).

GHIYA, R. AND HENDREN, L. J. 1996. Is it a tree, a DAG, or a cyclic graph? A shape analysis for
heap-directed pointers in C. In Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL’96) (St. Petersburg Beach, FL). ACM, New York, 1–15.

GOULDEN, I. P. AND JACKSON, D. M. 1983. Combinatorial Enumeration. Wiley, New York.
HALSTEAD, M. H. 1977. Elements of Software Science. Elsevier North-Holland. Amsterdam, The

Netherlands.
HARARY, F. AND PALMER, E. 1973. Graphical Enumeration. Academic Press, New York.
HARRISON, W. A. AND MAGEL, K. I. 1981. A complexity measure based on nesting level. SIGPLAN

Notices 16, 3, 63–74.
HAUSER, R. C. 1995. Using the Internet to decrease software piracy—On anonymous receipts,

anonymous ID cards, and anonymous vouchers. In INET’95 The 5th Annual Conference of the
Internet Society The Internet: Towards Global Information Infrastructure. Vol. 1. (Honolulu,
Hawaii), 199–204.

HEFFNER, K. AND COLLBERG, C. S. 2004. The obfuscation executive. In Information Security, 7th
International Conference. Lecture Notes in Computer Science, Vol. 3225. Springer Verlag, New
York, 428–440.

HENRY, S. AND KAFURA, D. 1981. Software structure metrics based on information flow. IEEE
Trans. Softw. Eng. 7, 5 (Sept.), 510–518.

HERZBERG, A. AND KARMI, G. 1984. On software protection. In Proceedings of the 4th Jerusalem
Conference on Information Technology. Jerusalem, Israel.

HERZBERG, A. AND PINTER, S. S. 1987. Public protection of software. ACM Trans. Comput. Syst. 5, 4
(Nov.), 371–393.

HORNE, B., MATHESON, L., SHEEHAN, C., AND TARJAN, R. E. 2001. Dynamic self-checking techniques
for improved tamper resistance. In Security and Privacy in Digital Rights Management, ACM
CCS-8 Workshop (DRM 2001). (Philadelphia, PA). Lecture Notes in Computer Science, vol. 2320,
Springer Verlag, New York.

INTERNATIONAL PLANNING AND RESEARCH CORPORAATION. 2003. Eighth annual BSA global software
piracy study. Global.bsa.org/globalstudy.

KNUTH, D. E. 1997. Fundamental Algorithms, Third ed. The Art of Computer Programming,
vol. 1. Addison-Wesley, Reading, MA.

KUNDU, S. AND MISRA, J. 1997. A linear tree partitioning algorithm. SIAM J. Comput. 6, 1 (Mar.),
151–154.

MADOU, M., ANCKAERT, B., SUTTER, B. D., AND BOSSCHERE, K. D. 2005. Hybrid static-dynamic attacks
against software protection mechanisms. In DRM ’05: Proceedings of the 5th ACM Workshop on
Digital Rights Management. ACM, New York, 75–82.

MALHOTRA, Y. 1994. Controlling copyright infringements of intellectual property: the case of com-
puter software. J. Syst. Manage. 45, 6 (June), 32–35. part 1, part 2: No 7, Jul. pp. 12–17.

MAUDE, T. AND MAUDE, D. 1984. Hardware protection against software piracy. Commun. ACM 27, 9
(Sept.), 950–959.

MCCABE, T. J. 1976. A complexity measure. IEEE Trans. Softw. Eng. 2, 4 (Dec.), 308–320.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

35:66 • C. S. Collberg et al.

MONDEN, A., IIDA, H., ICHI MATSUMOTO, K., TORII, K., AND ICHISUGI, Y. 1998. Watermarking method
for computer programs. In Proceedings of the 1998 Symposium on Cyptography and Information
Security (SCIS’98 - 9.2A). (In Japanese).

MONDEN, A., IIDA, H., MATSUMOTO, K., INOUE, K., AND TORII, K. 2000. A practical method for wa-
termarking Java programs. In Proceedings of the 24th Computer Software and Applications
Conference.

MORI, R. AND KAWAHARA, M. 1990. Superdistribution: The concept and the architecture. The
Transactions of the IEICE 73, 7 (July). www.virtualschool.edu/mon/ElectronicProperty/

MoriSuperdist.html.

MOSKOWITZ, S. A. AND COOPERMAN, M. 1996. Method for stega-cipher protection of computer code.
US Patent 5,745,569. Assignee: The Dice Company.

MUNSON, J. C. AND KOHSHGOFTAAR, T. M. 1993. Measurement of data structure complexity. J. Syst.
Softw. 20, 217–225.

MURATANI, H. 2001. A collusion-secure fingerprinting code reduced by Chinese remaindering
and its random-error resilience. In Information Hiding: 4th International Workshop (IHW 2001).
(Pittsburgh, PA), 303–315.

MYLES, G. AND COLLBERG, C. 2003. Software watermarking through register allocation: Imple-
mentation, analysis, and attacks. In Proceedings of the International Conference on Information
Security and Cryptology.

MYRVOLD, W. AND RUSKEY, F. 2001. Ranking and unranking permutations in linear time. Inf. Proc.
Lett. 79, 6 (Sept.), 281–284.

NAGRA, J. 2006. Threading software watermarks. Ph.D. dissertation. University of Auckland,
Auckland, New Zealand.

NAGY-FARKAS, D. 2004. The Easter egg archive. www.eeggs.com.
NYSTROM, N. 2004. BLOAT—The Bytecode-Level Optimizer and Analysis Tool. www.cs.

purdue.edu/s3/projects/bloat.

OVIEDO, E. I. 1980. Control flow, data flow, and program complexity. In Proceedings of IEEE
COMPSAC. 146–152.

PALSBERG, J., KRISHNASWAMY, S., KWON, M., MA, D., SHAO, Q., AND ZHANG, Y. 2000. Experience with
software watermarking. In Proceedings of ACSAC’00, 16th Annual Computer Security Applica-
tions Conference. 308–316. citeseer.nj.nec.com/323325.html.

PETICOLAS, F. A., ANDERSON, R. J., AND KUHN, M. G. 1998. Attacks on copyright marking systems.
In Proceedings of the 2nd Workshop on Information Hiding (Portland, OR).

PETITCOLAS, F. A. P. 2004. Stirmark 3.1. www.cl.cam.ac.uk/∼fapp2/watermarking/stirmark.

PIEPRZYK, J. 1999. Fingerprints for copyright software protection. In Proceedings of the 2nd In-
ternational Workshop on Information Security (ISW’99), Lecture Notes in Computer Science, vol.
1729, Springer Verlag, pp. 178.

PROEBSTING, T. A. AND WATTERSON, S. A. 1997. Krakatoa: Decompilation in Java (Does bytecode
reveal source?). In Proceedings of the 3rd USENIX Conference on Object-Oriented Technologies
and Systems (COOTS).

QU, G. AND POTKONJAK, M. 1998. Analysis of watermarking techniques for graph coloring problem.
In Proceedings of the 1998 IEEE/ACM International Conference on Computer-Aided Design.
ACM, New York 190–193.

RAMALINGAM, G. 1994. The undecidability of aliasing. ACM Trans. Prog. Lang. Syst. 16, 5 (Sept.),
1467–1471.

SAHOO, T. AND COLLBERG, C. 2004. Software watermarking in the frequency domain: Implemen-
tation, analysis, and attacks. Tech. Rep. TR04-07, Department of Computer Science, University
of Arizona. Mar.

SIMMEL, S. S. AND GODARD, I. 1994. Metering and Licensing of Resources - Kala’s General Pur-
pose Approach. In Technological Strategies for Protecting Intellectual Property in the Networked
Multimedia Environment. The Journal of the Interactive Multimedia Association Intellectual
Property Project, Coalition for Networked Information. Interactive Multimedia Association, John
F. Kennedy School of Government, MIT, Program on Digital Open High-Resolution Systems, 81–
110.

STERN, J. P., HACHEZ, G., KOEUNE, F., AND QUISQUATER, J.-J. 1999. Robust object watermarking:
Application to code. In Information Hiding. 368–378.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

Dynamic Graph-Based Software Fingerprinting • 35:67

THOMBORSON, C., NAGRA, J., SOMARAJU, R., AND HE, C. 2004. Tamper-proofing software watermarks.
In Proceedings of the 2nd Australasian Information Security Workshop (AISW2004), P. Montague
and C. Steketee, Eds. Number 32 in CRPIT. ACS, 27–36.

VENKATESAN, R., VAZIRANI, V., AND SINHA, S. 2001. A graph theoretic approach to software wa-
termarking. In Proceedings of the 4th International Information Hiding Workshop (Pittsburgh,
PA).

WANG, C. 2000. A security architecture for survivability mechanisms. Ph.D. dissertation,
University of Virginia, School of Engineering and Applied Science. www.cs.virginia.

edu/∼survive/pub/wangthesis.pdf.

Received April 2004; revised July 2005 and November 2006; accepted January 2007

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 35, Publication date: October 2007.

